Medium Earth orbit

Last updated
Orbit size comparison of GPS, GLONASS, Galileo, BeiDou-2, and Iridium constellations, the International Space Station, the Hubble Space Telescope, and geostationary orbit (and its graveyard orbit), with the Van Allen radiation belts and the Earth to scale.
The Moon's orbit is around 9 times as large as geostationary orbit. (In the SVG file, hover over an orbit or its label to highlight it; click to load its article.) Comparison satellite navigation orbits.svg
Orbit size comparison of GPS, GLONASS, Galileo, BeiDou-2, and Iridium constellations, the International Space Station, the Hubble Space Telescope, and geostationary orbit (and its graveyard orbit), with the Van Allen radiation belts and the Earth to scale.
The Moon's orbit is around 9 times as large as geostationary orbit. (In the SVG file, hover over an orbit or its label to highlight it; click to load its article.)
To-scale diagram of low, medium, and high Earth orbits Orbitalaltitudes.jpg
To-scale diagram of low, medium, and high Earth orbits

A medium Earth orbit (MEO) is an Earth-centered orbit with an altitude above a low Earth orbit (LEO) and below a high Earth orbit (HEO) – between 2,000 and 35,786 km (1,243 and 22,236 mi) above sea level. [1]

Contents

The boundary between MEO and LEO is an arbitrary altitude chosen by accepted convention, whereas the boundary between MEO and HEO is the particular altitude of a geosynchronous orbit, in which a satellite takes 24 hours to circle the Earth, the same period as the Earth’s own rotation. All satellites in MEO have an orbital period of less than 24 hours, with the minimum period (for a circular orbit at the lowest MEO altitude) about 2 hours. [2]

Satellites in MEO orbits are perturbed by solar radiation pressure, which is the dominating non-gravitational perturbing force. [3] Other perturbing forces include: Earth's albedo, navigation antenna thrust, and thermal effects related to heat re-radiation.

The MEO region includes the two zones of energetic charged particles above the equator known as the Van Allen radiation belts, which can damage satellites’ electronic systems without special shielding. [4]

A medium Earth orbit is sometimes called mid Earth orbit [1] or intermediate circular orbit (ICO). [2]

Use of MEO

Two medium Earth orbits are particularly significant. A satellite in the semi-synchronous orbit at an altitude of approximately 20,200 kilometres (12,600 mi) has an orbital period of 12 hours and passes over the same two spots on the equator every day. [1] This reliably predictable orbit is used by the Global Positioning System (GPS) constellation. [2] Other navigation satellite systems use similar medium Earth orbits including GLONASS (with an altitude of 19,100 kilometres, 11,900 mi), [5] Galileo (with an altitude of 23,222 kilometres, 14,429 mi) [6] and BeiDou (with an altitude of 21,528 kilometres, 13,377 mi). [7]

The Molniya orbit has a high inclination of 63.4° and high eccentricity of 0.722 with a period of 12 hours, so a satellite spends most of its orbit above the chosen area in high latitudes. This orbit was used by the (now defunct) North American Sirius Satellite Radio and XM Satellite Radio satellites and the Russian Molniya military communications satellites, after which it is named. [1]

Communications satellites in MEO include the O3b and forthcoming O3b mPOWER constellations for telecommunications and data backhaul to maritime, aero and remote locations (with an altitude of 8,063 kilometres, 5,010 mi). [8]

Communications satellites to cover the North and South Pole are also put in MEO. [9]

Telstar 1, an experimental communications satellite launched in 1962, orbited in MEO. [10]

In May 2022, Kazakhstani mobile network operator, Kcell, and satellite owner and operator, SES used SES's O3b MEO satellite constellation to demonstrate that MEO satellites could be used to provide high-speed mobile internet to remote regions of Kazakhstan for reliable video calling, conferencing and streaming, and web browsing, with a latency (delay) five times lower than on the existing platform based on geostationary orbit satellites. [11] [12]

See also

Notes

  1. Orbital periods and speeds are calculated using the relations 4π2R3 = T2GM and V2R = GM, where R is the radius of orbit in metres; T is the orbital period in seconds; V is the orbital speed in m/s; G is the gravitational constant, approximately 6.673×10−11 Nm2/kg2; M is the mass of Earth, approximately 5.98×1024 kg (1.318×1025 lb).
  2. Approximately 8.6 times (in radius and length) when the Moon is nearest (that is, 363,104 km/42,164 km), to 9.6 times when the Moon is farthest (that is, 405,696 km/42,164 km).

Related Research Articles

<span class="mw-page-title-main">Geostationary orbit</span> Circular orbit above Earths Equator and following the direction of Earths rotation

A geostationary orbit, also referred to as a geosynchronous equatorial orbit (GEO), is a circular geosynchronous orbit 35,786 km (22,236 mi) in altitude above Earth's equator and following the direction of Earth's rotation.

<span class="mw-page-title-main">Communications satellite</span> Artificial satellite that relays radio signals

A communications satellite is an artificial satellite that relays and amplifies radio telecommunication signals via a transponder; it creates a communication channel between a source transmitter and a receiver at different locations on Earth. Communications satellites are used for television, telephone, radio, internet, and military applications. As of 1 January 2021, there are 2,224 communications satellites in Earth orbit. Most communications satellites are in geostationary orbit 22,300 miles (35,900 km) above the equator, so that the satellite appears stationary at the same point in the sky; therefore the satellite dish antennas of ground stations can be aimed permanently at that spot and do not have to move to track the satellite.

<span class="mw-page-title-main">GLONASS</span> Russian satellite navigation system

GLONASS is a Russian satellite navigation system operating as part of a radionavigation-satellite service. It provides an alternative to Global Positioning System (GPS) and is the second navigational system in operation with global coverage and of comparable precision.

<span class="mw-page-title-main">Low Earth orbit</span> Orbit around Earth with an altitude between 160 and 2,000 km

A low Earth orbit (LEO) is an orbit around Earth with a period of 128 minutes or less and an eccentricity less than 0.25. Most of the artificial objects in outer space are in LEO, with an altitude never more than about one-third of the radius of Earth.

<span class="mw-page-title-main">Satellite constellation</span> Group of artificial satellites working together as a system

A satellite constellation is a group of artificial satellites working together as a system. Unlike a single satellite, a constellation can provide permanent global or near-global coverage, such that at any time everywhere on Earth at least one satellite is visible. Satellites are typically placed in sets of complementary orbital planes and connect to globally distributed ground stations. They may also use inter-satellite communication.

<span class="mw-page-title-main">Geostationary transfer orbit</span> Hohmann transfer orbit used to reach geosynchronous or geostationary orbit

A geosynchronous transfer orbit or geostationary transfer orbit (GTO) is a type of geocentric orbit. Satellites that are destined for geosynchronous (GSO) or geostationary orbit (GEO) are (almost) always put into a GTO as an intermediate step for reaching their final orbit.

A geocentric orbit or Earth orbit involves any object orbiting Earth, such as the Moon or artificial satellites. In 1997, NASA estimated there were approximately 2,465 artificial satellite payloads orbiting Earth and 6,216 pieces of space debris as tracked by the Goddard Space Flight Center. More than 16,291 objects previously launched have undergone orbital decay and entered Earth's atmosphere.

<span class="mw-page-title-main">Molniya (satellite)</span> Soviet military surveillance and communications satellites

The Molniya series satellites were military and communications satellites launched by the Soviet Union from 1965 to 2004. These satellites used highly eccentric elliptical orbits known as Molniya orbits, which have a long dwell time over high latitudes. They are suited for communications purposes in polar regions, in the same way that geostationary satellites are used for equatorial regions.

<span class="mw-page-title-main">Molniya orbit</span> Type of high-latitude satellite orbit

A Molniya orbit is a type of satellite orbit designed to provide communications and remote sensing coverage over high latitudes. It is a highly elliptical orbit with an inclination of 63.4 degrees, an argument of perigee of 270 degrees, and an orbital period of approximately half a sidereal day. The name comes from the Molniya satellites, a series of Soviet/Russian civilian and military communications satellites which have used this type of orbit since the mid-1960s.

<span class="mw-page-title-main">Highly elliptical orbit</span>

A highly elliptical orbit (HEO) is an elliptic orbit with high eccentricity, usually referring to one around Earth. Examples of inclined HEO orbits include Molniya orbits, named after the Molniya Soviet communication satellites which used them, and Tundra orbits.

Satellite Internet access is Internet access provided through communication satellites. Modern consumer grade satellite Internet service is typically provided to individual users through geostationary satellites that can offer relatively high data speeds, with newer satellites using Ku band to achieve downstream data speeds up to 506 Mbit/s. In addition, new satellite internet constellations are being developed in low-earth orbit to enable low-latency internet access from space.

<span class="mw-page-title-main">Satellite navigation</span> Use of satellite signals for geo-spatial positioning

A satellite navigation or satnav system is a system that uses satellites to provide autonomous geo-spatial positioning. It allows satellite navigation devices to determine their location to high precision using time signals transmitted along a line of sight by radio from satellites. The system can be used for providing position, navigation or for tracking the position of something fitted with a receiver. The signals also allow the electronic receiver to calculate the current local time to a high precision, which allows time synchronisation. These uses are collectively known as Positioning, Navigation and Timing (PNT). Satnav systems operate independently of any telephonic or internet reception, though these technologies can enhance the usefulness of the positioning information generated.

GIOVE, or Galileo In-Orbit Validation Element, is the name for two satellites built for the European Space Agency (ESA) to test technology in orbit for the Galileo positioning system.

A supersynchronous orbit is either an orbit with a period greater than that of a synchronous orbit, or just an orbit whose apoapsis is higher than that of a synchronous orbit. A synchronous orbit has a period equal to the rotational period of the body which contains the barycenter of the orbit.

<span class="mw-page-title-main">Tundra orbit</span> Highly elliptical and highly inclined synchronous orbit

A Tundra orbit is a highly elliptical geosynchronous orbit with a high inclination, an orbital period of one sidereal day, and a typical eccentricity between 0.2 and 0.3. A satellite placed in this orbit spends most of its time over a chosen area of the Earth, a phenomenon known as apogee dwell, which makes them particularly well suited for communications satellites serving high-latitude regions. The ground track of a satellite in a Tundra orbit is a closed figure 8 with a smaller loop over either the northern or southern hemisphere. This differentiates them from Molniya orbits designed to service high-latitude regions, which have the same inclination but half the period and do not loiter over a single region.

Spacecraft collision avoidance is the implementation and study of processes minimizing the chance of orbiting spacecraft inadvertently colliding with other orbiting objects. The most common subject of spacecraft collision avoidance research and development is for human-made satellites in geocentric orbits. The subject includes procedures designed to prevent the accumulation of space debris in orbit, analytical methods for predicting likely collisions, and avoidance procedures to maneuver offending spacecraft away from danger.

<span class="mw-page-title-main">O3b</span> Satellite constellation designed for telecommunications and data backhaul from remote locations

O3b is a satellite constellation in Medium Earth orbit (MEO) owned and operated by SES, and designed to provide low-latency broadband connectivity to remote locations for mobile network operators and internet service providers, maritime, aviation, and government and defence. It is often referred to as O3b MEO to distinguish these satellites from SES's forthcoming O3b mPOWER constellation.

<span class="mw-page-title-main">Soyuz flight VS22</span> April 2019 flight of a Soyuz-ST-B operated by Arianespace

Soyuz flight VS22 was a rocket launch conducted by multinational launch service provider Arianespace. It was the sixteenth launch of a Soyuz-ST-B launch vehicle, and the 22nd launch of a Soyuz-2 series launch vehicle from the Ensemble de Lancement Soyouz at the Guiana Space Centre. After two scheduling delays and a 33-minute logistical delay, the rocket lifted off on 4 April 2019, and successfully delivered to medium Earth orbit the final four satellites in the O3b broadband satellite constellation, which services Latin America, Africa, and Oceania. After four previous Soyuz flights delivered the constellation's first sixteen satellites, the launch increased the constellation's throughput by 26 percent. The flight marked the second occasion in which two Soyuz-2 launch vehicles were launched on the same day, occurring hours after the launch of Progress MS-11 from the Baikonur Cosmodrome.

References

  1. 1 2 3 4 Catalog of Earth Satellite Orbits. NASA Earth Observatory. 4 September 2009. Accessed 2 May 2021.
  2. 1 2 3 "Definitions of geocentric orbits from the Goddard Space Flight Center". User support guide: platforms. NASA Goddard Space Flight Center. Archived from the original on 27 May 2010. Retrieved 8 July 2012.
  3. Bury, Grzegorz; Sośnica, Krzysztof; Zajdel, Radosław; Strugarek, Dariusz (February 2020). "Toward the 1-cm Galileo orbits: challenges in modeling of perturbing forces". Journal of Geodesy. 94 (2): 16. Bibcode:2020JGeod..94...16B. doi: 10.1007/s00190-020-01342-2 .
  4. "Popular Orbits 101". Aerospace Security. 26 October 2020. Accessed 2 May 2021.
  5. "The Global Navigation System GLONASS: Development and Usage in the 21st Century". 34th Annual Precise Time and Time Interval (PTTI) Meeting. 2002. Archived from the original on June 29, 2011. Retrieved 28 February 2019.
  6. Galileo Satellites.
  7. BeiDou Navigation Satellite System Signal In Space. China Satellite Navigation Office. December 2013. Access 2 May 2021.
  8. O3b satellites.
  9. Satellite Basics: Solution Benefits. Archived 2013-11-19 at archive.today .
  10. "Medium Earth Orbit". Internet in the Sky. Archived from the original on 2017-06-09. Retrieved 2007-01-04.
  11. Kcell, SES demo O3b satellite-enabled remote mobile services Comms Update. 26 May 2022. Accessed 30 May 2022
  12. "Kcell and SES Successfully Demonstrate Cellular Network connectivity in Kazakhstan" (Press release). SES. 25 May 2022. Retrieved 30 May 2022.