Mohamed Atalla

Last updated

Mohamed Mohamed Atalla
محمد محمد عطلة
Mohamed Atalla as Director of Semiconductor Research at HP Associates in 1963
Native name
محمد عطاالله
BornAugust 4, 1924
DiedDecember 30, 2009(2009-12-30) (aged 85)
Nationality Egyptian
Other namesMohamed M. Atalla
M. M. Atalla
"Martin" M. Atalla
"John" M. Atalla
Education Cairo University (BSc)
Purdue University (MSc,  PhD)
Known for MOSFET (MOS transistor)
Surface passivation
Thermal oxidation
MOS integrated circuit
Nanolayer transistor
Schottky diode
LED display
Hardware security module
Online security
ChildrenBill Atalla [1]
Engineering career
Discipline Mechanical engineering
Electrical engineering
Electronic engineering
Security engineering
Institutions Bell Labs
Fairchild Semiconductor
Atalla Corporation
Awards National Inventors Hall of Fame
Stuart Ballantine Medal
Distinguished Alumnus
IEEE Milestones
IT Honor Roll

Mohamed Mohamed Atalla (Arabic : محمد محمد عطلة; August 4, 1924 December 30, 2009) was an Egyptian-American engineer, physical chemist, cryptographer, inventor, and entrepreneur. His pioneering work in semiconductor technology laid the foundations for modern electronics. Most importantly, his invention of the MOSFET (metal-oxide-semiconductor field-effect transistor, or MOS transistor) in 1959, along with his earlier surface passivation and thermal oxidation processes (the basis for silicon semiconductor technology such as the monolithic integrated circuit chip), revolutionized the electronics industry. He is also known as the founder of the data security company Atalla Corporation, which he founded after he invented the first hardware security module (HSM) in 1972. He received the Stuart Ballantine Medal (now the Benjamin Franklin Medal in physics) and was inducted into the National Inventors Hall of Fame for his important contributions to semiconductor technology as well as data security.

A semiconductor material has an electrical conductivity value falling between that of a conductor, such as metallic copper, and an insulator, such as glass. Its resistance decreases as its temperature increases, which is the behaviour opposite to that of a metal. Its conducting properties may be altered in useful ways by the deliberate, controlled introduction of impurities ("doping") into the crystal structure. Where two differently-doped regions exist in the same crystal, a semiconductor junction is created. The behavior of charge carriers which include electrons, ions and electron holes at these junctions is the basis of diodes, transistors and all modern electronics. Some examples of semiconductors are silicon, germanium, gallium arsenide, and elements near the so-called "metalloid staircase" on the periodic table. After silicon, gallium arsenide is the second most common semiconductor and is used in laser diodes, solar cells, microwave-frequency integrated circuits and others. Silicon is a critical element for fabricating most electronic circuits.

Electronics physics, engineering, technology and applications that deal with the emission, flow and control of electrons in vacuum and matter

Electronics comprises the physics, engineering, technology and applications that deal with the emission, flow and control of electrons in vacuum and matter.

MOSFET Transistor used for amplifying or switching electronic signals.

The metal–oxide–semiconductor field-effect transistor (MOSFET, MOS-FET, or MOS FET), also known as the metal–oxide–silicon transistor (MOS transistor, or MOS), is a type of field-effect transistor that is fabricated by the controlled oxidation of a semiconductor, typically silicon. It has an insulated gate, whose voltage determines the conductivity of the device. This ability to change conductivity with the amount of applied voltage can be used for amplifying or switching electronic signals. The MOSFET is the basic building block of modern electronics. Since its invention by Mohamed Atalla and Dawon Kahng at Bell Labs in November 1959, the MOSFET has become the most widely manufactured device in history, with an estimated total of 13 sextillion (1.3 × 1022) MOS transistors manufactured between 1960 and 2018.


Born in Port Said, Egypt, he was educated at Cairo University in Egypt and then Purdue University in the United States, before joining Bell Labs in 1949 and later adopting the alias nicknames "John" or "Martin" M. Atalla for his professional career. He made a series of breakthroughs in semiconductor technology during 19561962, starting with his development of the surface passivation and thermal oxidation processes (the basis for silicon semiconductor technologies such as the planar process and silicon integrated circuit chips), followed by his invention of the MOSFET (with Dawon Kahng) in 1959, then the PMOS and NMOS fabrication processes, his proposal of the MOS integrated circuit chip in 1960, and the demonstration of nanolayer transistors and practical Schottky diodes. Atalla's pioneering work at Bell laid the foundations for modern electronics, the silicon revolution, and the Digital Revolution. The MOSFET in particular is the basic building block of modern electronics, and is considered to be possibly the most important invention in electronics. It is also the most widely manufactured device in history, and the US Patent and Trademark Office calls it a "groundbreaking invention that transformed life and culture around the world".

Port Said Place in Egypt

Port Said is a city that lies in north east Egypt extending about 30 kilometres (19 mi) along the coast of the Mediterranean Sea, north of the Suez Canal, with an approximate population of 603,787 (2010). The city was established in 1859 during the building of the Suez Canal.

Cairo University public university with its main campus in Giza, Egypt

Cairo University, known as the Egyptian University from 1908 to 1940, and King Fuad I University from 1940 to 1952) is Egypt's premier public university. Its main campus is in Giza, immediately across the Nile from Cairo. It was founded on 21 December 1908; however, after being housed in various parts of Cairo, its faculties, beginning with the Faculty of Arts, were established on its current main campus in Giza in October 1929. It is the second oldest institution of higher education in Egypt after Al Azhar University, notwithstanding the pre-existing higher professional schools that later became constituent colleges of the university. It was founded and funded as the Egyptian University by a committee of private citizens with royal patronage in 1908 and became a state institution under King Fuad I in 1925. In 1940, four years following his death, the University was renamed King Fuad I University in his honor. It was renamed a second time after the Egyptian revolution of 1952. The University currently enrolls approximately 155,000 students in 22 faculties. It counts three Nobel Laureates among its graduates and is one of the 50 largest institutions of higher education in the world by enrollment.

Purdue University Public research university in West Lafayette, Indiana, United States

Purdue University is a public research university in West Lafayette, Indiana, and the flagship campus of the Purdue University system. The university was founded in 1869 after Lafayette businessman John Purdue donated land and money to establish a college of science, technology, and agriculture in his name. The first classes were held on September 16, 1874, with six instructors and 39 students.

His invention of the MOSFET was initially overlooked at Bell, which led to him resigning from Bell and joining Hewlett-Packard (HP), founding its Semiconductor Lab in 1962 and then HP Labs in 1966, before leaving to join Fairchild Semiconductor, founding its Microwave & Optoelectronics division in 1969. His work at HP and Fairchild included further research on Schottky diodes, in addition to research on gallium arsenide (GaAs), gallium arsenide phosphide (GaAsP), indium arsenide (InAs) and light-emitting diode (LED) technologies, contributing to the development of high-frequency network analyzers, developing the first practical LED displays, and proposing the use of LEDs for indicator lights and optical readers.

Hewlett-Packard American information technology company

The Hewlett-Packard Company or Hewlett-Packard was an American multinational information technology company headquartered in Palo Alto, California. It developed and provided a wide variety of hardware components as well as software and related services to consumers, small- and medium-sized businesses (SMBs) and large enterprises, including customers in the government, health and education sectors.

HP Labs Research and development division of HP Inc.

HP Labs is the exploratory and advanced research group for HP Inc. HP Labs' headquarters is in Palo Alto, California and the group has research and development facilities in Bristol, UK. The development of programmable desktop calculators, inkjet printing, and 3D graphics are credited to HP Labs researchers.

Fairchild Semiconductor American company

Fairchild Semiconductor International, Inc. was an American semiconductor company based in San Jose, California. Founded in 1957 as a division of Fairchild Camera and Instrument, it became a pioneer in the manufacturing of transistors and of integrated circuits. Schlumberger bought the firm in 1979 and sold it to National Semiconductor in 1987; Fairchild was spun off as an independent company again in 1997. In September 2016, Fairchild was acquired by ON Semiconductor.

After leaving the semiconductor industry in 1972, he became an entrepreneur in cryptography and data security. After he invented the first hardware security module, the "Atalla Box" which encrypted PIN and ATM messages, he founded the data security company Atalla Corporation in 1972. The "Atalla Box" went on to secure the majority of the world's ATM transactions. In recognition of his work on the Personal Identification Number (PIN) system of information security management, Atalla has been referred to as the "Father of the PIN". Atalla also launched an early online transaction processing security system in 1976 and the first network security processor (NSP) in 1979, and he later founded the internet security company TriStrata Security in the 1990s. He died in Atherton, California, on December 30, 2009.

Semiconductor industry companies manufacturing semiconductor devices

The semiconductor industry is the aggregate collection of companies engaged in the design and fabrication of semiconductors. It formed around 1960, once the fabrication of semiconductor devices became a viable business. The industry's annual revenue has since grown to $412.2 billion in 2017.

Cryptography practice and study of techniques for secure communication in the presence of third parties

Cryptography or cryptology is the practice and study of techniques for secure communication in the presence of third parties called adversaries. More generally, cryptography is about constructing and analyzing protocols that prevent third parties or the public from reading private messages; various aspects in information security such as data confidentiality, data integrity, authentication, and non-repudiation are central to modern cryptography. Modern cryptography exists at the intersection of the disciplines of mathematics, computer science, electrical engineering, communication science, and physics. Applications of cryptography include electronic commerce, chip-based payment cards, digital currencies, computer passwords, and military communications.

In cryptography, encryption is the process of encoding a message or information in such a way that only authorized parties can access it and those who are not authorized cannot. Encryption does not itself prevent interference, but denies the intelligible content to a would-be interceptor. In an encryption scheme, the intended information or message, referred to as plaintext, is encrypted using an encryption algorithm – a cipher – generating ciphertext that can be read only if decrypted. For technical reasons, an encryption scheme usually uses a pseudo-random encryption key generated by an algorithm. It is in principle possible to decrypt the message without possessing the key, but, for a well-designed encryption scheme, considerable computational resources and skills are required. An authorized recipient can easily decrypt the message with the key provided by the originator to recipients but not to unauthorized users.

Early life and education (19241949)

Mohamed Mohamed Atalla [2] [3] [4] was born in Port Said, Egypt. [5] He studied at Cairo University in Egypt, where he received his Bachelor of Science degree. He later went to the United States, to study mechanical engineering at Purdue University. There, he received his master's degree (MSc) in 1947 and his doctorate (PhD) in 1949, both in mechanical engineering. [5] His MSc thesis was "High Speed Flow in Square Diffusers" published in 1948, [6] and his PhD thesis was "High Speed Compressible Flow in Square Diffusers" published in January 1949. [3]

Egypt Country spanning North Africa and Southwest Asia

Egypt, officially the Arab Republic of Egypt, is a country in the northeast corner of Africa, whose territory in the Sinai Peninsula extends beyond the continental boundary with Asia, as traditionally defined. Egypt is bordered by the Gaza Strip and Israel to the northeast, the Gulf of Aqaba and the Red Sea to the east, Sudan to the south, Libya to the west, and the Mediterranean Sea to the north. Across the Gulf of Aqaba lies Jordan, across the Red Sea lies Saudi Arabia, and across the Mediterranean lie Greece, Turkey and Cyprus, although none share a land border with Egypt.

A Bachelor of Science is an undergraduate academic degree awarded for completed courses that generally last three to five years, or a person holding such a degree.

Mechanical engineering Engineering discipline and economic branch

Mechanical engineering is the discipline that applies engineering, physics, engineering mathematics, and materials science principles to design, analyze, manufacture, and maintain mechanical systems. It is one of the oldest and broadest of the engineering disciplines.

Bell Telephone Laboratories (19491962)

After completing his PhD at Purdue University, Atalla was employed at Bell Telephone Laboratories (BTL) in 1949. [7] In 1950, he began working at Bell's New York City operations, where he worked on problems related to the reliability of electromechanical relays. With the emergence of transistors, Atalla was moved to the Murray Hill lab, where he began leading a small transistor research team in 1956. [8] Despite coming from a mechanical engineering background and having no formal education in physical chemistry, he proved himself to be a quick learner in physical chemistry and semiconductor physics, eventually demonstrating a high level of skill in these fields. [9] He researched, among other things, the surface properties of silicon semiconductors and the use of silica as a protective layer of silicon semiconductor devices. [7] He eventually adopted the alias nicknames "Martin" M. Atalla or "John" M. Atalla for his professional career. [4]

New York City Largest city in the United States

The City of New York, usually called either New York City (NYC) or simply New York (NY), is the most populous city in the United States. With an estimated 2018 population of 8,398,748 distributed over a land area of about 302.6 square miles (784 km2), New York is also the most densely populated major city in the United States. Located at the southern tip of the state of New York, the city is the center of the New York metropolitan area, the largest metropolitan area in the world by urban landmass and one of the world's most populous megacities, with an estimated 19,979,477 people in its 2018 Metropolitan Statistical Area and 22,679,948 residents in its Combined Statistical Area. A global power city, New York City has been described as the cultural, financial, and media capital of the world, and exerts a significant impact upon commerce, entertainment, research, technology, education, politics, tourism, art, fashion, and sports. The city's fast pace has inspired the term New York minute. Home to the headquarters of the United Nations, New York is an important center for international diplomacy.

Murray Hill, New Jersey Unincorporated community in Union County, New Jersey, U.S.

Murray Hill is an unincorporated community located within portions of both Berkeley Heights and New Providence, located in Union County in northern New Jersey, United States.

Physical chemistry is the study of macroscopic, atomic, subatomic, and particulate phenomena in chemical systems in terms of the principles, practices, and concepts of physics such as motion, energy, force, time, thermodynamics, quantum chemistry, statistical mechanics, analytical dynamics and chemical equilibrium.

Between 1956 and 1960, Atalla led a small team of several BTL researchers, including Eileen Tannenbaum, Edwin Joseph Scheibner and Dawon Kahng. [10] They were new recruits at BTL, like himself, with no senior researchers on the team. Their work was initially not taken seriously by senior management at BTL and its owner AT&T, due to the team consisting of new recruits, and due to the team leader Atalla himself coming from a mechanical engineering background, in contrast to the physicists, physical chemists and mathematicians who were taken more seriously, despite Atalla demonstrating advanced skills in physical chemistry and semiconductor physics. [9]

Despite working mostly on their own, [9] Atalla and his team made significant advances in semiconductor technology. [10] According to Fairchild Semiconductor engineer Chih-Tang Sah, the work of Atalla and his team during 19561960 was "the most important and significant technology advance" in silicon semiconductor technology, [10] [11] including the history of transistors [12] and microelectronics. [13]

Surface passivation by thermal oxidation

An initial focus of Atalla's research was to solve the problem of silicon surface states. At the time, the electrical conductivity of semiconductor materials such as germanium and silicon were limited by unstable quantum surface states, [14] where electrons are trapped at the surface, due to dangling bonds that occur because unsaturated bonds are present at the surface. [15] This prevented electricity from reliably penetrating the surface to reach the semiconducting silicon layer. [7] [16] Due to the surface state problem, germanium was the dominant semiconductor material of choice for transistors and other semiconductor devices in the early semiconductor industry, as germanium was capable of higher carrier mobility. [17] [18]

He made a breakthrough with his development of the surface passivation process. [7] This is the process by which a semiconductor surface is rendered inert, and does not change semiconductor properties as a result of interaction with air or other materials in contact with the surface or edge of the crystal. [19] The surface passivation process was first developed by Atalla in the late 1950s. [7] [20] He discovered that the formation of a thermally grown silicon dioxide (SiO2) layer greatly reduced the concentration of electronic states at the silicon surface, [20] and discovered the important quality of SiO2 films to preserve the electrical characteristics of p–n junctions and prevent these electrical characteristics from deteriorating by the gaseous ambient environment. [21] He found that silicon oxide layers could be used to electrically stabilize silicon surfaces. [22] He developed the surface passivation process, a new method of semiconductor device fabrication that involves coating a silicon wafer with an insulating layer of silicon oxide so that electricity could reliably penetrate to the conducting silicon below. By growing a layer of silicon dioxide on top of a silicon wafer, Atalla was able to overcome the surface states that prevented electricity from reaching the semiconducting layer. His surface passivation method was a critical step that made possible the ubiquity of silicon integrated circuits, and later became critical to the semiconductor industry. [7] [16] For the surface passivation process, he developed the method of thermal oxidation, which was a breakthrough in silicon semiconductor technology. [23]

The surface passivation process was a breakthrough in silicon semiconductor research, [15] [20] [18] as it enabled silicon to surpass the conductivity and performance of germanium, and was the breakthrough that led to silicon replacing germanium as the dominant semiconductor material. [18] [14] The process also laid the foundations for the monolithic integrated circuit chip, as it was the first time that high-quality silicon dioxide insulator films could be grown thermally on the silicon surface to protect the underlying silicon p-n junction diodes and transistors. [21] Before the development of integrated circuit chips, discrete diodes and transistors exhibited relatively high reverse-bias junction leakages and low breakdown voltage, caused by the large density of traps at the surface of single crystal silicon. Atalla's surface passivation process became the solution to this problem. He discovered that when a thin layer of silicon dioxide was grown on the surface of silicon where a p–n junction intercepts the surface, the leakage current of the junction was reduced by a factor from 10 to 100. This showed that the oxide reduces and stabilizes many of the interface and oxide traps. Oxide-passivation of silicon surfaces allowed diodes and transistors to be fabricated with significantly improved device characteristics, while the leakage path along the surface of the silicon was also effectively shut off. [13] His surface oxidation method provided a semiconductor surface that was insensitive to the environment. [8] This became a fundamental p–n junction isolation capability necessary for planar technology and integrated circuit chips. [13]

The surface passivation process is also known as the "Atalla passivation" technique. [24] Atalla first published his findings in BTL memos during 1957, before presenting his work at an Electrochemical Society meeting in 1958, [25] [26] the Radio Engineers' Semiconductor Device Research Conference. [8] The semiconductor industry saw the potential significance of Atalla's surface oxidation method, with RCA calling it a "milestone in the surface field." [8] The same year, he made further refinements to the process with his colleagues Eileen Tannenbaum and Edwin Joseph Scheibner, before they published their results in May 1959. [11] [27] According to Fairchild Semiconductor engineer Chih-Tang Sah, the surface passivation process developed by Atalla and his team "blazed the trail" that led to the development of the silicon integrated circuit. [13] [11] Atalla's surface passivation method was the basis for several important inventions in 1959: the MOSFET (MOS transistor) by Atalla and Dawon Kahng at Bell Labs, the planar process by Jean Hoerni at Fairchild Semiconductor, and the monolithic integrated circuit chip by Robert Noyce at Fairchild in 1959. [26] [13] [11]

MOSFET (MOS transistor)

The MOSFET was invented by Atalla with his colleague Dawon Kahng in 1959, based on Atalla's earlier surface passivation and thermal oxidation processes. MOSFET Structure.png
The MOSFET was invented by Atalla with his colleague Dawon Kahng in 1959, based on Atalla's earlier surface passivation and thermal oxidation processes.

Building on his earlier pioneering research [28] on the surface passivation and thermal oxidation processes, [23] Atalla developed the metal–oxide–semiconductor (MOS) process. [7] Atalla then proposed that a field effect transistor–first envisioned in the 1920s and confirmed experimentally in the 1940s but not yet achieved—be built of metal-oxide-silicon. Atalla assigned the task to Dawon Kahng, a scientist in his group. [7] The led to the invention of the MOSFET (metal–oxide–semiconductor field-effect transistor) by Atalla and Kahng, [29] [30] in November 1959. [8] Attalla and Kahng first demonstrated the MOSFET in early 1960. [31] [32] With its high scalability, [33] and much lower power consumption and higher density than bipolar junction transistors, [34] the MOSFET made it possible to build high-density integrated circuit (IC) chips. [35]

There were originally two types of MOSFET logic, PMOS (p-type MOS) and NMOS (n-type MOS). [29] Both types were developed by Atalla and Kahng when they originally invented the MOSFET. They fabricated both PMOS and NMOS devices with a 20 µm process. However, only the PMOS devices were practical working devices at the time. [36]

Atalla proposed the concept of the MOS integrated circuit chip in 1960. He noted that the MOS transistor's ease of fabrication made it useful for IC chips. [9] However, Bell Labs initially ignored MOS technology, as the company was not interested in ICs at the time. [9] Despite this, the MOSFET generated significant interest at RCA and Fairchild Semiconductor. Inspired by the first MOSFET demonstration by Atalla and Kahng in early 1960, researchers at RCA and Fairchild fabricated MOSFETs later that year, with Karl Zaininger and Charles Meuller fabricating a MOSFET at RCA, and Chih-Tang Sah building an MOS-controlled tetrode at Fairchild. [29] His concept of the MOS IC chip eventually became reality, [9] starting with an experimental MOS chip demonstrated by Fred Heiman and Steven Hofstein at RCA in 1962, after which MOS would become the dominant fabrication process for IC chips. [37] CMOS, which combined aspects of both PMOS and NMOS, was later developed by Chih-Tang Sah and Frank Wanlass at Fairchild in 1963. [38] The development of MOS technology, which was capable of increasing miniaturisation, eventually became the focus of RCA, Fairchild, Intel and other semiconductor companies in the 1960s, fuelling the technological and economic growth of the early semiconductor industry in California (centred around what later became known as Silicon Valley) [39] as well as Japan. [40]

The MOSFET was the first truly compact transistor that could be miniaturised and mass-produced for a wide range of uses, [9] and went on to revolutionize the electronics industry. [41] [42] The MOSFET forms the basis of modern electronics, [43] and is the basic element in most modern electronic equipment. [44] It is the most widely used semiconductor device in the world, [35] [45] and the most widely manufactured device in history, with an estimated 13  sextillion MOS transistors manufactured as of 2018. [46] [47] The MOSFET is central to the microelectronics revolution, [48] silicon revolution, [14] [49] and microcomputer revolution, [50] and is the fundamental building block of modern digital electronics during the Digital Revolution, information revolution and Information Age. [51] [52] [53] [54] It is used in a wide variety of electronics applications, such as computers, synthesizers, [16] communications technology, smartphones, [55] Internet infrastructure, [56] [57] [58] digital telecommunication systems, video games, pocket calculators, and digital wristwatches, among many other uses. [59] It has been described as the "workhorse of the electronics industry" due to being the building block of every microprocessor, memory chip and telecommunication circuit in use. [60] The US Patent and Trademark Office calls the MOSFET a "groundbreaking invention that transformed life and culture around the world". [55] The invention of the MOSFET by Atalla and Kahng has been credited as "the birth of modern electronics" [61] and is considered to be possibly the most important invention in electronics. [62]

Nanolayer transistor

In 1960, Atalla and Kahng fabricated the first MOSFET with a gate oxide thickness of 100 nm, along with a gate length of 20 µm. [63] In 1962, Atalla and Kahng fabricated a nanolayer-base metal–semiconductor junction (M–S junction) transistor. This device has a metallic layer with nanometric thickness sandwiched between two semiconducting layers, with the metal forming the base and the semiconductors forming the emitter and collector. With its low resistance and short transit times in the thin metallic nanolayer base, the device was capable of high operation frequency compared to bipolar transistors. Their pioneering work involved depositing metal layers (the base) on top of single crystal semiconductor substrates (the collector), with the emitter being a crystalline semiconductor piece with a top or a blunt corner pressed against the metallic layer (the point contact). They deposited gold (Au) thin films with a thickness of 10 nm on n-type germanium (n-Ge), while the point contact was n-type silicon (n-Si). [64] Atalla resigned from BTL in 1962. [36]

Schottky diode

Extending their work on MOS technology, Atalla and Kahng next did pioneering work on hot carrier devices, which used what would later be called a Schottky barrier. [65] The Schottky diode, also known as the Schottky-barrier diode, was theorized for years, but was first practically realized as a result of the work of Atalla and Kahng during 19601961. [66] They published their results in 1962 and called their device the "hot electron" triode structure with semiconductor-metal emitter. [67] It was an early metal-base transistor. [68] The Schottky diode went on to assume a prominent role in mixer applications. [66]

Hewlett-Packard (19621969)

In 1962, Atalla joined Hewlett-Packard, where he co-founded Hewlett-Packard and Associates (HP Associates), which provided Hewlett-Packard with fundamental solid-state capabilities. [5] He was the Director of Semiconductor Research at HP Associates, [36] and the first manager of HP's Semiconductor Lab. [69]

He continued research on Schottky diodes, while working with Robert J. Archer, at HP Associates. They developed high vacuum metal film deposition technology, [70] and fabricated stable evaporated/sputtered contacts, [71] [72] publishing their results in January 1963. [73] Their work was a breakthrough in metal–semiconductor junction [71] and Schottky barrier research, as it overcame most of the fabrication problems inherent in point-contact diodes and made it possible to build practical Schottky diodes. [70]

At the Semiconductor Lab during the 1960s, he launched a material science investigation program that provided a base technology for gallium arsenide (GaAs), gallium arsenide phosphide (GaAsP) and indium arsenide (InAs) devices. These devices became the core technology used by HP's Microwave Division to develop sweepers and network analyzers that pushed 2040 GHz frequency, giving HP more than 90% of the military communications market. [69]

Atalla helped create HP Labs in 1966. He directed its solid-state division. [5]

LED displays

He oversaw HP's research and development (R&D) on practical light-emitting diodes (LEDs) between 1962 and 1969, along with Howard C. Borden and Gerald P. Pighini. The first practical LED displays were built at Atalla's Semiconductor Lab. [74] They introduced the first commercial LED display in 1968. [75] In February 1969, they introduced the HP Model 5082-7000 Numeric Indicator, the first LED device to use integrated circuit technology. [74] It was the first intelligent LED display, and was a revolution in digital display technology, replacing the Nixie tube and becoming the basis for later LED displays. [76]

Fairchild Semiconductor (19691972)

In 1969, he left HP and joined Fairchild Semiconductor. [65] He was the vice president and general manager of the Microwave & Optoelectronics division, [77] from its inception in May 1969 up until November 1971. [78] He continued his work on light-emitting diodes (LEDs), proposing they could be used for indicator lights and optical readers in 1971. [79] He later left Fairchild in 1972. [65]

Data security entrepreneur (19721999)

Atalla Corporation

He left the semiconductor industry in 1972, and began a new career as an entrepreneur in data security [65] and cryptography. [80] In 1972, [80] he founded Atalla Technovation, [81] later called Atalla Corporation, which dealt with safety problems of banking and financial institutions. [82] He invented the first hardware security module (HSM), [83] the so-called "Atalla Box", a security system that secures a majority of transactions from ATMs today. At the same time, Atalla contributed to the development of the personal identification number (PIN) system, which has developed among others in the banking industry as the standard for identification.

The work of Atalla in the early 1970s led to the use of high security modules. His "Atalla Box", a security system which encrypts PIN and ATM messages, and protected offline devices with an un-guessable PIN-generating key. [84] In 1972, Atalla filed U.S. Patent 3,938,091 for this PIN verification system, which included an encoded card reader and described a system that utilized encryption techniques to assure telephone link security while entering personal ID information that was transmitted to a remote location for verification. [81]

He commercially released the "Atalla Box" in 1973. [84] The product was released as the Identikey. It was a card reader and customer identification system, providing a terminal with plastic card and PIN capabilities. The system was designed to let banks and thrift institutions switch to a plastic card environment from a passbook program. The Identikey system consisted of a card reader console, two customer PIN pads, intelligent controller and built-in electronic interface package. [85] The device consisted of two keypards, one for the customer and one for the teller. It allowed the customer to type in a secret code, which is transformed by the device, using a microprocessor, into another code for the teller. [86] During a transaction, the customer's account number was read by the card reader. This process replaced manual entry and avoided possible key stroke errors. It allowed users to replace traditional customer verification methods such as signature verification and test questions with a secure PIN system. [85]

A key innovation of the Atalla Box was the key block, which is required to securely interchange symmetric keys or PINs with other actors of the banking industry. This secure interchange is performed using the Atalla Key Block (AKB) format, which lies at the root of all cryptographic block formats used within the Payment Card Industry Data Security Standard (PCI DSS) and American National Standards Institute (ANSI) standards. [87]

Fearful that Atalla would dominate the market, banks and credit card companies began working on an international standard. [84] Its PIN verification process was similar to the later IBM 3624. [88] Atalla was an early competitor to IBM in the banking market. [81] In recognition of his work on the PIN system of information security management, Atalla has been referred to as the "Father of the PIN". [5]

At the National Association of Mutual Savings Banks (NAMSB) conference in January 1976, Atalla announced an upgrade to its Identikey system, called the Interchange Identikey. It added the capabilities of processing online transactions and dealing with network security. Designed with the focus of taking bank transactions online, the Identikey system was extended to shared-facility operations. It was consistent and compatible with various switching networks, and was capable of resetting itself electronically to any one of 64,000 irreversible nonlinear algorithms as directed by card data information. The Interchange Identikey device was released in March 1976. It was one of the first products designed to deal with online transactions, along with Bunker Ramo Corporation products unveiled at the same NAMSB conference. [86] In 1979, Atalla introduced the first network security processor (NSP). [89]

In 1987, Atalla Corporation merged with Tandem Computers. Atalla went into retirement in 1990.

By 1998 an estimated 70% of all ATM transactions in the United States were routed through specialized Atalla hardware modules, [90] and by 1999 the Atalla Box secured 80% of all ATM machines in the world, [91] increasing to 85% as of 2006. [92] As of 2013, 250 million card transactions are protected by Atalla every day. [80]

TriStrata Security

It was not long until several executives of large banks persuaded him to develop security systems for the internet to work. They were worried about the fact that no useful framework for electronic commerce would have been possible at that time without innovation in the computer and network security industry. [5] Following a request from former Wells Fargo Bank president William Zuendt in 1993, Atalla began developing a new internet security technology, allowing companies to scramble and transmit secure computer files, e-mail, and digital video and audio, over the internet. [91]

As a result of these activities, he founded the company TriStrata Security in 1996. [93] In contrast to most conventional computer security systems at the time, which built walls around a company's entire computer network to protect the information within from thieves or corporate spies, TriStrata took a different approach. Its security system wrapped a secure, encrypted envelope around individual pieces of information (such as a word processing file, a customer database, or e-mail) that can only be opened and deciphered with an electronic permit, allowing companies to control which users have access to this information and the necessary permits. [91] It was considered a new approach to enterprise security at the time. [5]

Later years and death (20002009)

Atalla was the chairman of A4 System, as of 2003. [5]

He lived in Atherton, California. Atalla died on December 30, 2009, in Atherton. [94]

Awards and honors

Atalla was awarded the Stuart Ballantine Medal (now the Benjamin Franklin Medal in physics) at the 1975 Franklin Institute Awards, for his important contributions to silicon semiconductor technology and his invention of the MOSFET. [95] [96] In 2003, Atalla received a Distinguished Alumnus doctorate from Purdue University. [5]

In 2009, he was inducted into the National Inventors Hall of Fame for his important contributions to semiconductor technology as well as data security. [7] He was referred to as one of the "Sultans of Silicon" along with several other semiconductor pioneers. [32]

In 2014, the 1959 invention of the MOSFET was included on the list of IEEE milestones in electronics. [97] In 2015, Atalla was inducted into the IT History Society's IT Honor Roll for his important contributions to information technology. [98]

Despite the MOSFET enabling Nobel Prize winning breakthroughs such as the quantum Hall effect [99] and the charge-coupled device (CCD), [100] there was never any Nobel Prize given for the MOSFET itself. [101] In 2018, the Royal Swedish Academy of Sciences which awards the science Nobel Prizes acknowledged that the invention of the MOSFET by Atalla and Kahng was one of the most important inventions in microelectronics and in information and communications technology (ICT). [102]

Related Research Articles

Transistor Basic electronics component

A transistor is a semiconductor device used to amplify or switch electronic signals and electrical power. It is composed of semiconductor material usually with at least three terminals for connection to an external circuit. A voltage or current applied to one pair of the transistor's terminals controls the current through another pair of terminals. Because the controlled (output) power can be higher than the controlling (input) power, a transistor can amplify a signal. Today, some transistors are packaged individually, but many more are found embedded in integrated circuits.

A semiconductor device is an electronic component that exploits the electronic properties of semiconductor material, principally silicon, germanium, and gallium arsenide, as well as organic semiconductors. Semiconductor devices have replaced vacuum tubes in most applications. They use electrical conduction in the solid state rather than the gaseous state or thermionic emission in a vacuum.

CMOS Technology for constructing integrated circuits

Complementary metal–oxide–semiconductor (CMOS), also known as complementary-symmetry metal–oxide–semiconductor (COS-MOS), is a type of MOSFET fabrication process that uses complementary and symmetrical pairs of p-type and n-type MOSFETs for logic functions. CMOS technology is used for constructing integrated circuits (ICs), including microprocessors, microcontrollers, memory chips, and other digital logic circuits. CMOS technology is also used for analog circuits such as image sensors, data converters, RF circuits, and highly integrated transceivers for many types of communication.

Passivation, in physical chemistry and engineering, refers to a material becoming "passive," that is, less affected or corroded by the environment of future use. Passivation involves creation of an outer layer of shield material that is applied as a microcoating, created by chemical reaction with the base material, or allowed to build from spontaneous oxidation in the air. As a technique, passivation is the use of a light coat of a protective material, such as metal oxide, to create a shell against corrosion. Passivation can occur only in certain conditions, and is used in microelectronics to enhance silicon. The technique of passivation strengthens and preserves the appearance of metallics. In electrochemical treatment of water, passivation reduces the effectiveness of the treatment by increasing the circuit resistance, and active measures are typically used to overcome this effect, the most common being polarity reversal, which results in limited rejection of the fouling layer. Other proprietary systems to avoid electrode passivation, several discussed below, are the subject of ongoing research and development.

A power semiconductor device is a semiconductor device used as a switch or rectifier in power electronics. Such a device is also called a power device or, when used in an integrated circuit, a power IC.

Dr. Frank Marion Wanlass was an American electrical engineer. He is best known for inventing CMOS logic with Chih-Tang Sah in 1963. CMOS has since become the standard semiconductor device fabrication process for MOSFETs.

Planar process

The planar process is a manufacturing process used in the semiconductor industry to build individual components of a transistor, and in turn, connect those transistors together. It is the primary process by which silicon integrated circuit chips are built. The process utilizes the surface passivation and thermal oxidation methods.

p–n junction isolation is a method used to electrically isolate electronic components, such as transistors, on an integrated circuit (IC) by surrounding the components with reverse biased p–n junctions.


A VMOS transistor is a type of MOSFET. VMOS is also used for describing the V-groove shape vertically cut into the substrate material. VMOS is an acronym for "vertical metal oxide semiconductor", or "V-groove MOS".

Solid-state electronics circuits or devices built entirely from solid materials and in which the electrons, or other charge carriers, are confined entirely within the solid material

Solid-state electronics means semiconductor electronics; electronic equipment using semiconductor devices such as semiconductor diodes, transistors, and integrated circuits (ICs). The term is also used for devices in which semiconductor electronics which have no moving parts replace devices with moving parts, such as the solid-state relay in which transistor switches are used in place of a moving-arm electromechanical relay, or the solid-state drive (SSD) a type of semiconductor memory used in computers to replace hard disk drives, which store data on a rotating disk.

Electronics industry global industry

The electronics industry, especially meaning consumer electronics, emerged in the 20th century and has now become a global industry worth billions of dollars. Contemporary society uses all manner of electronic devices built in automated or semi-automated factories operated by the industry. Products are assembled from integrated circuits, principally by photolithography of printed circuit boards.

PMOS logic p-type MOSFETs to implement logic gates

P-type metal-oxide-semiconductor logic uses p-channel metal-oxide-semiconductor field effect transistors (MOSFETs) to implement logic gates and other digital circuits. PMOS transistors operate by creating an inversion layer in an n-type transistor body. This inversion layer, called the p-channel, can conduct holes between p-type "source" and "drain" terminals.

A transistor is a semiconductor device with at least three terminals for connection to an electric circuit. The vacuum-tube triode, also called a (thermionic) valve, was the transistor's precursor, introduced in 1907. The principle of a field-effect transistor was proposed by Julius Edgar Lilienfeld in 1925.

In solid-state physics, a metal–semiconductor (M–S) junction is a type of electrical junction in which a metal comes in close contact with a semiconductor material. It is the oldest practical semiconductor device. M–S junctions can either be rectifying or non-rectifying. The rectifying metal–semiconductor junction forms a Schottky barrier, making a device known as a Schottky diode, while the non-rectifying junction is called an ohmic contact.

The integrated circuit (IC) chip was invented during 1958–1959. The idea of integrating electronic circuits into a single device was born when the German physicist and engineer Werner Jacobi developed and patented the first known integrated transistor amplifier in 1949 and the British radio engineer Geoffrey Dummer proposed to integrate a variety of standard electronic components in a monolithic semiconductor crystal in 1952. A year later, Harwick Johnson filed a patent for a prototype IC. Between 1953 and 1957, Sidney Darlington and Yasuro Tarui proposed similar chip designs where several transistors could share a common active area, but there was no electrical isolation to separate them from each other.

Dawon Kahng South Korean engineer

Dawon Kahng was a Korean-American electrical engineer and inventor, known for his work in solid-state electronics. He is best known for inventing the MOSFET, also known as the MOS transistor, with Mohamed Atalla in 1959. Atalla and Kahng developed both the PMOS and NMOS processes for MOSFET semiconductor device fabrication. The MOSFET is the most widely used type of transistor, and the basic element in most modern electronic equipment.

Field-effect transistor transistor that uses an electric field to control the electrical behaviour of the device. FETs are also known as unipolar transistors since they involve single-carrier-type operation

The field-effect transistor (FET) is an electronic device which uses an electric field to control the flow of current. FETs are devices with three terminals: source, gate, and drain. FETs control the flow of current by the application of a voltage to the gate, which in turn alters the conductivity between the drain and source.


  1. Bassett, Jackie (2006). So You Built It And They Didn't Come. Now What?. Sales of Innovative Products. p. 109. ISBN   9781425915469.
  2. "Mohamed Mohamed Atalla". Semantic Scholar .
  3. 1 2 Atalla, Mohamed Mohamed (January 1949). "HIGH SPEED COMPRESSIBLE FLOW IN SQUARE DIFFUSERS". Theses and Dissertations. Purdue University: 1–156.
  4. 1 2 Lojek, Bo (2007). History of Semiconductor Engineering. Springer Science & Business Media. pp. 120 & 321. ISBN   9783540342588. Hoerni also attended a meeting of the Electrochemical Society in 1958, where Mohamed “John” Atalla presented a paper about passivation of PN junctions by oxide. [...] Mohamed M. Atalla, alias Martin or John Atalla, graduated from Cairo University in Egypt and for his master and doctorate degrees he attended Purdue University.
  5. 1 2 3 4 5 6 7 8 9 "Martin M. (John) Atalla". Purdue University . Retrieved October 2, 2013.
  6. Atalla, Mohamed Mohamed (1948). "High Speed Flow in Square Diffusers". Research Series. Purdue University. 103-117.
  7. 1 2 3 4 5 6 7 8 9 "Martin (John) M. Atalla". National Inventors Hall of Fame. 2009. Retrieved June 21, 2013.
  8. 1 2 3 4 5 Bassett, Ross Knox (2007). To the Digital Age: Research Labs, Start-up Companies, and the Rise of MOS Technology. Johns Hopkins University Press. pp. 22–23. ISBN   9780801886393.
  9. 1 2 3 4 5 6 7 Moskowitz, Sanford L. (2016). Advanced Materials Innovation: Managing Global Technology in the 21st century. John Wiley & Sons. pp. 165–167. ISBN   9780470508923.
  10. 1 2 3 Huff, Howard R.; Tsuya, H.; Gösele, U. (1998). Silicon Materials Science and Technology: Proceedings of the Eighth International Symposium on Silicon Materials Science and Technology. Electrochemical Society. pp. 181–182.
  11. 1 2 3 4 Sah, Chih-Tang (October 1988). "Evolution of the MOS transistor-from conception to VLSI" (PDF). Proceedings of the IEEE . 76 (10): 1280–1326 (1290). doi:10.1109/5.16328. ISSN   0018-9219. Those of us active in silicon material and device research during 1956–1960 considered this successful effort by the Bell Labs group led by Atalla to stabilize the silicon surface the most important and significant technology advance, which blazed the trail that led to silicon integrated circuit technology developments in the second phase and volume production in the third phase.
  12. Weiss, Peter (March 25, 2000). "Looking for Mr. Goodoxide: The hard-pressed semiconductor industry strives to replace silicon's near-perfect mate". Science News . 157 (13): 204–206. doi:10.2307/4012225. ISSN   1943-0930.
  13. 1 2 3 4 5 Wolf, Stanley (March 1992). "A review of IC isolation technologies". Solid State Technology: 63.
  14. 1 2 3 Feldman, Leonard C. (2001). "Introduction". Fundamental Aspects of Silicon Oxidation. Springer Science & Business Media. pp. 1–11. ISBN   9783540416821.
  15. 1 2 Kooi, E.; Schmitz, A. (2005). "Brief Notes on the History of Gate Dielectrics in MOS Devices". High Dielectric Constant Materials: VLSI MOSFET Applications. Springer Science & Business Media. pp. 33–44. ISBN   9783540210818.
  16. 1 2 3 "Dawon Kahng". National Inventors Hall of Fame . Retrieved June 27, 2019.
  17. Dabrowski, Jarek; Müssig, Hans-Joachim (2000). "6.1. Introduction". Silicon Surfaces and Formation of Interfaces: Basic Science in the Industrial World. World Scientific. pp. 344–346. ISBN   9789810232863.
  18. 1 2 3 Heywang, W.; Zaininger, K.H. (2013). "2.2. Early history". Silicon: Evolution and Future of a Technology. Springer Science & Business Media. pp. 26–28. ISBN   9783662098974.
  19. "Surface Passivation - an overview". ScienceDirect . Retrieved August 19, 2019.
  20. 1 2 3 Black, Lachlan E. (2016). New Perspectives on Surface Passivation: Understanding the Si-Al2O3 Interface. Springer. p. 17. ISBN   9783319325217.
  21. 1 2 Saxena, A (2009). Invention of integrated circuits: untold important facts. International series on advances in solid state electronics and technology. World Scientific. pp. 96–97. ISBN   9789812814456.
  22. Lécuyer, Christophe; Brock, David C. (2010). Makers of the Microchip: A Documentary History of Fairchild Semiconductor. MIT Press. p. 111. ISBN   9780262294324.
  23. 1 2 Huff, Howard (2005). High Dielectric Constant Materials: VLSI MOSFET Applications. Springer Science & Business Media. p. 34. ISBN   9783540210818.
  24. Maloberti, Franco; Davies, Anthony C. (2016). A Short History of Circuits and Systems: From Green, Mobile, Pervasive Networking to Big Data Computing (PDF). IEEE Circuits and Systems Society. p. 66. ISBN   9788793609860.
  25. Lojek, Bo (2007). History of Semiconductor Engineering. Springer Science & Business Media. pp. 120 & 321-323. ISBN   9783540342588.
  26. 1 2 Bassett, Ross Knox (2007). To the Digital Age: Research Labs, Start-up Companies, and the Rise of MOS Technology. Johns Hopkins University Press. p. 46. ISBN   9780801886393.
  27. Atalla, M.; Tannenbaum, E.; Scheibner, E. J. (1959). "Stabilization of silicon surfaces by thermally grown oxides". The Bell System Technical Journal. 38 (3): 749–783. doi:10.1002/j.1538-7305.1959.tb03907.x. ISSN   0005-8580.
  28. "People". The Silicon Engine. Computer History Museum . Retrieved August 21, 2019.
  29. 1 2 3 "1960 - Metal Oxide Semiconductor (MOS) Transistor Demonstrated". The Silicon Engine. Computer History Museum.
  30. Lojek, Bo (2007). History of Semiconductor Engineering. Springer Science & Business Media. pp. 321–3. ISBN   9783540342588.
  31. Atalla, M.; Kahng, D. (1960). "Silicon-silicon dioxide field induced surface devices". IRE-AIEE Solid State Device Research Conference.
  32. 1 2 Poeter, Damon. "Inventors Hall of Fame Honors Sultans Of Silicon". Archived from the original on October 4, 2013. Retrieved October 2, 2013.
  33. Motoyoshi, M. (2009). "Through-Silicon Via (TSV)" (PDF). Proceedings of the IEEE. 97 (1): 43–48. doi:10.1109/JPROC.2008.2007462. ISSN   0018-9219.
  34. "Transistors Keep Moore's Law Alive". EETimes . December 12, 2018. Retrieved July 18, 2019.
  35. 1 2 "Who Invented the Transistor?". Computer History Museum . December 4, 2013. Retrieved July 20, 2019.
  36. 1 2 3 Lojek, Bo (2007). History of Semiconductor Engineering. Springer Science & Business Media. pp. 321–3. ISBN   9783540342588.
  37. "Tortoise of Transistors Wins the Race - CHM Revolution". Computer History Museum . Retrieved July 22, 2019.
  38. "1963: Complementary MOS Circuit Configuration is Invented". Computer History Museum . Retrieved July 6, 2019.
  39. Lécuyer, Christophe (2006). Making Silicon Valley: Innovation and the Growth of High Tech, 1930-1970. Chemical Heritage Foundation. pp. 253-6 & 273. ISBN   9780262122818.
  40. "60s Trends in the Semiconductor Industry". Semiconductor History Museum of Japan. Retrieved August 7, 2019.
  41. Chan, Yi-Jen (1992). Studies of InAIAs/InGaAs and GaInP/GaAs heterostructure FET's for high speed applications. University of Michigan. p. 1. The Si MOSFET has revolutionized the electronics industry and as a result impacts our daily lives in almost every conceivable way.
  42. Grant, Duncan Andrew; Gowar, John (1989). Power MOSFETS: theory and applications. Wiley. p. 1. ISBN   9780471828679. The metal-oxide-semiconductor field-effect transistor (MOSFET) is the most commonly used active device in the very large-scale integration of digital integrated circuits (VLSI). During the 1970s these components revolutionized electronic signal processing, control systems and computers.
  43. McCluskey, Matthew D.; Haller, Eugene E. (2012). Dopants and Defects in Semiconductors. CRC Press. p. 3. ISBN   9781439831533.
  44. Daniels, Lee A. (May 28, 1992). "Dr. Dawon Kahng, 61, Inventor In Field of Solid-State Electronics". The New York Times. Retrieved April 1, 2017.
  45. Golio, Mike; Golio, Janet (2018). RF and Microwave Passive and Active Technologies. CRC Press. p. 18-2. ISBN   9781420006728.
  46. "13 Sextillion & Counting: The Long & Winding Road to the Most Frequently Manufactured Human Artifact in History". Computer History Museum . April 2, 2018. Retrieved July 28, 2019.
  47. Baker, R. Jacob (2011). CMOS: Circuit Design, Layout, and Simulation. John Wiley & Sons. p. 7. ISBN   978-1118038239.
  48. Zimbovskaya, Natalya A. (2013). Transport Properties of Molecular Junctions. Springer. p. 231. ISBN   9781461480112.
  49. Dabrowski, Jarek; Müssig, Hans-Joachim (2000). "1.2. The Silicon Age". Silicon Surfaces and Formation of Interfaces: Basic Science in the Industrial World. World Scientific. pp. 3–13. ISBN   9789810232863.
  50. Malmstadt, Howard V.; Enke, Christie G.; Crouch, Stanley R. (1994). Making the Right Connections: Microcomputers and Electronic Instrumentation. American Chemical Society. p. 389. ISBN   9780841228610. The relative simplicity and low power requirements of MOSFETs have fostered today's microcomputer revolution.
  51. "Triumph of the MOS Transistor". YouTube . Computer History Museum. August 6, 2010. Retrieved July 21, 2019.
  52. Raymer, Michael G. (2009). The Silicon Web: Physics for the Internet Age. CRC Press. p. 365. ISBN   9781439803127.
  53. Wong, Kit Po (2009). Electrical Engineering - Volume II. EOLSS Publications. p. 7. ISBN   9781905839780.
  54. "Transistors - an overview". ScienceDirect . Retrieved August 8, 2019.
  55. 1 2 "Remarks by Director Iancu at the 2019 International Intellectual Property Conference". United States Patent and Trademark Office . June 10, 2019. Retrieved July 20, 2019.
  56. Fossum, Jerry G.; Trivedi, Vishal P. (2013). Fundamentals of Ultra-Thin-Body MOSFETs and FinFETs. Cambridge University Press. p. vii. ISBN   9781107434493.
  57. Omura, Yasuhisa; Mallik, Abhijit; Matsuo, Naoto (2017). MOS Devices for Low-Voltage and Low-Energy Applications. John Wiley & Sons. p. 53. ISBN   9781119107354.
  58. Whiteley, Carol; McLaughlin, John Robert (2002). Technology, Entrepreneurs, and Silicon Valley. Institute for the History of Technology. ISBN   9780964921719. These active electronic components, or power semiconductor products, from Siliconix are used to switch and convert power in a wide range of systems, from portable information appliances to the communications infrastructure that enable the Internet. The company's power MOSFETs — tiny solid-state switches, or metal oxide semiconductor field-effect transistors — and power integrated circuits are widely used in cell phones and notebook computers to manage battery power efficiently
  59. Colinge, Jean-Pierre; Greer, Jim (2010). "Chapter 12: Transistor Structures for Nanoelectronics". Handbook of Nanophysics: Nanoelectronics and Nanophotonics. CRC Press. p. 12-1. ISBN   9781420075519.
  60. Colinge, Jean-Pierre; Greer, James C. (2016). Nanowire Transistors: Physics of Devices and Materials in One Dimension. Cambridge University Press. p. 2. ISBN   9781107052406.
  61. Kubozono, Yoshihiro; He, Xuexia; Hamao, Shino; Uesugi, Eri; Shimo, Yuma; Mikami, Takahiro; Goto, Hidenori; Kambe, Takashi (2015). "Application of Organic Semiconductors toward Transistors". Nanodevices for Photonics and Electronics: Advances and Applications. CRC Press. p. 355. ISBN   9789814613750.
  62. Thompson, S. E.; Chau, R. S.; Ghani, T.; Mistry, K.; Tyagi, S.; Bohr, M. T. (2005). "In search of "Forever," continued transistor scaling one new material at a time". IEEE Transactions on Semiconductor Manufacturing . 18 (1): 26–36. doi:10.1109/TSM.2004.841816. ISSN   0894-6507. In the field of electronics, the planar Si metal–oxide–semiconductor field-effect transistor (MOSFET) is perhaps the most important invention.
  63. Sze, Simon M. (2002). Semiconductor Devices: Physics and Technology (PDF) (2nd ed.). Wiley. p. 4. ISBN   0-471-33372-7.
  64. Pasa, André Avelino (2010). "Chapter 13: Metal Nanolayer-Base Transistor". Handbook of Nanophysics: Nanoelectronics and Nanophotonics. CRC Press. pp. 13–1, 13–4. ISBN   9781420075519.
  65. 1 2 3 4 Bassett, Ross Knox (2007). To the Digital Age: Research Labs, Start-up Companies, and the Rise of MOS Technology. Johns Hopkins University Press. p. 328. ISBN   9780801886393.
  66. 1 2 The Industrial Reorganization Act: The communications industry. U.S. Government Printing Office. 1973. p. 1475.
  67. Atalla, M.; Kahng, D. (November 1962). "A new "Hot electron" triode structure with semiconductor-metal emitter". IRE Transactions on Electron Devices. 9 (6): 507–508. doi:10.1109/T-ED.1962.15048. ISSN   0096-2430.
  68. Kasper, E. (2018). Silicon-Molecular Beam Epitaxy. CRC Press. ISBN   9781351093514.
  69. 1 2 House, Charles H.; Price, Raymond L. (2009). The HP Phenomenon: Innovation and Business Transformation. Stanford University Press. pp. 110–1. ISBN   9780804772617.
  70. 1 2 Siegel, Peter H.; Kerr, Anthony R.; Hwang, Wei (March 1984). NASA Technical Paper 2287: Topics in the Optimization of Millimeter-Wave Mixers (PDF). NASA. pp. 12–13.
  71. 1 2 Button, Kenneth J. (1982). Infrared and Millimeter Waves V6: Systems and Components. Elsevier. p. 214. ISBN   9780323150590.
  72. Anand, Y. (2013). "Microwave Schottky Barrier Diodes". Metal-Semiconductor Schottky Barrier Junctions and Their Applications. Springer Science & Business Media. p. 220. ISBN   9781468446555.
  73. Archer, R. J.; Atalla, M. M. (January 1963). "Metals Contacts on Cleaved Silicon Surfaces". Annals of the New York Academy of Sciences. 101 (3): 697–708. doi:10.1111/j.1749-6632.1963.tb54926.x. ISSN   1749-6632.
  74. 1 2 Borden, Howard C.; Pighini, Gerald P. (February 1969). "Solid-State Displays" (PDF). Hewlett-Packard Journal : 2–12.
  75. Kramer, Bernhard (2003). Advances in Solid State Physics. Springer Science & Business Media. p. 40. ISBN   9783540401506.
  76. "Hewlett-Packard 5082-7000". The Vintage Technology Association. Retrieved August 15, 2019.
  77. Annual Report (PDF). Fairchild Camera and Instrument Corporation. 1969. p. 6.
  78. "Solid State Technology". Solid State Technology. Cowan Publishing Corporation. 15: 79. Dr. Atalla was general manager of the Microwave & Optoelectronics division from its inception in May 1969 until November 1971 when it was incorporated into the Semiconductor Components Group.
  79. "Laser Focus with Fiberoptic Communications". Laser Focus with Fiberoptic Communications. Advanced Technology Publication. 7: 28. 1971. Its chief, John Atalla — Greene's predecessor at Hewlett-Packard — sees early applications for LEDs in small displays, principally for indicator lights. Because of their compatibility with integrated circuits, these light emitters can be valuable in fault detection. “Reliability has already been demonstrated beyond any doubt,” Atalla continues. “No special power supplies are required. Design takes no time, you just put the diode in. So introduction becomes strictly an economic question." Bright Outlook for Optical Readers Atalla is particularly sanguine about applications of diodes in high-volume optical readers.
  80. 1 2 3 Langford, Susan (2013). "ATM Cash-out Attacks" (PDF). Hewlett Packard Enterprise . Hewlett-Packard . Retrieved August 21, 2019.
  81. 1 2 3 "The Economic Impacts of NIST's Data Encryption Standard (DES) Program" (PDF). National Institute of Standards and Technology . United States Department of Commerce. October 2001. Retrieved August 21, 2019.
  82. "Computer History Museum" . Retrieved October 2, 2013.
  83. Stiennon, Richard (June 17, 2014). "Key Management a Fast Growing Space". SecurityCurrent. IT-Harvest. Retrieved August 21, 2019.
  84. 1 2 3 Bátiz-Lazo, Bernardo (2018). Cash and Dash: How ATMs and Computers Changed Banking. Oxford University Press. pp. 284 & 311. ISBN   9780191085574.
  85. 1 2 "ID System Designed as NCR 270 Upgrade". Computerworld . IDG Enterprise. 12 (7): 49. February 13, 1978.
  86. 1 2 "Four Products for On-Line Transactions Unveiled". Computerworld . IDG Enterprise. 10 (4): 3. January 26, 1976.
  87. Rupp, Martin (August 16, 2019). "The Benefits of the Atalla Key Block". Utimaco . Retrieved September 10, 2019.
  88. Konheim, Alan G. (April 1, 2016). "Automated teller machines: their history and authentication protocols". Journal of Cryptographic Engineering. 6 (1): 1–29. doi:10.1007/s13389-015-0104-3. ISSN   2190-8516.
  89. Burkey, Darren (May 2018). "Data Security Overview" (PDF). Micro Focus . Retrieved August 21, 2019.
  90. Grant, Gail L. (1998). Understanding Digital Signatures: Establishing Trust Over the Internet and Other Networks. McGraw-Hill. p. 163. ISBN   9780070125544. In fact, an estimated 70 percent of all banking ATM transactions in the USA are routed through specialized Atalla hardware security modules.
  91. 1 2 3 "Security guru tackles Net: Father of PIN `unretires' to launch TriStrata". The Business Journals . American City Business Journals. May 2, 1999. Retrieved July 23, 2019.
  92. "Portfolio Overview for Payment & GP HSMs" (PDF). Utimaco . Retrieved July 22, 2019.
  93. "Tristrata Security: Private Company Information". . Bloomberg L.P. Retrieved July 23, 2019.
  94. Atalla, Martin M. "Social Security Death Index". genealogybank. Retrieved January 22, 2015.
  95. Calhoun, Dave; Lustig, Lawrence K. (1976). 1977 Yearbook of science and the future. Encyclopaedia Britannica. p. 418. ISBN   9780852293195. Three scientists were named recipients of the Franklin lnstitute's Stuart Ballantine Medal in 1975 [...] Martin M. Atalla, president of Atalla Technovations in California, and Dawon Kahng of Bell Laboratories were chosen "for their contributions to semiconductor silicon-silicon dioxide technology, and for the development of the MOS insulated gate, field-effect transistor.
  96. "Martin Mohamed Atalla". Franklin Institute Awards . The Franklin Institute. January 14, 2014. Retrieved August 23, 2019.
  97. "Milestones:List of IEEE Milestones". Institute of Electrical and Electronics Engineers . Retrieved July 25, 2019.
  98. "Dr. Martin (John) M. Atalla". IT Honor Roll. IT History Society. December 21, 2015. Retrieved July 29, 2019.
  99. Lindley, David (May 15, 2015). "Focus: Landmarks—Accidental Discovery Leads to Calibration Standard". Physics . 8.
  100. Williams, J. B. (2017). The Electronics Revolution: Inventing the Future. Springer. pp. 245 & 249. ISBN   9783319490885.
  101. Woodall, Jerry M. (2010). Fundamentals of III-V Semiconductor MOSFETs. Springer Science & Business Media. ISBN   9781441915474.
  102. "Advanced information on the Nobel Prize in Physics 2000" (PDF). Nobel Prize . June 2018. Retrieved August 17, 2019.