Milnor conjecture (K-theory)

Last updated

In mathematics, the Milnor conjecture was a proposal by JohnMilnor  ( 1970 ) of a description of the Milnor K-theory (mod 2) of a general field F with characteristic different from 2, by means of the Galois (or equivalently étale) cohomology of F with coefficients in Z/2Z. It was proved by VladimirVoevodsky  ( 1996 , 2003a , 2003b ).

Contents

Statement

Let F be a field of characteristic different from 2. Then there is an isomorphism

for all n  0, where KM denotes the Milnor ring.

About the proof

The proof of this theorem by Vladimir Voevodsky uses several ideas developed by Voevodsky, Alexander Merkurjev, Andrei Suslin, Markus Rost, Fabien Morel, Eric Friedlander, and others, including the newly minted theory of motivic cohomology (a kind of substitute for singular cohomology for algebraic varieties) and the motivic Steenrod algebra.

Generalizations

The analogue of this result for primes other than 2 was known as the Bloch–Kato conjecture. Work of Voevodsky and Markus Rost yielded a complete proof of this conjecture in 2009; the result is now called the norm residue isomorphism theorem.

Related Research Articles

<span class="mw-page-title-main">Vladimir Voevodsky</span> Russian mathematician (1966–2017)

Vladimir Alexandrovich Voevodsky was a Russian-American mathematician. His work in developing a homotopy theory for algebraic varieties and formulating motivic cohomology led to the award of a Fields Medal in 2002. He is also known for the proof of the Milnor conjecture and motivic Bloch–Kato conjectures and for the univalent foundations of mathematics and homotopy type theory.

In algebraic geometry, motives is a theory proposed by Alexander Grothendieck in the 1960s to unify the vast array of similarly behaved cohomology theories such as singular cohomology, de Rham cohomology, etale cohomology, and crystalline cohomology. Philosophically, a "motif" is the "cohomology essence" of a variety.

Algebraic K-theory is a subject area in mathematics with connections to geometry, topology, ring theory, and number theory. Geometric, algebraic, and arithmetic objects are assigned objects called K-groups. These are groups in the sense of abstract algebra. They contain detailed information about the original object but are notoriously difficult to compute; for example, an important outstanding problem is to compute the K-groups of the integers.

Motivic cohomology is an invariant of algebraic varieties and of more general schemes. It is a type of cohomology related to motives and includes the Chow ring of algebraic cycles as a special case. Some of the deepest problems in algebraic geometry and number theory are attempts to understand motivic cohomology.

In mathematics, homotopical algebra is a collection of concepts comprising the nonabelian aspects of homological algebra, and possibly the abelian aspects as special cases. The homotopical nomenclature stems from the fact that a common approach to such generalizations is via abstract homotopy theory, as in nonabelian algebraic topology, and in particular the theory of closed model categories.

In mathematics, Milnor K-theory is an algebraic invariant defined by John Milnor as an attempt to study higher algebraic K-theory in the special case of fields. It was hoped this would help illuminate the structure for algebraic K-theory and give some insight about its relationships with other parts of mathematics, such as Galois cohomology and the Grothendieck–Witt ring of quadratic forms. Before Milnor K-theory was defined, there existed ad-hoc definitions for and . Fortunately, it can be shown Milnor K-theory is a part of algebraic K-theory, which in general is the easiest part to compute.

In algebraic geometry, the Chow groups of an algebraic variety over any field are algebro-geometric analogs of the homology of a topological space. The elements of the Chow group are formed out of subvarieties in a similar way to how simplicial or cellular homology groups are formed out of subcomplexes. When the variety is smooth, the Chow groups can be interpreted as cohomology groups and have a multiplication called the intersection product. The Chow groups carry rich information about an algebraic variety, and they are correspondingly hard to compute in general.

In mathematics, a Pfister form is a particular kind of quadratic form, introduced by Albrecht Pfister in 1965. In what follows, quadratic forms are considered over a field F of characteristic not 2. For a natural number n, an n-fold Pfister form over F is a quadratic form of dimension 2n that can be written as a tensor product of quadratic forms

In mathematics, crystalline cohomology is a Weil cohomology theory for schemes X over a base field k. Its values Hn(X/W) are modules over the ring W of Witt vectors over k. It was introduced by Alexander Grothendieck (1966, 1968) and developed by Pierre Berthelot (1974).

In mathematics, a Hodge structure, named after W. V. D. Hodge, is an algebraic structure at the level of linear algebra, similar to the one that Hodge theory gives to the cohomology groups of a smooth and compact Kähler manifold. Hodge structures have been generalized for all complex varieties in the form of mixed Hodge structures, defined by Pierre Deligne (1970). A variation of Hodge structure is a family of Hodge structures parameterized by a manifold, first studied by Phillip Griffiths (1968). All these concepts were further generalized to mixed Hodge modules over complex varieties by Morihiko Saito (1989).

In algebraic geometry, the Nisnevich topology, sometimes called the completely decomposed topology, is a Grothendieck topology on the category of schemes which has been used in algebraic K-theory, A¹ homotopy theory, and the theory of motives. It was originally introduced by Yevsey Nisnevich, who was motivated by the theory of adeles.

In algebraic geometry and algebraic topology, branches of mathematics, A1homotopy theory or motivic homotopy theory is a way to apply the techniques of algebraic topology, specifically homotopy, to algebraic varieties and, more generally, to schemes. The theory is due to Fabien Morel and Vladimir Voevodsky. The underlying idea is that it should be possible to develop a purely algebraic approach to homotopy theory by replacing the unit interval [0, 1], which is not an algebraic variety, with the affine line A1, which is. The theory has seen spectacular applications such as Voevodsky's construction of the derived category of mixed motives and the proof of the Milnor and Bloch-Kato conjectures.

In mathematics, the norm residue isomorphism theorem is a long-sought result relating Milnor K-theory and Galois cohomology. The result has a relatively elementary formulation and at the same time represents the key juncture in the proofs of many seemingly unrelated theorems from abstract algebra, theory of quadratic forms, algebraic K-theory and the theory of motives. The theorem asserts that a certain statement holds true for any prime and any natural number . John Milnor speculated that this theorem might be true for and all , and this question became known as Milnor's conjecture. The general case was conjectured by Spencer Bloch and Kazuya Kato and became known as the Bloch–Kato conjecture or the motivic Bloch–Kato conjecture to distinguish it from the Bloch–Kato conjecture on values of L-functions. The norm residue isomorphism theorem was proved by Vladimir Voevodsky using a number of highly innovative results of Markus Rost.

<span class="mw-page-title-main">Fabien Morel</span>

Fabien Morel is a French algebraic geometer and key developer of A¹ homotopy theory with Vladimir Voevodsky. Among his accomplishments is the proof of the Friedlander conjecture, and the proof of the complex case of the Milnor conjecture stated in Milnor's 1983 paper 'On the homology of Lie groups made discrete'. This result was presented at the Second Abel Conference, held in January–February 2012.

In mathematics, the Quillen–Lichtenbaum conjecture is a conjecture relating étale cohomology to algebraic K-theory introduced by Quillen, who was inspired by earlier conjectures of Lichtenbaum (1973). Kahn (1997) and Rognes & Weibel (2000) proved the Quillen–Lichtenbaum conjecture at the prime 2 for some number fields. Voevodsky, using some important results of Markus Rost, has proved the Bloch–Kato conjecture, which implies the Quillen–Lichtenbaum conjecture for all primes.

<span class="mw-page-title-main">Alexander Merkurjev</span> Russian American mathematician (born 1955)

Aleksandr Sergeyevich Merkurjev is a Russian-American mathematician, who has made major contributions to the field of algebra. Currently Merkurjev is a professor at the University of California, Los Angeles.

<span class="mw-page-title-main">Charles Weibel</span> American mathematician

Charles Alexander Weibel is an American mathematician working on algebraic K-theory, algebraic geometry and homological algebra.

In mathematics, the Arason invariant is a cohomological invariant associated to a quadratic form of even rank and trivial discriminant and Clifford invariant over a field k of characteristic not 2, taking values in H3(k,Z/2Z). It was introduced by (Arason 1975, Theorem 5.7).

In mathematics, the Hodge–de Rham spectral sequence is an alternative term sometimes used to describe the Frölicher spectral sequence. This spectral sequence describes the precise relationship between the Dolbeault cohomology and the de Rham cohomology of a general complex manifold. On a compact Kähler manifold, the sequence degenerates, thereby leading to the Hodge decomposition of the de Rham cohomology.

In algebraic geometry, a presheaf with transfers is, roughly, a presheaf that, like cohomology theory, comes with pushforwards, “transfer” maps. Precisely, it is, by definition, a contravariant additive functor from the category of finite correspondences to the category of abelian groups.

References

Further reading