# Modular lambda function

Last updated

In mathematics, the modular lambda function λ(τ) is a highly symmetric holomorphic function on the complex upper half-plane. It is invariant under the fractional linear action of the congruence group Γ(2), and generates the function field of the corresponding quotient, i.e., it is a Hauptmodul for the modular curve X(2). Over any point τ, its value can be described as a cross ratio of the branch points of a ramified double cover of the projective line by the elliptic curve ${\displaystyle \mathbb {C} /\langle 1,\tau \rangle }$, where the map is defined as the quotient by the [1] involution.

## Contents

The q-expansion, where ${\displaystyle q=e^{\pi i\tau }}$ is the nome, is given by:

${\displaystyle \lambda (\tau )=16q-128q^{2}+704q^{3}-3072q^{4}+11488q^{5}-38400q^{6}+\dots }$.

By symmetrizing the lambda function under the canonical action of the symmetric group S3 on X(2), and then normalizing suitably, one obtains a function on the upper half-plane that is invariant under the full modular group ${\displaystyle \operatorname {SL} _{2}(\mathbb {Z} )}$, and it is in fact Klein's modular j-invariant.

## Modular properties

The function ${\displaystyle \lambda (\tau )}$ is invariant under the group generated by [1]

${\displaystyle \tau \mapsto \tau +2\$ ;\ \tau \mapsto {\frac {\tau }{1-2\tau }}\ .}

The generators of the modular group act by [2]

${\displaystyle \tau \mapsto \tau +1\$ :\ \lambda \mapsto {\frac {\lambda }{\lambda -1}}\,;}
${\displaystyle \tau \mapsto -{\frac {1}{\tau }}\$ :\ \lambda \mapsto 1-\lambda \ .}

Consequently, the action of the modular group on ${\displaystyle \lambda (\tau )}$ is that of the anharmonic group, giving the six values of the cross-ratio: [3]

${\displaystyle \left\lbrace {\lambda ,{\frac {1}{1-\lambda }},{\frac {\lambda -1}{\lambda }},{\frac {1}{\lambda }},{\frac {\lambda }{\lambda -1}},1-\lambda }\right\rbrace \ .}$

## Relations to other elliptic functions

It is the square of the Jacobi modulus, [4] that is, ${\displaystyle \lambda (\tau )=k^{2}(\tau )}$. In terms of the Dedekind eta function ${\displaystyle \eta (\tau )}$ and theta functions, [4]

${\displaystyle \lambda (\tau )={\Bigg (}{\frac {{\sqrt {2}}\,\eta ({\tfrac {\tau }{2}})\eta ^{2}(2\tau )}{\eta ^{3}(\tau )}}{\Bigg )}^{8}={\frac {16}{\left({\frac {\eta (\tau /2)}{\eta (2\tau )}}\right)^{8}+16}}={\frac {\theta _{2}^{4}(0,\tau )}{\theta _{3}^{4}(0,\tau )}}}$

and,

${\displaystyle {\frac {1}{{\big (}\lambda (\tau ){\big )}^{1/4}}}-{\big (}\lambda (\tau ){\big )}^{1/4}={\frac {1}{2}}\left({\frac {\eta ({\tfrac {\tau }{4}})}{\eta (\tau )}}\right)^{4}=2\,{\frac {\theta _{4}^{2}(0,{\tfrac {\tau }{2}})}{\theta _{2}^{2}(0,{\tfrac {\tau }{2}})}}}$

where [5] for the nome ${\displaystyle q=e^{\pi i\tau }}$,

${\displaystyle \theta _{2}(0,\tau )=\sum _{n=-\infty }^{\infty }q^{\left({n+{\frac {1}{2}}}\right)^{2}}}$
${\displaystyle \theta _{3}(0,\tau )=\sum _{n=-\infty }^{\infty }q^{n^{2}}}$
${\displaystyle \theta _{4}(0,\tau )=\sum _{n=-\infty }^{\infty }(-1)^{n}q^{n^{2}}}$

In terms of the half-periods of Weierstrass's elliptic functions, let ${\displaystyle [\omega _{1},\omega _{2}]}$ be a fundamental pair of periods with ${\displaystyle \tau ={\frac {\omega _{2}}{\omega _{1}}}}$.

${\displaystyle e_{1}=\wp \left({\frac {\omega _{1}}{2}}\right),e_{2}=\wp \left({\frac {\omega _{2}}{2}}\right),e_{3}=\wp \left({\frac {\omega _{1}+\omega _{2}}{2}}\right)}$

we have [4]

${\displaystyle \lambda ={\frac {e_{3}-e_{2}}{e_{1}-e_{2}}}\,.}$

Since the three half-period values are distinct, this shows that λ does not take the value 0 or 1. [4]

The relation to the j-invariant is [6] [7]

${\displaystyle j(\tau )={\frac {256(1-\lambda (1-\lambda ))^{3}}{(\lambda (1-\lambda ))^{2}}}={\frac {256(1-\lambda +\lambda ^{2})^{3}}{\lambda ^{2}(1-\lambda )^{2}}}\ .}$

which is the j-invariant of the elliptic curve of Legendre form ${\displaystyle y^{2}=x(x-1)(x-\lambda )}$

## Elliptic modulus

### Definition and computation of lambda-star

The function λ*(x) gives the value of the elliptic modulus k, for which the complete elliptic integral of the first kind ${\displaystyle K(k)}$ and its complementary counterpart ${\displaystyle K\left({\sqrt {1-k^{2}}}\right)}$ are related by following expression:

${\displaystyle {\frac {K\left[{\sqrt {1-\lambda ^{*}(x)^{2}}}\right]}{K[\lambda ^{*}(x)]}}={\sqrt {x}}}$

The values of λ*(x) can be computed as follows:

${\displaystyle \lambda ^{*}(x)={\frac {\theta _{2}^{2}(0,i{\sqrt {x}})}{\theta _{3}^{2}(0,i{\sqrt {x}})}}}$
${\displaystyle \lambda ^{*}(x)=\left[\sum _{a=-\infty }^{\infty }\exp[-(a+1/2)^{2}\pi {\sqrt {x}}]\right]^{2}\left[\sum _{a=-\infty }^{\infty }\exp(-a^{2}\pi {\sqrt {x}})\right]^{-2}}$
${\displaystyle \lambda ^{*}(x)=\left[\sum _{a=-\infty }^{\infty }\operatorname {sech} [(a+1/2)\pi {\sqrt {x}}]\right]\left[\sum _{a=-\infty }^{\infty }\operatorname {sech} (a\pi {\sqrt {x}})\right]^{-1}}$

The functions λ* and λ are related to each other in this way:

${\displaystyle \lambda ^{*}(x)={\sqrt {\lambda (i{\sqrt {x}})}}}$

### Properties of lambda-star

Every λ*-value of a positive rational number is a positive algebraic number:

${\displaystyle \lambda ^{*}(x\in \mathbb {Q} ^{+})\in \mathbb {A} ^{+}}$

Elliptic integrals of the first and second kind of these special λ*-values are called elliptic integral singular values. They all can be expressed by polynomials of the gamma function, as Selberg and Chowla proved in 1967.

Following expression is valid for all n ∈ ℕ:

${\displaystyle {\sqrt {n}}=\sum _{a=1}^{n}\operatorname {dn} \left[{\frac {2a}{n}}K\left[\lambda ^{*}\left({\frac {1}{n}}\right)\right];\lambda ^{*}\left({\frac {1}{n}}\right)\right]}$

In this formula, dn is the Jacobi elliptic function delta amplitudinis.

By knowing one λ*-value, this formula can be used to compute related λ*-values:

${\displaystyle \lambda ^{*}(n^{2}x)=\lambda ^{*}(x)^{n}\prod _{a=1}^{n}\operatorname {sn} \left\{{\frac {2a-1}{n}}K[\lambda ^{*}(x)];\lambda ^{*}(x)\right\}^{2}}$

In that formula, sn is the Jacobi elliptic function sinus amplitudinis. That formula works for all natural numbers.

Further relations:

${\displaystyle \lambda ^{*}(x)^{2}+\lambda ^{*}(1/x)^{2}=1}$
${\displaystyle [\lambda ^{*}(x)+1][\lambda ^{*}(4/x)+1]=2}$
${\displaystyle \lambda ^{*}(4x)={\frac {1-{\sqrt {1-\lambda ^{*}(x)^{2}}}}{1+{\sqrt {1-\lambda ^{*}(x)^{2}}}}}=\tan \left\{{\frac {1}{2}}\arcsin[\lambda ^{*}(x)]\right\}^{2}}$
${\displaystyle \lambda ^{*}(x)-\lambda ^{*}(9x)=2[\lambda ^{*}(x)\lambda ^{*}(9x)]^{1/4}-2[\lambda ^{*}(x)\lambda ^{*}(9x)]^{3/4}}$
${\displaystyle \left[{\frac {2\lambda ^{*}(x)}{1-\lambda ^{*}(x)^{2}}}\right]^{1/2}-\left[{\frac {2\lambda ^{*}(25x)}{1-\lambda ^{*}(25x)^{2}}}\right]^{1/2}=2\left[{\frac {2\lambda ^{*}(x)}{1-\lambda ^{*}(x)^{2}}}\right]^{1/12}\left[{\frac {2\lambda ^{*}(25x)}{1-\lambda ^{*}(25x)^{2}}}\right]^{1/12}+2\left[{\frac {2\lambda ^{*}(x)}{1-\lambda ^{*}(x)^{2}}}\right]^{5/12}\left[{\frac {2\lambda ^{*}(25x)}{1-\lambda ^{*}(25x)^{2}}}\right]^{5/12}}$
${\displaystyle a^{8}+b^{8}-7a^{4}b^{4}=2{\sqrt {2}}ab+2{\sqrt {2}}a^{7}b^{7}\,\left(a=\left[{\frac {2\lambda ^{*}(x)}{1-\lambda ^{*}(x)^{2}}}\right]^{1/12}\right)\left(b=\left[{\frac {2\lambda ^{*}(49x)}{1-\lambda ^{*}(49x)^{2}}}\right]^{1/12}\right)}$
${\displaystyle a^{12}-c^{12}=2{\sqrt {2}}(ac+a^{3}c^{3})(1+3a^{2}c^{2}+a^{4}c^{4})(2+3a^{2}c^{2}+2a^{4}c^{4})\,\left(a=\left[{\frac {2\lambda ^{*}(x)}{1-\lambda ^{*}(x)^{2}}}\right]^{1/12}\right)\left(c=\left[{\frac {2\lambda ^{*}(121x)}{1-\lambda ^{*}(121x)^{2}}}\right]^{1/12}\right)}$
${\displaystyle (a^{2}-d^{2})(a^{4}+d^{4}-7a^{2}d^{2})[(a^{2}-d^{2})^{4}-a^{2}d^{2}(a^{2}+d^{2})^{2}]=8ad+8a^{13}d^{13}\,\left(a=\left[{\frac {2\lambda ^{*}(x)}{1-\lambda ^{*}(x)^{2}}}\right]^{1/12}\right)\left(d=\left[{\frac {2\lambda ^{*}(169x)}{1-\lambda ^{*}(169x)^{2}}}\right]^{1/12}\right)}$

### Ramanujan's class invariants

Ramanujan's class invariants ${\displaystyle G_{n}}$ and ${\displaystyle g_{n}}$ are defined as [8]

${\displaystyle G_{n}=2^{-1/4}e^{\pi {\sqrt {n}}/24}\prod _{k=0}^{\infty }\left(1+e^{-(2k+1)\pi {\sqrt {n}}}\right),}$
${\displaystyle g_{n}=2^{-1/4}e^{\pi {\sqrt {n}}/24}\prod _{k=0}^{\infty }\left(1-e^{-(2k+1)\pi {\sqrt {n}}}\right),}$

where ${\displaystyle n\in \mathbb {Q} ^{+}}$.

These are the relations between lambda-star and Ramanujan's class invariants:

${\displaystyle G_{n}=\sin\{2\arcsin[\lambda ^{*}(n)]\}^{-1/12}=1{\Big /}\left[{\sqrt[{12}]{2\lambda ^{*}(n)}}{\sqrt[{24}]{1-\lambda ^{*}(n)^{2}}}\right]}$
${\displaystyle g_{n}=\tan\{2\arctan[\lambda ^{*}(n)]\}^{-1/12}={\sqrt[{12}]{[1-\lambda ^{*}(n)^{2}]/[2\lambda ^{*}(n)]}}}$
${\displaystyle \lambda ^{*}(n)=\tan \left\{{\frac {1}{2}}\arctan[g_{n}^{-12}]\right\}={\sqrt {g_{n}^{24}+1}}-g_{n}^{12}}$

### Special Values

Lambda-star-values of integer numbers of 4n-3-type:

${\displaystyle \lambda ^{*}(1)={\frac {1}{\sqrt {2}}}}$
${\displaystyle \lambda ^{*}(5)=\sin \left[{\frac {1}{2}}\arcsin \left({\sqrt {5}}-2\right)\right]}$
${\displaystyle \lambda ^{*}(9)={\frac {1}{2}}({\sqrt {3}}-1)({\sqrt {2}}-{\sqrt[{4}]{3}})}$
${\displaystyle \lambda ^{*}(13)=\sin \left[{\frac {1}{2}}\arcsin(5{\sqrt {13}}-18)\right]}$
${\displaystyle \lambda ^{*}(17)=\sin \left\{{\frac {1}{2}}\arcsin \left[{\frac {1}{64}}\left(5+{\sqrt {17}}-{\sqrt {10{\sqrt {17}}+26}}\right)^{3}\right]\right\}}$
${\displaystyle \lambda ^{*}(21)=\sin \left\{{\frac {1}{2}}\arcsin[(8-3{\sqrt {7}})(2{\sqrt {7}}-3{\sqrt {3}})]\right\}}$
${\displaystyle \lambda ^{*}(25)={\frac {1}{\sqrt {2}}}({\sqrt {5}}-2)(3-2{\sqrt[{4}]{5}})}$
${\displaystyle \lambda ^{*}(33)=\sin \left\{{\frac {1}{2}}\arcsin[(10-3{\sqrt {11}})(2-{\sqrt {3}})^{3}]\right\}}$
${\displaystyle \lambda ^{*}(37)=\sin \left\{{\frac {1}{2}}\arcsin[({\sqrt {37}}-6)^{3}]\right\}}$
${\displaystyle \lambda ^{*}(45)=\sin \left\{{\frac {1}{2}}\arcsin[(4-{\sqrt {15}})^{2}({\sqrt {5}}-2)^{3}]\right\}}$
${\displaystyle \lambda ^{*}(49)={\frac {1}{4}}(8+3{\sqrt {7}})(5-{\sqrt {7}}-{\sqrt[{4}]{28}})\left({\sqrt {14}}-{\sqrt {2}}-{\sqrt[{8}]{28}}{\sqrt {5-{\sqrt {7}}}}\right)}$
${\displaystyle \lambda ^{*}(57)=\sin \left\{{\frac {1}{2}}\arcsin[(170-39{\sqrt {19}})(2-{\sqrt {3}})^{3}]\right\}}$
${\displaystyle \lambda ^{*}(73)=\sin \left\{{\frac {1}{2}}\arcsin \left[{\frac {1}{64}}\left(45+5{\sqrt {73}}-3{\sqrt {50{\sqrt {73}}+426}}\right)^{3}\right]\right\}}$

Lambda-star-values of integer numbers of 4n-2-type:

${\displaystyle \lambda ^{*}(2)={\sqrt {2}}-1}$
${\displaystyle \lambda ^{*}(6)=(2-{\sqrt {3}})({\sqrt {3}}-{\sqrt {2}})}$
${\displaystyle \lambda ^{*}(10)=({\sqrt {10}}-3)({\sqrt {2}}-1)^{2}}$
${\displaystyle \lambda ^{*}(14)=\tan \left\{{\frac {1}{2}}\arctan \left[{\frac {1}{8}}\left(2{\sqrt {2}}+1-{\sqrt {4{\sqrt {2}}+5}}\right)^{3}\right]\right\}}$
${\displaystyle \lambda ^{*}(18)=({\sqrt {2}}-1)^{3}(2-{\sqrt {3}})^{2}}$
${\displaystyle \lambda ^{*}(22)=(10-3{\sqrt {11}})(3{\sqrt {11}}-7{\sqrt {2}})}$
${\displaystyle \lambda ^{*}(30)=\tan \left\{{\frac {1}{2}}\arctan[({\sqrt {10}}-3)^{2}({\sqrt {5}}-2)^{2}]\right\}}$
${\displaystyle \lambda ^{*}(34)=\tan \left\{{\frac {1}{4}}\arcsin \left[{\frac {1}{9}}({\sqrt {17}}-4)^{2}\right]\right\}}$
${\displaystyle \lambda ^{*}(42)=\tan \left\{{\frac {1}{2}}\arctan[(2{\sqrt {7}}-3{\sqrt {3}})^{2}(2{\sqrt {2}}-{\sqrt {7}})^{2}]\right\}}$
${\displaystyle \lambda ^{*}(46)=\tan \left\{{\frac {1}{2}}\arctan \left[{\frac {1}{64}}\left(3+{\sqrt {2}}-{\sqrt {6{\sqrt {2}}+7}}\right)^{6}\right]\right\}}$
${\displaystyle \lambda ^{*}(58)=(13{\sqrt {58}}-99)({\sqrt {2}}-1)^{6}}$
${\displaystyle \lambda ^{*}(70)=\tan \left\{{\frac {1}{2}}\arctan[({\sqrt {5}}-2)^{4}({\sqrt {2}}-1)^{6}]\right\}}$
${\displaystyle \lambda ^{*}(78)=\tan \left\{{\frac {1}{2}}\arctan[(5{\sqrt {13}}-18)^{2}({\sqrt {26}}-5)^{2}]\right\}}$
${\displaystyle \lambda ^{*}(82)=\tan \left\{{\frac {1}{4}}\arcsin \left[{\frac {1}{4761}}(8{\sqrt {41}}-51)^{2}\right]\right\}}$

Lambda-star-values of integer numbers of 4n-1-type:

${\displaystyle \lambda ^{*}(3)={\frac {1}{2{\sqrt {2}}}}({\sqrt {3}}-1)}$
${\displaystyle \lambda ^{*}(7)={\frac {1}{4{\sqrt {2}}}}(3-{\sqrt {7}})}$
${\displaystyle \lambda ^{*}(11)={\frac {1}{8{\sqrt {2}}}}({\sqrt {11}}+3)\left({\frac {1}{3}}{\sqrt[{3}]{6{\sqrt {3}}+2{\sqrt {11}}}}-{\frac {1}{3}}{\sqrt[{3}]{6{\sqrt {3}}-2{\sqrt {11}}}}+{\frac {1}{3}}{\sqrt {11}}-1\right)^{4}}$
${\displaystyle \lambda ^{*}(15)={\frac {1}{8{\sqrt {2}}}}(3-{\sqrt {5}})({\sqrt {5}}-{\sqrt {3}})(2-{\sqrt {3}})}$
${\displaystyle \lambda ^{*}(19)={\frac {1}{8{\sqrt {2}}}}(3{\sqrt {19}}+13)\left[{\frac {1}{6}}({\sqrt {19}}-2+{\sqrt {3}}){\sqrt[{3}]{3{\sqrt {3}}-{\sqrt {19}}}}-{\frac {1}{6}}({\sqrt {19}}-2-{\sqrt {3}}){\sqrt[{3}]{3{\sqrt {3}}+{\sqrt {19}}}}-{\frac {1}{3}}(5-{\sqrt {19}})\right]^{4}}$
${\displaystyle \lambda ^{*}(23)={\frac {1}{16{\sqrt {2}}}}(5+{\sqrt {23}})\left[{\frac {1}{6}}({\sqrt {3}}+1){\sqrt[{3}]{100-12{\sqrt {69}}}}-{\frac {1}{6}}({\sqrt {3}}-1){\sqrt[{3}]{100+12{\sqrt {69}}}}+{\frac {2}{3}}\right]^{4}}$
${\displaystyle \lambda ^{*}(27)={\frac {1}{16{\sqrt {2}}}}({\sqrt {3}}-1)^{3}\left[{\frac {1}{3}}{\sqrt {3}}({\sqrt[{3}]{4}}-{\sqrt[{3}]{2}}+1)-{\sqrt[{3}]{2}}+1\right]^{4}}$
${\displaystyle \lambda ^{*}(39)=\sin \left\{{\frac {1}{2}}\arcsin \left[{\frac {1}{16}}\left(6-{\sqrt {13}}-3{\sqrt {6{\sqrt {13}}-21}}\right)\right]\right\}}$
${\displaystyle \lambda ^{*}(55)=\sin \left\{{\frac {1}{2}}\arcsin \left[{\frac {1}{512}}\left(3{\sqrt {5}}-3-{\sqrt {6{\sqrt {5}}-2}}\right)^{3}\right]\right\}}$

Lambda-star-values of integer numbers of 4n-type:

${\displaystyle \lambda ^{*}(4)=({\sqrt {2}}-1)^{2}}$
${\displaystyle \lambda ^{*}(8)=\left({\sqrt {2}}+1-{\sqrt {2{\sqrt {2}}+2}}\right)^{2}}$
${\displaystyle \lambda ^{*}(12)=({\sqrt {3}}-{\sqrt {2}})^{2}({\sqrt {2}}-1)^{2}}$
${\displaystyle \lambda ^{*}(16)=({\sqrt {2}}+1)^{2}({\sqrt[{4}]{2}}-1)^{4}}$
${\displaystyle \lambda ^{*}(20)=\tan \left[{\frac {1}{4}}\arcsin({\sqrt {5}}-2)\right]^{2}}$
${\displaystyle \lambda ^{*}(24)=\tan \left\{{\frac {1}{2}}\arcsin[(2-{\sqrt {3}})({\sqrt {3}}-{\sqrt {2}})]\right\}^{2}}$
${\displaystyle \lambda ^{*}(28)=(2{\sqrt {2}}-{\sqrt {7}})^{2}({\sqrt {2}}-1)^{4}}$
${\displaystyle \lambda ^{*}(32)=\tan \left\{{\frac {1}{2}}\arcsin \left[\left({\sqrt {2}}+1-{\sqrt {2{\sqrt {2}}+2}}\right)^{2}\right]\right\}^{2}}$

Lambda-star-values of rational fractions:

${\displaystyle \lambda ^{*}\left({\frac {1}{2}}\right)={\sqrt {2{\sqrt {2}}-2}}}$
${\displaystyle \lambda ^{*}\left({\frac {1}{3}}\right)={\frac {1}{2{\sqrt {2}}}}({\sqrt {3}}+1)}$
${\displaystyle \lambda ^{*}\left({\frac {2}{3}}\right)=(2-{\sqrt {3}})({\sqrt {3}}+{\sqrt {2}})}$
${\displaystyle \lambda ^{*}\left({\frac {1}{4}}\right)=2{\sqrt[{4}]{2}}({\sqrt {2}}-1)}$
${\displaystyle \lambda ^{*}\left({\frac {3}{4}}\right)={\sqrt[{4}]{8}}({\sqrt {3}}-{\sqrt {2}})({\sqrt {2}}+1){\sqrt {({\sqrt {3}}-1)^{3}}}}$
${\displaystyle \lambda ^{*}\left({\frac {1}{5}}\right)={\frac {1}{2{\sqrt {2}}}}\left({\sqrt {2{\sqrt {5}}-2}}+{\sqrt {5}}-1\right)}$
${\displaystyle \lambda ^{*}\left({\frac {2}{5}}\right)=({\sqrt {10}}-3)({\sqrt {2}}+1)^{2}}$
${\displaystyle \lambda ^{*}\left({\frac {3}{5}}\right)={\frac {1}{8{\sqrt {2}}}}(3+{\sqrt {5}})({\sqrt {5}}-{\sqrt {3}})(2+{\sqrt {3}})}$
${\displaystyle \lambda ^{*}\left({\frac {4}{5}}\right)=\tan \left[{\frac {\pi }{4}}-{\frac {1}{4}}\arcsin({\sqrt {5}}-2)\right]^{2}}$

## Other appearances

### Little Picard theorem

The lambda function is used in the original proof of the Little Picard theorem, that an entire non-constant function on the complex plane cannot omit more than one value. This theorem was proved by Picard in 1879. [9] Suppose if possible that f is entire and does not take the values 0 and 1. Since λ is holomorphic, it has a local holomorphic inverse ω defined away from 0,1,∞. Consider the function z → ω(f(z)). By the Monodromy theorem this is holomorphic and maps the complex plane C to the upper half plane. From this it is easy to construct a holomorphic function from C to the unit disc, which by Liouville's theorem must be constant. [10]

### Moonshine

The function ${\displaystyle \tau \mapsto {\frac {16}{\lambda (2\tau )}}-8}$ is the normalized Hauptmodul for the group ${\displaystyle \Gamma _{0}(4)}$, and its q-expansion ${\displaystyle q^{-1}+20q-62q^{3}+\dots }$, where ${\displaystyle q=e^{2\pi i\tau }}$, is the graded character of any element in conjugacy class 4C of the monster group acting on the monster vertex algebra.

## Footnotes

1. Chandrasekharan (1985) p.115
2. Chandrasekharan (1985) p.109
3. Chandrasekharan (1985) p.110
4. Chandrasekharan (1985) p.108
5. Chandrasekharan (1985) p.63
6. Chandrasekharan (1985) p.117
7. Rankin (1977) pp.226–228
8. Zhang, Liang-Cheng "Ramanujan’s class invariants, Kronecker’s limit formula and modular equations (III)"
9. Chandrasekharan (1985) p.121
10. Chandrasekharan (1985) p.118

## Related Research Articles

Bessel functions, first defined by the mathematician Daniel Bernoulli and then generalized by Friedrich Bessel, are canonical solutions y(x) of Bessel's differential equation

In integral calculus, an elliptic integral is one of a number of related functions defined as the value of certain integrals. Originally, they arose in connection with the problem of finding the arc length of an ellipse and were first studied by Giulio Fagnano and Leonhard Euler. Modern mathematics defines an "elliptic integral" as any function f which can be expressed in the form

In classical mechanics, a harmonic oscillator is a system that, when displaced from its equilibrium position, experiences a restoring force F proportional to the displacement x:

In optics, a Fabry–Pérot interferometer (FPI) or etalon is an optical cavity made from two parallel reflecting surfaces. Optical waves can pass through the optical cavity only when they are in resonance with it. It is named after Charles Fabry and Alfred Perot, who developed the instrument in 1899. Etalon is from the French étalon, meaning "measuring gauge" or "standard".

In mathematics, the inverse trigonometric functions are the inverse functions of the trigonometric functions. Specifically, they are the inverses of the sine, cosine, tangent, cotangent, secant, and cosecant functions, and are used to obtain an angle from any of the angle's trigonometric ratios. Inverse trigonometric functions are widely used in engineering, navigation, physics, and geometry.

In mathematics, trigonometric substitution is the substitution of trigonometric functions for other expressions. In calculus, trigonometric substitution is a technique for evaluating integrals. Moreover, one may use the trigonometric identities to simplify certain integrals containing radical expressions. Like other methods of integration by substitution, when evaluating a definite integral, it may be simpler to completely deduce the antiderivative before applying the boundaries of integration.

The great-circle distance, orthodromic distance, or spherical distance is the distance along a great circle.

In geodesy, conversion among different geographic coordinate systems is made necessary by the different geographic coordinate systems in use across the world and over time. Coordinate conversion is composed of a number of different types of conversion: format change of geographic coordinates, conversion of coordinate systems, or transformation to different geodetic datums. Geographic coordinate conversion has applications in cartography, surveying, navigation and geographic information systems.

In probability theory, the Borel–Kolmogorov paradox is a paradox relating to conditional probability with respect to an event of probability zero. It is named after Émile Borel and Andrey Kolmogorov.

In mathematics, the Weierstrass elliptic functions are elliptic functions that take a particularly simple form. They are named for Karl Weierstrass. This class of functions are also referred to as ℘-functions and they are usually denoted by the symbol ℘, a uniquely fancy script p. They play an important role in the theory of elliptic functions. A ℘-function together with its derivative can be used to parameterize elliptic curves and they generate the field of elliptic functions with respect to a given period lattice.

In mathematics, theta functions are special functions of several complex variables. They are important in many areas, including the theories of Abelian varieties and moduli spaces, and of quadratic forms. They have also been applied to soliton theory. When generalized to a Grassmann algebra, they also appear in quantum field theory.

In mathematics, Felix Klein's j-invariant or j function, regarded as a function of a complex variable τ, is a modular function of weight zero for SL(2, Z) defined on the upper half-plane of complex numbers. It is the unique such function which is holomorphic away from a simple pole at the cusp such that

The Universal Transverse Mercator (UTM) is a map projection system for assigning coordinates to locations on the surface of the Earth. Like the traditional method of latitude and longitude, it is a horizontal position representation, which means it ignores altitude and treats the earth as a perfect ellipsoid. However, it differs from global latitude/longitude in that it divides earth into 60 zones and projects each to the plane as a basis for its coordinates. Specifying a location means specifying the zone and the x, y coordinate in that plane. The projection from spheroid to a UTM zone is some parameterization of the transverse Mercator projection. The parameters vary by nation or region or mapping system.

In mathematics, the lemniscate elliptic functions are elliptic functions related to the arc length of the lemniscate of Bernoulli. They were first studied by Giulio Fagnano in 1718 and later by Leonhard Euler and Carl Friedrich Gauss, among others.

The Cassini projection is a map projection described by César-François Cassini de Thury in 1745. It is the transverse aspect of the equirectangular projection, in that the globe is first rotated so the central meridian becomes the "equator", and then the normal equirectangular projection is applied. Considering the earth as a sphere, the projection is composed of the operations:

Common integrals in quantum field theory are all variations and generalizations of Gaussian integrals to the complex plane and to multiple dimensions. Other integrals can be approximated by versions of the Gaussian integral. Fourier integrals are also considered.

In physics and engineering, the radiative heat transfer from one surface to another is the equal to the difference of incoming and outgoing radiation from the first surface. In general, the heat transfer between surfaces is governed by temperature, surface emissivity properties and the geometry of the surfaces. The relation for heat transfer can be written as an integral equation with boundary conditions based upon surface conditions. Kernel functions can be useful in approximating and solving this integral equation.

## References

• Abramowitz, Milton; Stegun, Irene A., eds. (1972), , New York: Dover Publications, ISBN   978-0-486-61272-0, Zbl   0543.33001
• Chandrasekharan, K. (1985), Elliptic Functions, Grundlehren der mathematischen Wissenschaften, 281, Springer-Verlag, pp. 108–121, ISBN   3-540-15295-4, Zbl   0575.33001
• Conway, John Horton; Norton, Simon (1979), "Monstrous moonshine", Bulletin of the London Mathematical Society, 11 (3): 308–339, doi:10.1112/blms/11.3.308, MR   0554399, Zbl   0424.20010
• Rankin, Robert A. (1977), Modular Forms and Functions, Cambridge University Press, ISBN   0-521-21212-X, Zbl   0376.10020
• Reinhardt, W. P.; Walker, P. L. (2010), "Elliptic Modular Function", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions , Cambridge University Press, ISBN   978-0-521-19225-5, MR   2723248
• Borwein, J. M. and Borwein, P. B. Pi & the AGM: A Study in Analytic Number Theory and Computational Complexity. New York: Wiley, pp. 139 and 298, 1987.
• Conway, J. H. and Norton, S. P. "Monstrous Moonshine." Bull. London Math. Soc. 11, 308-339, 1979.
• Selberg, A. and Chowla, S. "On Epstein's Zeta-Function." J. reine angew. Math. 227, 86-110, 1967.