Last updated
Mica (6911818878).jpg
Category Phyllosilicates
(repeating unit)
AB2–3(X, Si)4O10(O, F, OH)2
Colorpurple, rosy, silver, gray (lepidolite); dark green, brown, black (biotite); yellowish-brown, green-white (phlogopite); colorless, transparent (muscovite)
Cleavage Almost perfect
Fracture flaky
Mohs scale hardness2.5–4 (lepidolite); 2.5–3 biotite; 2.5–3 phlogopite; 2–2.5 muscovite
Luster pearly, vitreous
Streak White, colorless
Specific gravity 2.8–3.0
Diagnostic featurescleavage
References [1] [2] [3] [4]
Sheet mica MicaSheetUSGOV.jpg
Sheet mica
Mica flakes Mica-from-alstead.jpg
Mica flakes
Dark mica from Eastern Ontario Dark Mica from Eastern Ontario.jpg
Dark mica from Eastern Ontario

The mica group of sheet silicate (phyllosilicate) minerals includes several closely related materials having nearly perfect basal cleavage. All are monoclinic, with a tendency towards pseudohexagonal crystals, and are similar in chemical composition. The nearly perfect cleavage, which is the most prominent characteristic of mica, is explained by the hexagonal sheet-like arrangement of its atoms.

Silicate class of chemical compounds, salts and esters of silicic acids

In chemistry, a silicate is any member of a family of anions consisting of silicon and oxygen, usually with the general formula [SiO(4−2x)−
, where 0 ≤ x < 2. The family includes orthosilicate SiO4−
, metasilicate SiO2−
, and pyrosilicate Si
. The name is also used for any salt of such anions, such as sodium metasilicate; or any ester containing the corresponding chemical group, such as tetramethyl orthosilicate.

Mineral Element or chemical compound that is normally crystalline and that has been formed as a result of geological processes

A mineral is, broadly speaking, a solid chemical compound that occurs naturally in pure form. A rock may consist of a single mineral, or may be an aggregate of two or more different minerals, spacially segregated into distinct phases. Compounds that occur only in living beings are usually excluded, but some minerals are often biogenic and/or are organic compounds in the sense of chemistry. Moreover, living beings often syntesize inorganic minerals that also occur in rocks.

Crystal solid material whose constituent atoms, molecules, or ions are arranged in an ordered pattern extending in all three spatial dimensions

A crystal or crystalline solid is a solid material whose constituents are arranged in a highly ordered microscopic structure, forming a crystal lattice that extends in all directions. In addition, macroscopic single crystals are usually identifiable by their geometrical shape, consisting of flat faces with specific, characteristic orientations. The scientific study of crystals and crystal formation is known as crystallography. The process of crystal formation via mechanisms of crystal growth is called crystallization or solidification.


The word mica is derived from the Latin word mica , meaning a crumb, and probably influenced by micare , to glitter. [5]

Latin Indo-European language of the Italic family

Latin is a classical language belonging to the Italic branch of the Indo-European languages. The Latin alphabet is derived from the Etruscan and Greek alphabets, and ultimately from the Phoenician alphabet.


Chemically, micas can be given the general formula [6]

X2Y4–6Z8 O 20(OH, F)4,

in which

X is K, Na, or Ca or less commonly Ba, Rb, or Cs;
Y is Al, Mg, or Fe or less commonly Mn, Cr, Ti, Li, etc.;
Z is chiefly Si or Al, but also may include Fe3+ or Ti.

Structurally, micas can be classed as dioctahedral (Y = 4) and trioctahedral (Y = 6). If the X ion is K or Na, the mica is a common mica, whereas if the X ion is Ca, the mica is classed as a brittle mica.

Dioctahedral micas

Trioctahedral micas

Common micas:

Brittle micas:

Interlayer-deficient micas

Very fine-grained micas, which typically show more variation in ion and water content, are informally termed "clay micas". They include:

Illite degradation product of muscovite to montmorillonite

Illite is a group of closely related non-expanding clay minerals. Illite is a secondary mineral precipitate, and an example of a phyllosilicate, or layered alumino-silicate. Its structure is a 2:1 sandwich of silica tetrahedron (T) – alumina octahedron (O) – silica tetrahedron (T) layers. The space between this T-O-T sequence of layers is occupied by poorly hydrated potassium cations which are responsible for the absence of swelling. Structurally, illite is quite similar to muscovite with slightly more silicon, magnesium, iron, and water and slightly less tetrahedral aluminium and interlayer potassium. The chemical formula is given as (K,H3O)(Al,Mg,Fe)2(Si,Al)4O10[(OH)2,(H2O)], but there is considerable ion (isomorphic) substitution. It occurs as aggregates of small monoclinic grey to white crystals. Due to the small size, positive identification usually requires x-ray diffraction or SEM-EDS (automated mineralogy) analysis. Illite occurs as an altered product of muscovite and feldspar in weathering and hydrothermal environments; it may be a component of sericite. It is common in sediments, soils, and argillaceous sedimentary rocks as well as in some low grade metamorphic rocks. The iron rich member of the illite group, glauconite, in sediments can be differentiated by x-ray analysis.

Phengite high silica variety of muscovite

Phengite is a series name for dioctahedral micas of composition K(AlMg)2(OH)2(SiAl)4O10, similar to muscovite but with addition of magnesium. It is a non-IMA recognized mineral name representing the series between muscovite and celadonite.

Occurrence and production

Mica embedded in metamorphic rock

Mica is widely distributed and occurs in igneous, metamorphic and sedimentary regimes. Large crystals of mica used for various applications are typically mined from granitic pegmatites.

Pegmatite Very coarse grained plutonic rock

A pegmatite is an igneous rock, formed underground, with interlocking crystals usually larger than 2.5 cm in size (1 in). Most pegmatites are found in sheets of rock near large masses of igneous rocks called batholiths.

Until the 19th century, large crystals of mica were quite rare and expensive as a result of the limited supply in Europe. However, their price dramatically dropped when large reserves were found and mined in Africa and South America during the early 19th century. The largest documented single crystal of mica (phlogopite) was found in Lacey Mine, Ontario, Canada; it measured 10 m × 4.3 m × 4.3 m (33 ft × 14 ft × 14 ft) and weighed about 330 tonnes (320 long tons; 360 short tons). [8] Similar-sized crystals were also found in Karelia, Russia. [9]

Phlogopite true mica, phyllosilicate mineral

Phlogopite is a yellow, greenish, or reddish-brown member of the mica family of phyllosilicates. It is also known as magnesium mica.

Ontario Province of Canada

Ontario is one of the 13 provinces and territories of Canada and is located in east-central Canada. It is Canada's most populous province accounting for 38.3 percent of the country's population, and is the second-largest province in total area. Ontario is fourth-largest in total area when the territories of the Northwest Territories and Nunavut are included. It is home to the nation's capital city, Ottawa, and the nation's most populous city, Toronto, which is also Ontario's provincial capital.

Canada Country in North America

Canada is a country in the northern part of North America. Its ten provinces and three territories extend from the Atlantic to the Pacific and northward into the Arctic Ocean, covering 9.98 million square kilometres, making it the world's second-largest country by total area. Canada's southern border with the United States is the world's longest bi-national land border. Its capital is Ottawa, and its three largest metropolitan areas are Toronto, Montreal, and Vancouver. As a whole, Canada is sparsely populated, the majority of its land area being dominated by forest and tundra. Consequently, its population is highly urbanized, with over 80 percent of its inhabitants concentrated in large and medium-sized cities, many near the southern border. Canada's climate varies widely across its vast area, ranging from arctic weather in the north, to hot summers in the southern regions, with four distinct seasons.

The British Geological Survey reported that as of 2005, Koderma district in Jharkhand state in India had the largest deposits of mica in the world. China was the top producer of mica with almost a third of the global share, closely followed by the US, South Korea and Canada. Large deposits of sheet mica were mined in New England from the 19th century to the 1970s. Large mines existed in Connecticut, New Hampshire, and Maine.

Scrap and flake mica is produced all over the world. In 2010, the major producers were Russia (100,000 tonnes), Finland (68,000 t), United States (53,000 t), South Korea (50,000 t), France (20,000 t) and Canada (15,000 t). The total global production was 350,000 t, although no reliable data were available for China. Most sheet mica was produced in India (3,500 t) and Russia (1,500 t). [10] Flake mica comes from several sources: the metamorphic rock called schist as a byproduct of processing feldspar and kaolin resources, from placer deposits, and from pegmatites. Sheet mica is considerably less abundant than flake and scrap mica, and is occasionally recovered from mining scrap and flake mica. The most important sources of sheet mica are pegmatite deposits. Sheet mica prices vary with grade and can range from less than $1 per kilogram for low-quality mica to more than $2,000 per kilogram for the highest quality. [11]

Properties and uses

The mica group represents 37 phyllosilicate minerals that have a layered or platy texture. The commercially important micas are muscovite and phlogopite, which are used in a variety of applications. Mica’s value is based on several of its unique physical properties. The crystalline structure of mica forms layers that can be split or delaminated into thin sheets usually causing foliation in rocks. These sheets are chemically inert, dielectric, elastic, flexible, hydrophilic, insulating, lightweight, platy, reflective, refractive, resilient, and range in opacity from transparent to opaque. Mica is stable when exposed to electricity, light, moisture, and extreme temperatures. It has superior electrical properties as an insulator and as a dielectric, and can support an electrostatic field while dissipating minimal energy in the form of heat; it can be split very thin (0.025 to 0.125 millimeters or thinner) while maintaining its electrical properties, has a high dielectric breakdown, is thermally stable to 500 °C (932 °F), and is resistant to corona discharge. Muscovite, the principal mica used by the electrical industry, is used in capacitors that are ideal for high frequency and radio frequency. Phlogopite mica remains stable at higher temperatures (to 900 °C (1,650 °F)) and is used in applications in which a combination of high-heat stability and electrical properties is required. Muscovite and phlogopite are used in sheet and ground forms. [11]

Ground mica

The leading use of dry-ground mica in the US is in the joint compound for filling and finishing seams and blemishes in gypsum wallboard (drywall). The mica acts as a filler and extender, provides a smooth consistency, improves the workability of the compound, and provides resistance to cracking. In 2008, joint compound accounted for 54% of dry-ground mica consumption. In the paint industry, ground mica is used as a pigment extender that also facilitates suspension, reduces chalking, prevents shrinking and shearing of the paint film, increases the resistance of the paint film to water penetration and weathering and brightens the tone of colored pigments. Mica also promotes paint adhesion in aqueous and oleoresinous formulations. Consumption of dry-ground mica in paint, the second-ranked use, accounted for 22% of the dry-ground mica used in 2008. [11]

Ground mica is used in the well-drilling industry as an additive to drilling fluids. The coarsely ground mica flakes help prevent the loss of circulation by sealing porous sections of the drill hole. Well drilling muds accounted for 15% of dry-ground mica use in 2008. The plastics industry used dry-ground mica as an extender and filler, especially in parts for automobiles as lightweight insulation to suppress sound and vibration. Mica is used in plastic automobile fascia and fenders as a reinforcing material, providing improved mechanical properties and increased dimensional stability, stiffness, and strength. Mica-reinforced plastics also have high-heat dimensional stability, reduced warpage, and the best surface properties of any filled plastic composite. In 2008, consumption of dry-ground mica in plastic applications accounted for 2% of the market. The rubber industry used ground mica as an inert filler and mold release compound in the manufacture of molded rubber products such as tires and roofing. The platy texture acts as an anti-blocking, anti-sticking agent. Rubber mold lubricant accounted for 1.5% of the dry-ground mica used in 2008. As a rubber additive, mica reduces gas permeation and improves resiliency. [11]

Dry-ground mica is used in the production of rolled roofing and asphalt shingles, where it serves as a surface coating to prevent sticking of adjacent surfaces. The coating is not absorbed by freshly manufactured roofing because mica’s platy structure is unaffected by the acid in asphalt or by weather conditions. Mica is used in decorative coatings on wallpaper, concrete, stucco, and tile surfaces. It also is used as an ingredient in flux coatings on welding rods, in some special greases, and as coatings for core and mold release compounds, facing agents, and mold washes in foundry applications. Dry-ground phlogopite mica is used in automotive brake linings and clutch plates to reduce noise and vibration (asbestos substitute); as sound-absorbing insulation for coatings and polymer systems; in reinforcing additives for polymers to increase strength and stiffness and to improve stability to heat, chemicals, and ultraviolet (UV) radiation; in heat shields and temperature insulation; in industrial coating additive to decrease the permeability of moisture and hydrocarbons; and in polar polymer formulations to increase the strength of epoxies, nylons, and polyesters. [11]

Mica flakes embedded in a fresco for glitter Mica-moniale.jpg
Mica flakes embedded in a fresco for glitter

Wet-ground mica, which retains the brilliance of its cleavage faces, is used primarily in pearlescent paints by the automotive industry. Many metallic-looking pigments are composed of a substrate of mica coated with another mineral, usually titanium dioxide (TiO2). The resultant pigment produces a reflective color depending on the thickness of the coating. These products are used to produce automobile paint, shimmery plastic containers, high-quality inks used in advertising and security applications. In the cosmetics industry, its reflective and refractive properties make mica an important ingredient in blushes, eye liner, eye shadow, foundation, hair and body glitter, lipstick, lip gloss, mascara, moisturizing lotions, and nail polish. Some brands of toothpaste include powdered white mica. This acts as a mild abrasive to aid polishing of the tooth surface, and also adds a cosmetically pleasing, glittery shimmer to the paste. Mica is added to latex balloons to provide a colored shiny surface. [11]

Mica is also used as an insulator in concrete block and home attics and can be poured into walls (usually in retrofitting uninsulated open top walls). Mica may also be used as a soil conditioner, especially in potting soil mixes and in gardening plots. Greases used for axles are composed of a compound of fatty oils to which mica, tar or graphite is added to increase the durability of the grease and give it a better surface.

Built-up mica

Muscovite and phlogopite splittings can be fabricated into various built-up mica products. Produced by mechanized or hand setting of overlapping splittings and alternate layers of binders and splittings, built-up mica is used primarily as an electrical insulation material. Mica insulation is used in high-temperature and fire-resistant power cables in aluminium plants, blast furnaces, critical wiring circuits (for example, defense systems, fire and security alarm systems, and surveillance systems), heaters and boilers, lumber kilns, metal smelters, and tanks and furnace wiring. Specific high-temperature mica-insulated wire and cable is rated to work for up to 15 minutes in molten aluminium, glass, and steel. Major products are bonding materials; flexible, heater, molding, and segment plates; mica paper; and tape. [11]

Flexible plate is used in electric motor and generator armatures, field coil insulation, and magnet and commutator core insulation. Mica consumption in flexible plate was about 21 tonnes in 2008 in the US. Heater plate is used where high-temperature insulation is required. Molding plate is sheet mica from which V-rings are cut and stamped for use in insulating the copper segments from the steel shaft ends of a commutator. Molding plate is also fabricated into tubes and rings for insulation in armatures, motor starters, and transformers. Segment plate acts as insulation between the copper commutator segments of direct-current universal motors and generators. Phlogopite built-up mica is preferred because it wears at the same rate as the copper segments. Although muscovite has a greater resistance to wear, it causes uneven ridges that may interfere with the operation of a motor or generator. Consumption of segment plate was about 149 t in 2008 in the US. Some types of built-up mica have the bonded splittings reinforced with cloth, glass, linen, muslin, plastic, silk, or special paper. These products are very flexible and are produced in wide, continuous sheets that are either shipped, rolled, or cut into ribbons or tapes, or trimmed to specified dimensions. Built-up mica products may also be corrugated or reinforced by multiple layering. In 2008, about 351 t of built-up mica was consumed in the US, mostly for molding plates (19%) and segment plates (42%). [11]

Sheet mica

Mica insulator items Mikanit.jpg
Mica insulator items
Silver mica capacitors Silver mica capacitors.jpg
Silver mica capacitors
Muscovite windows Muscovite window.jpg
Muscovite windows

Technical grade sheet mica is used in electrical components, electronics, in atomic force microscopy and as window sheets. Other uses include diaphragms for oxygen-breathing equipment, marker dials for navigation compasses, optical filters, pyrometers, thermal regulators, stove and kerosene heater windows, radiation aperture covers for microwave ovens, and micathermic heater elements. Mica is birefringent and is therefore commonly used to make quarter and half wave plates. Specialized applications for sheet mica are found in aerospace components in air-, ground-, and sea-launched missile systems, laser devices, medical electronics and radar systems. Mica is mechanically stable in micrometer-thin sheets which are relatively transparent to radiation (such as alpha particles) while being impervious to most gases. It is therefore used as a window on radiation detectors such as Geiger-Müller tubes.

In 2008, mica splittings represented the largest part of the sheet mica industry in the United States. Consumption of muscovite and phlogopite splittings was about 308 t in 2008. Muscovite splittings from India accounted for essentially all US consumption. The remainder was primarily imported from Madagascar. [11]

Small squared pieces of sheet mica are also used in the traditional Japanese Kodo ceremony to burn incense: A burning piece of coal is placed inside a cone made of white ash. The sheet of mica is placed on top, acting as a separator between the heat source and the incense, in order to spread the fragrance without burning it.

Electrical and electronic

Sheet mica is used principally in the electronic and electrical industries. Its usefulness in these applications is derived from its unique electrical and thermal properties and its mechanical properties, which allow it to be cut, punched, stamped, and machined to close tolerances. Specifically, mica is unusual in that it is a good electrical insulator at the same time as being a good thermal conductor. The leading use of block mica is as an electrical insulator in electronic equipment. High-quality block mica is processed to line the gauge glasses of high-pressure steam boilers because of its flexibility, transparency, and resistance to heat and chemical attack. Only high-quality muscovite film mica, which is variously called India ruby mica or ruby muscovite mica, is used as a dielectric in capacitors. The highest quality mica film is used to manufacture capacitors for calibration standards. The next lower grade is used in transmitting capacitors. Receiving capacitors use a slightly lower grade of high-quality muscovite. [11]

Mica sheets are used to provide structure for heating wire (such as in Kanthal or Nichrome) in heating elements and can withstand up to 900 °C (1,650 °F).


Thin transparent sheets of mica were used for peepholes in boilers, lanterns, stoves, and kerosene heaters because they were less likely to shatter than glass when exposed to extreme temperature gradients. Such peepholes were also used in "isinglass curtains" in horse-drawn carriages [12] and early 20th-century cars. [13]

Atomic force microscopy

Another use of mica is as a substrate in the production of ultraflat, thin-film surfaces, e.g. gold surfaces. Although the deposited film surface is still rough due to deposition kinetics, the back side of the film at the mica-film interface is ultraflat once the film is removed from the substrate. Freshly-cleaved mica surfaces have been used as clean imaging substrates in atomic force microscopy, [14] enabling for example the imaging of bismuth films, [15] plasma glycoproteins, [16] membrane bilayers, [17] and DNA molecules. [18]

Early history

Hand carved from mica from the Hopewell tradition Hand Hopewell mica.jpg
Hand carved from mica from the Hopewell tradition

Human use of mica dates back to prehistoric times. Mica was known to ancient Indian, Egyptian, Greek and Roman and Chinese civilizations, as well as the Aztec civilization of the New World. [19]

The earliest use of mica has been found in cave paintings created during the Upper Paleolithic period (40,000 BC to 10,000 BC). The first hues were red (iron oxide, hematite, or red ochre) and black (manganese dioxide, pyrolusite), though black from juniper or pine carbons has also been discovered. White from kaolin or mica was used occasionally.

A few kilometers northeast of Mexico City stands the ancient site of Teotihuacan. The most striking structure of Teotihuacan is the towering Pyramid of the Sun. The pyramid contained considerable amounts of mica in layers up to 30 cm (12 in) thick. [20]

Natural mica was and still is used by the Taos and Picuris Pueblos Indians in north-central New Mexico to make pottery. The pottery is made from weathered Precambrian mica schist, and has flecks of mica throughout the vessels. Tewa Pueblo pottery is made by coating the clay with mica to provide a dense, glittery micaceous finish over the entire object. [11]

Mica flakes (called abrak in Urdu and written as ابرک) are also used in Pakistan to embellish women's summer clothes, especially dupattas (long light-weight scarves, often colorful and matching the dress). [21] [22] Thin mica flakes are added to a hot starch water solution, and the dupatta is dipped in this water mixture for 3–5 minutes. Then it is hung to air dry.

Mica powder

Throughout the ages, fine powders of mica have been used for various purposes, including decorations. Powdered mica glitter is used to decorate traditional water clay pots in India, Pakistan and Bangladesh; it is also used on traditional Pueblo pottery, though not restricted to use on water pots in this case. The gulal and abir (colored powders) used by North Indian Hindus during the festive season of Holi contain fine crystals of mica to create a sparkling effect. The majestic Padmanabhapuram Palace, 65 km (40 mi) from Trivandrum in India, has colored mica windows. Mica powder is also used as a decoration in traditional Japanese woodblock printmaking, as when applied to wet ink and allowed to dry it sparkles and reflects light.


Ayurveda, the Hindu system of ancient medicine prevalent in India, includes the purification and processing of mica in preparing Abhraka bhasma, which is employed in treating diseases of the respiratory and digestive tracts. [23] [24]

Health impact

Mica dust in the workplace is regarded as a hazardous substance for respiratory exposure above certain concentrations.

United States

The Occupational Safety and Health Administration (OSHA) has set the legal limit (permissible exposure limit) for mica exposure in the workplace as 20 mppcf over an 8-hour workday. The National Institute for Occupational Safety and Health (NIOSH) has set a recommended exposure limit (REL) of 3 mg/m3 respiratory exposure over an 8-hour workday. At levels of 1,500 mg/m3, mica is immediately dangerous to life and health. [25]


Some lightweight aggregates, such as diatomite, perlite, and vermiculite, may be substituted for ground mica when used as filler. Ground synthetic fluorophlogopite, [26] a fluorine-rich mica, may replace natural ground mica for uses that require thermal and electrical properties of mica. Many materials can be substituted for mica in numerous electrical, electronic, and insulation uses. Substitutes include acrylate polymers, cellulose acetate, fiberglass, fishpaper, nylon, phenolics, polycarbonate, polyester, styrene, vinyl-PVC, and vulcanized fiber. Mica paper made from scrap mica can be substituted for sheet mica in electrical and insulation applications. [10]

See also

Cinnabar on Dolomite.jpg Mineralsportal

Related Research Articles

Biotite micas between, or close to, the annite-phlogopite and siderophyllite-eastonite joins; dark micas without lithium

Biotite is a common phyllosilicate mineral within the mica group, with the approximate chemical formula K(Mg,Fe)
. More generally, it refers to the dark mica series, primarily a solid-solution series between the iron-endmember annite, and the magnesium-endmember phlogopite; more aluminous end-members include siderophyllite. Biotite was named by J.F.L. Hausmann in 1847 in honor of the French physicist Jean-Baptiste Biot, who performed early research into the many optical properties of mica.

Graphite allotrope of carbon, mineral, substance

Graphite, archaically referred to as plumbago, is a crystalline form of the element carbon with its atoms arranged in a hexagonal structure. It occurs naturally in this form and is the most stable form of carbon under standard conditions. Under high pressures and temperatures it converts to diamond. Graphite is used in pencils and lubricants. Its high conductivity makes it useful in electronic products such as electrodes, batteries, and solar panels.

Muscovite true mica, phyllosilicate mineral; polytypes: 1M, 2A, 2M2, 3T

Muscovite (also known as common mica, isinglass, or potash mica) is a hydrated phyllosilicate mineral of aluminium and potassium with formula KAl2(AlSi3O10)(FOH)2, or (KF)2(Al2O3)3(SiO2)6(H2O). It has a highly perfect basal cleavage yielding remarkably thin laminae (sheets) which are often highly elastic. Sheets of muscovite 5 meters × 3 meters (16.5 feet × 10 feet) have been found in Nellore, India.

Schist Medium grade metamorphic rock with lamellar grain

Schist is a medium-grade metamorphic rock. Schist has medium to large, flat, sheet-like grains in a preferred orientation. It is defined by having more than 50% platy and elongated minerals, often finely interleaved with quartz and feldspar. These lamellar minerals include micas, chlorite, talc, hornblende, graphite, and others. Quartz often occurs in drawn-out grains to such an extent that a particular form called quartz schist is produced. Schist is often garnetiferous. Schist forms at a higher temperature and has larger grains than phyllite. Geological foliation with medium to large grained flakes in a preferred sheetlike orientation is called schistosity.

Metamorphic rock Rock which was subjected to heat and pressure causing profound physical or chemical change

Metamorphic rocks arise from the transformation of existing rock types, in a process called metamorphism, which means "change in form". The original rock (protolith) is subjected to heat and pressure, causing profound physical or chemical change. The protolith may be a sedimentary, igneous, or existing metamorphic rock.

Aluminium oxide chemical compound

Aluminium oxide (IUPAC name) or aluminum oxide (American English) is a chemical compound of aluminium and oxygen with the chemical formula Al2O3. It is the most commonly occurring of several aluminium oxides, and specifically identified as aluminium(III) oxide. It is commonly called alumina and may also be called aloxide, aloxite, or alundum depending on particular forms or applications. It occurs naturally in its crystalline polymorphic phase α-Al2O3 as the mineral corundum, varieties of which form the precious gemstones ruby and sapphire. Al2O3 is significant in its use to produce aluminium metal, as an abrasive owing to its hardness, and as a refractory material owing to its high melting point.

Vermiculite smectite, phyllosilicate mineral

Vermiculite is a hydrous phyllosilicate mineral. It undergoes significant expansion when heated. Exfoliation occurs when the mineral is heated sufficiently, and the effect is routinely produced in commercial furnaces. Vermiculite is formed by weathering or hydrothermal alteration of biotite or phlogopite. Large commercial vermiculite mines currently exist in Russia, South Africa, China, and Brazil.

Formica (plastic) brand of composite materials

Formica laminate is a laminated composite material invented at the Westinghouse Electric Corporation in the United States in 1912. Originally used to replace mica in electrical applications, it has since been manufactured for a variety of applications. Today, the product is produced by New Zealand-based Formica Group, and has been since 2007. The word Formica refers to the company's classic product: a heat-resistant, wipe-clean laminate of paper or textile with melamine resin.

Phyllite foliated metamorphic rock

Phyllite is a type of foliated metamorphic rock created from slate that is further metamorphosed so that very fine grained white mica achieves a preferred orientation. It is primarily composed of quartz, sericite mica, and chlorite.

Plating is a surface covering in which a metal is deposited on a conductive surface. Plating has been done for hundreds of years; it is also critical for modern technology. Plating is used to decorate objects, for corrosion inhibition, to improve solderability, to harden, to improve wearability, to reduce friction, to improve paint adhesion, to alter conductivity, to improve IR reflectivity, for radiation shielding, and for other purposes. Jewelry typically uses plating to give a silver or gold finish.

Clintonite brittle mica, phyllosilicate mineral

Clintonite is a calcium magnesium aluminium phyllosilicate mineral. It is a member of the margarite group of micas and the subgroup often referred to as the "brittle" micas. Clintonite has the chemical formula: Ca(Mg,Al)3(Al3Si)O10(OH)2. Like other micas and chlorites, clintonite is monoclinic in crystal form and has a perfect basal cleavage parallel to the flat surface of the plates or scales. The Mohs hardness of clintonite is 6.5, and the specific gravity is 3.0 to 3.1. It occurs as variably colored, colorless, green, yellow, red, to reddish-brown masses and radial clusters.

Cleavage (crystal) tendency of crystalline materials to split along definite crystallographic structural planes

Cleavage, in mineralogy, is the tendency of crystalline materials to split along definite crystallographic structural planes. These planes of relative weakness are a result of the regular locations of atoms and ions in the crystal, which create smooth repeating surfaces that are visible both in the microscope and to the naked eye.

Capacitor types

Capacitors are manufactured in many forms, styles, lengths, girths, and from many materials. They all contain at least two electrical conductors separated by an insulating layer. Capacitors are widely used as parts of electrical circuits in many common electrical devices.

Aquadag is a trade name for a water-based colloidal graphite coating commonly used in cathode ray tubes (CRTs). It is manufactured by Acheson Industries, a subsidiary of ICI. The name is a shortened form of "Aqueous Deflocculated Acheson Graphite", but has become a generic term for conductive graphite coatings used in vacuum tubes. Other related products include Oildag, Electrodag and Molydag. The product names are often printed with DAG in upper case. It is used as an electrically conductive coating on insulating surfaces, and as a lubricant.

Silver mica capacitors are high precision, stable and reliable capacitors. They are available in small values, and are mostly used at high frequencies and in cases where low losses and low capacitor change over the time is desired.

Birds eye extinction

Bird's eye extinction, or bird's eye maple, is a specific type of extinction exhibited by minerals of the mica group under cross polarized light of the petrographic microscope. It gives the mineral a pebbly appearance as it passes into extinction. This is caused when the grinding tools used to create petrographic thin sections of precise thickness alter the alignment of the previously perfect basal cleavage planes which split micas up into its characteristic thin sheets. The resulting, slightly roughened surface alters the extinction angle of various parts of the crystal lattice, leading to this type of extinction. Since it is not a natural feature of the mineral, bird's eye extinction is not observed in all mica crystals, nor from all angles, but it is quite common, and is used as a diagnostic feature for micas.

Bityite is considered a rare mineral, and it is an endmember to the margarite mica sub-group found within the phyllosilicate group. The mineral was first described by Antoine François Alfred Lacroix in 1908, and later its chemical composition was concluded by Professor Hugo Strunz. Bityite has a close association with beryl, and it generally crystallizes in pseudomorphs after it, or in cavities associated with reformed beryl crystals. The mineral is considered a late-stage constituent in lithium bearing pegmatites, and has only been encountered in a few localities throughout the world. The mineral was named by Lacroix after Mt. Bity, Madagascar from where it was first discovered.

Annite mica, phyllosilicate mineral

Annite is a phyllosilicate mineral in the mica family. It has a chemical formula of KFe32+AlSi3O10(OH)2. Annite is the iron end member of the biotite mica group, the iron rich analogue of magnesium rich phlogopite. Annite is monoclinic and contains tabular crystals and cleavage fragments with pseudohexagonal outlines. There are contact twins with composition surface {001} and twin axis {310}.

Industrial porcelain enamel is the use of porcelain enamel for industrial, rather than artistic, applications. Porcelain enamel, a thin layer of ceramic or glass applied to a substrate of metal, is used to protect surfaces from chemical attack and physical damage, modify the structural characteristics of the substrate, and improve the appearance of the product.


  1. "Mica" Archived 2015-01-16 at the Wayback Machine . Minerals Education Coalition.
  2. "The Mica Group" Archived 2015-03-02 at the Wayback Machine . Rocks And Minerals 4 U.
  3. "Mica" Archived 2015-03-17 at the Wayback Machine . mineralszone.com.
  4. "Amethyst Galleries – THE MICA GROUP" Archived 2014-12-30 at the Wayback Machine . galleries.com.
  5. Kirkpatrick, E. M., ed. (1983). Chambers 20th Century Dictionary. Schwarz, Davidson, Seaton, Simpson, Sherrard (New ed.). Edinburgh: W & R Chambers Ltd. p. 793. ISBN   0550102345.
  6. W. A. Deer, R. A. Howie and J. Zussman (1966) An Introduction to the Rock Forming Minerals, Longman, ISBN   0-582-44210-9.
  7. 1 2 "Mineralogy: Phyllosilicates". Colgate University. 1997. Archived from the original on 19 September 2015. Retrieved 18 April 2016.
  8. Rickwood, P. C. (1981). "The largest crystals" (PDF). American Mineralogist. 66: 885–907. Archived (PDF) from the original on 2013-08-25.
  9. "The giant crystal project site". Archived from the original on 2009-06-04. Retrieved 2009-06-06.
  10. 1 2 Mica Archived 2011-10-30 at the Wayback Machine , USGS Mineral Commodity Summaries 2011
  11. 1 2 3 4 5 6 7 8 9 10 11 Dolley, Thomas P. (2008) "Mica" Archived 2011-10-30 at the Wayback Machine in USGS 2008 Minerals Yearbook.
  12. Isinglass curtains are referred to in the 1943 musical Oklahoma's song The Surrey with the Fringe on Top .
  13. Wilke, Joanne (2007). Eight Women, Two Model Ts and the American West. University of Nebraska Press. ISBN   0803260199.
  14. Eaton, P. and West, W. (2010) "Substrates for AFM", pp. 87–89 in Atomic Force Microscopy. Oxford University Press. ISBN   978-0-19-957045-4.
  15. Weisenhorn, A. L. (1991). "Atomically resolved images of bismuth films on mica with an atomic force microscope". Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures. 9 (2): 1333. doi:10.1116/1.585190.
  16. Marchant, R. E.; Lea, A. S.; Andrade, J. D.; Bockenstedt, P. (1992). "Interactions of von Willebrand factor on mica studied by atomic force microscopy" (PDF). Journal of Colloid and Interface Science. 148: 261. doi:10.1016/0021-9797(92)90135-9.
  17. Singh, S; Keller, D. J. (1991). "Atomic force microscopy of supported planar membrane bilayers". Biophysical Journal. 60 (6): 1401–10. doi:10.1016/S0006-3495(91)82177-4. PMC   1260200 . PMID   1777565.
  18. Thundat, T; Allison, D. P.; Warmack, R. J.; Brown, G. M.; Jacobson, K. B.; Schrick, J. J.; Ferrell, T. L. (1992). "Atomic force microscopy of DNA on mica and chemically modified mica". Scanning microscopy. 6 (4): 911–8. PMID   1295085.
  19. Haze, Xaviant (2016-11-21). Ancient Giants of the Americas: Suppressed Evidence and the Hidden History of a Lost Race. Red Wheel/Weiser. ISBN   9781632659323.
  20. Fagan, Garrett G. (2006). Archaeological Fantasies: How Pseudoarchaeology Misrepresents the Past and Misleads the Public. New York: Routledge. p. 102. ISBN   0415305934.
  21. Dehlvi, Sadia (October 14, 2007). "Tradition and modernity". Dawn.com. Archived from the original on October 20, 2013.
  22. Ramzi, Shanaz (March 31, 2005). "Fashion through the ages". Dawn.com. Archived from the original on October 20, 2013.
  23. "Abhraka Bhasma Preparation, Indications and Properties" Archived 2015-10-05 at Wikiwix "Ayurmedinfo.com".
  24. "Abhraka Bhasma Properties and uses" Archived 2015-10-04 at the Wayback Machine "ayurtimes.com"
  25. "CDC – NIOSH Pocket Guide to Chemical Hazards – Mica (containing less than 1% quartz)". www.cdc.gov. Archived from the original on 2015-12-08. Retrieved 2015-11-27.
  26. "Fluorphlogopite - synthetic mica - Borosilicate and quartz glass, mica, sealing, level gauges, armature - Continental Trade". www.continentaltrade.com.pl. Archived from the original on 2018-02-12.


PD-icon.svg This article incorporates public domain material  from the  United States Geological Survey document:  "Mica".