Multigate device

Last updated
A dual-gate MOSFET and schematic symbol Transistor DG MOSFET 1.png
A dual-gate MOSFET and schematic symbol

A multigate device, multi-gate MOSFET or multi-gate field-effect transistor (MuGFET) refers to a MOSFET (metal–oxide–semiconductor field-effect transistor) that incorporates more than one gate into a single device. The multiple gates may be controlled by a single gate electrode, wherein the multiple gate surfaces act electrically as a single gate, or by independent gate electrodes. A multigate device employing independent gate electrodes is sometimes called a multiple-independent-gate field-effect transistor (MIGFET). The most widely used multi-gate devices are the FinFET (fin field-effect transistor) and the GAAFET (gate-all-around field-effect transistor), which are non-planar transistors, or 3D transistors.

MOSFET Transistor used for amplifying or switching electronic signals.

The metal–oxide–semiconductor field-effect transistor (MOSFET, MOS-FET, or MOS FET), also known as the metal–oxide–silicon transistor (MOS transistor, or MOS), is a type of field-effect transistor that is fabricated by the controlled oxidation of a semiconductor, typically silicon. It has an insulated gate, whose voltage determines the conductivity of the device. This ability to change conductivity with the amount of applied voltage can be used for amplifying or switching electronic signals. The MOSFET is the basic building block of modern electronics. Since its invention by Mohamed M. Atalla and Dawon Kahng at Bell Labs in November 1959, the MOSFET has become the most widely manufactured device in history, with an estimated total of 13 sextillion (1.3 × 1022) MOS transistors manufactured between 1960 and 2018.

FinFET semiconductor manufacturing process

A fin field-effect transistor (FinFET) is a multigate device, a MOSFET built on a substrate where the gate is placed on two, three, or four sides of the channel or wrapped around the channel, forming a double gate structure. These devices have been given the generic name "finfets" because the source/drain region forms fins on the silicon surface. The FinFET devices have significantly faster switching times and higher current density than planar CMOS technology.

Contents

Multi-gate transistors are one of the several strategies being developed by MOS semiconductor manufacturers to create ever-smaller microprocessors and memory cells, colloquially referred to as extending Moore's law. [1] Development efforts into multigate transistors have been reported by the Electrotechnical Laboratory, Toshiba, Grenoble INP, Hitachi, IBM, TSMC, UC Berkeley, Infineon Technologies, Intel, AMD, Samsung Electronics, KAIST, Freescale Semiconductor, and others, and the ITRS predicted correctly that such devices will be the cornerstone of sub-32 nm technologies. [2] The primary roadblock to widespread implementation is manufacturability, as both planar and non-planar designs present significant challenges, especially with respect to lithography and patterning. Other complementary strategies for device scaling include channel strain engineering, silicon-on-insulator-based technologies, and high-κ/metal gate materials.

Transistor Basic electronics component

A transistor is a semiconductor device used to amplify or switch electronic signals and electrical power. It is composed of semiconductor material usually with at least three terminals for connection to an external circuit. A voltage or current applied to one pair of the transistor's terminals controls the current through another pair of terminals. Because the controlled (output) power can be higher than the controlling (input) power, a transistor can amplify a signal. Today, some transistors are packaged individually, but many more are found embedded in integrated circuits.

A semiconductor material has an electrical conductivity value falling between that of a conductor, such as metallic copper, and an insulator, such as glass. Its resistance decreases as its temperature increases, which is the behaviour opposite to that of a metal. Its conducting properties may be altered in useful ways by the deliberate, controlled introduction of impurities ("doping") into the crystal structure. Where two differently-doped regions exist in the same crystal, a semiconductor junction is created. The behavior of charge carriers which include electrons, ions and electron holes at these junctions is the basis of diodes, transistors and all modern electronics. Some examples of semiconductors are silicon, germanium, gallium arsenide, and elements near the so-called "metalloid staircase" on the periodic table. After silicon, gallium arsenide is the second most common semiconductor and is used in laser diodes, solar cells, microwave-frequency integrated circuits and others. Silicon is a critical element for fabricating most electronic circuits.

Memory cell (computing) part of computer memory

The memory cell is the fundamental building block of computer memory. The memory cell is an electronic circuit that stores one bit of binary information and it must be set to store a logic 1 and reset to store a logic 0. Its value is maintained/stored until it is changed by the set/reset process. The value in the memory cell can be accessed by reading it.

Dual-gate MOSFETs are commonly used in very high frequency (VHF) mixers and in sensitive VHF front-end amplifiers. They are available from manufacturers such as Motorola, NXP Semiconductors, and Hitachi. [3] [4] [5]

Very high frequency The range 30-300 MHz of the electromagnetic spectrum

Very high frequency (VHF) is the ITU designation for the range of radio frequency electromagnetic waves from 30 to 300 megahertz (MHz), with corresponding wavelengths of ten meters to one meter. Frequencies immediately below VHF are denoted high frequency (HF), and the next higher frequencies are known as ultra high frequency (UHF).

Motorola, Inc. was an American multinational telecommunications company founded on September 25, 1928, based in Schaumburg, Illinois. After having lost $4.3 billion from 2007 to 2009, the company was divided into two independent public companies, Motorola Mobility and Motorola Solutions on January 4, 2011. Motorola Solutions is generally considered to be the direct successor to Motorola, as the reorganization was structured with Motorola Mobility being spun off. Motorola Mobility was sold to Google in 2012, and acquired by Lenovo in 2014.

NXP Semiconductors company

NXP Semiconductors N.V. is a Dutch global semiconductor manufacturer headquartered in Eindhoven, Netherlands. The company employs approximately 31,000 people in more than 35 countries, including 11,200 engineers in 33 countries. NXP reported revenue of $6.1 billion in 2015, including one month of revenue contribution from recently merged Freescale Semiconductor.

Types

Several multigate models Multigate models.png
Several multigate models

Dozens of multigate transistor variants may be found in the literature. In general, these variants may be differentiated and classified in terms of architecture (planar vs. non-planar design) and the number of channels/gates (2, 3, or 4).

Planar double-gate MOSFET (DGMOS)

A planar double-gate MOSFET (DGMOS) employs conventional planar (layer-by-layer) manufacturing processes to create double-gate MOSFET (metal-oxide-semiconductor field-effect transistor) devices, avoiding more stringent lithography requirements associated with non-planar, vertical transistor structures. In planar double-gate transistors the drain–source channel is sandwiched between two independently fabricated gate/gate-oxide stacks. The primary challenge in fabricating such structures is achieving satisfactory self-alignment between the upper and lower gates. [6]

Planar process

The planar process is a manufacturing process used in the semiconductor industry to build individual components of a transistor, and in turn, connect those transistors together. It is the primary process by which silicon integrated circuit chips are built. The process utilizes the surface passivation and thermal oxidation methods.

Lithography Printing process

Lithography is a method of printing originally based on the immiscibility of oil and water. The printing is from a stone or a metal plate with a smooth surface. It was invented in 1796 by German author and actor Alois Senefelder as a cheap method of publishing theatrical works. Lithography can be used to print text or artwork onto paper or other suitable material.

20 years after the MOSFET was first demonstrated by Mohamed Atalla and Dawon Kahng of Bell Labs in 1960, [7] the concept of a double-gate MOSFET was proposed by Toshihiro Sekigawa of the Electrotechnical Laboratory (ETL) in a 1980 patent describing the planar XMOS transistor. [8] Sekigawa successfully fabricated the XMOS transistor with Yutaka Hayashi at the ETL in 1984. They demonstrated that short-channel effects can be significantly reduced by sandwiching a fully depleted silicon-on-insulator (SOI) device between two gate electrodes connected together. [9] [10]

Mohamed Atalla mechanical engineer

Mohamed Mohamed Atalla was an Egyptian-American engineer, physical chemist, cryptographer, inventor, and entrepreneur. His pioneering work in semiconductor technology laid the foundations for modern electronics. Most importantly, his invention of the MOSFET in 1959, along with his earlier surface passivation and thermal oxidation processes, revolutionized the electronics industry. He is also known as the founder of the data security company Atalla Corporation, which he founded after he invented the first hardware security module (HSM) in 1972. He received the Stuart Ballantine Medal and was inducted into the National Inventors Hall of Fame for his important contributions to semiconductor technology as well as data security.

Dawon Kahng South Korean engineer

Dawon Kahng was a Korean-American electrical engineer and inventor, known for his work in solid-state electronics. He is best known for inventing the MOSFET, also known as the MOS transistor, with Mohamed Atalla in 1959. Atalla and Kahng developed both the PMOS and NMOS processes for MOSFET semiconductor device fabrication. The MOSFET is the most widely used type of transistor, and the basic element in most modern electronic equipment.

Bell Labs Research and scientific development company

Nokia Bell Labs is an industrial research and scientific development company owned by Finnish company Nokia. With headquarters located in Murray Hill, New Jersey, the company operates several laboratories in the United States and around the world. Bell Labs has its origins in the complex past of the Bell System.

The ETL demonstration inspired Grenoble INP researchers including Francis Balestra, Sorin Cristoloveanu, M. Benachir and Tarek Elewa to fabricate a double-gate MOSFET using silicon thin film in 1987. The double-gate control of SOI transistors was used to force the whole silicon film (interface layers and volume) in strong inversion (called “Volume-Inversion MOSFET”) or strong accumulation (called “Volume-Accumulation MOSFET”). This method of transistor operation, demonstrating the electrostatic properties and scalability of multigate devices, offered strong device performance, particularly substantial increases in subthreshold slope, transconductance, and drain current. A simulation program and experiments on SIMOX structures was used to study this device. [11]

Silicon Chemical element with atomic number 14

Silicon is a chemical element with the symbol Si and atomic number 14. It is a hard and brittle crystalline solid with a blue-grey metallic lustre; and it is a tetravalent metalloid and semiconductor. It is a member of group 14 in the periodic table: carbon is above it; and germanium, tin, and lead are below it. It is relatively unreactive. Because of its high chemical affinity for oxygen, it was not until 1823 that Jöns Jakob Berzelius was first able to prepare it and characterize it in pure form. Its melting and boiling points of 1414 °C and 3265 °C respectively are the second-highest among all the metalloids and nonmetals, being only surpassed by boron. Silicon is the eighth most common element in the universe by mass, but very rarely occurs as the pure element in the Earth's crust. It is most widely distributed in dusts, sands, planetoids, and planets as various forms of silicon dioxide (silica) or silicates. More than 90% of the Earth's crust is composed of silicate minerals, making silicon the second most abundant element in the Earth's crust after oxygen.

A thin film is a layer of material ranging from fractions of a nanometer (monolayer) to several micrometers in thickness. The controlled synthesis of materials as thin films is a fundamental step in many applications. A familiar example is the household mirror, which typically has a thin metal coating on the back of a sheet of glass to form a reflective interface. The process of silvering was once commonly used to produce mirrors, while more recently the metal layer is deposited using techniques such as sputtering. Advances in thin film deposition techniques during the 20th century have enabled a wide range of technological breakthroughs in areas such as magnetic recording media, electronic semiconductor devices, LEDs, optical coatings, hard coatings on cutting tools, and for both energy generation and storage. It is also being applied to pharmaceuticals, via thin-film drug delivery. A stack of thin films is called a multilayer.

The subthreshold slope is a feature of a MOSFET's current–voltage characteristic.

Sekigawa fabricated an XMOS device with 2 µm gate length in 1987. [8] In 1988, an IBM research team led by Bijan Davari fabricated 180 nm to 250 nm dual-gate CMOS devices. [12] [13] In 1992, Sekigawa fabricated a 380 nm XMOS device. In 1998, E. Suzuki fabricated a 40 nm XMOS device. The focus of DGMOS research and development (R&D) subsequently shifted away from planar DGMOS technology, towards non-planar FinFET (fin field-effect transistor) and GAAFET (gate-all-around field-effect transistor) technologies. [8]

FlexFET

FlexFET is a planar, independently double-gated transistor with a damascene metal top gate MOSFET and an implanted JFET bottom gate that are self-aligned in a gate trench. This device is highly scalable due to its sub-lithographic channel length; non-implanted ultra-shallow source and drain extensions; non-epi raised source and drain regions; and gate-last flow. FlexFET is a true double-gate transistor in that (1) both the top and bottom gates provide transistor operation, and (2) the operation of the gates is coupled such that the top gate operation affects the bottom gate operation and vice versa. [14] Flexfet was developed and is manufactured by American Semiconductor, Inc.

FinFET

A double-gate FinFET device Doublegate FinFET.PNG
A double-gate FinFET device
An SOI FinFET MOSFET FINFET MOSFET.png
An SOI FinFET MOSFET
The NVIDIA GTX 1070, which uses a 16 nm Pascal chip manufactured by TSMC NVIDIA-GTX-1070-FoundersEdition-FL.jpg
The NVIDIA GTX 1070, which uses a 16 nm Pascal chip manufactured by TSMC

FinFET (fin field-effect transistor) is a type of non-planar transistor, or "3D" transistor (not to be confused with 3D microchips). [15] The FinFET is a variation on traditional MOSFETs distinguished by the presence of a thin silicon "fin" inversion channel on top of the substrate, allowing the gate to make two points of contact: the left and right sides of the fin. The thickness of the fin (measured in the direction from source to drain) determines the effective channel length of the device. The wrap-around gate structure provides a better electrical control over the channel and thus helps in reducing the leakage current and overcoming other short-channel effects.

The first finfet transistor type was called a "Depleted Lean-channel Transistor" or "DELTA" transistor, which was first fabricated by Hitachi Central Research Laboratory's Digh Hisamoto, Toru Kaga, Yoshifumi Kawamoto and Eiji Takeda in 1989. [16] [9] [17] [18] In the late 1990s, Digh Hisamoto began collaborating with an international team of researchers on further developing DELTA technology, including TSMC's Chenming Hu and a UC Berkeley research team including Tsu-Jae King Liu, Jeffrey Bokor, Xuejue Huang, Leland Chang, Nick Lindert, S. Ahmed, Cyrus Tabery, Yang‐Kyu Choi, Pushkar Ranade, Sriram Balasubramanian, A. Agarwal and M. Ameen. In 1998, the team developed the first N-channel FinFETs and successfully fabricated devices down to a 17 nm process. The following year, they developed the first P-channel FinFETs. [19] They coined the term "FinFET" (fin field-effect transistor) in a December 2000 paper. [20]

In current usage the term FinFET has a less precise definition. Among microprocessor manufacturers, AMD, IBM, and Freescale describe their double-gate development efforts as FinFET [21] development, whereas Intel avoids using the term when describing their closely related tri-gate architecture. [22] In the technical literature, FinFET is used somewhat generically to describe any fin-based, multigate transistor architecture regardless of number of gates.

A 25 nm transistor operating on just 0.7  volt was demonstrated in December 2002 by TSMC (Taiwan Semiconductor Manufacturing Company). The "Omega FinFET" design is named after the similarity between the Greek letter omega (Ω) and the shape in which the gate wraps around the source/drain structure. It has a gate delay of just 0.39  picosecond (ps) for the N-type transistor and 0.88 ps for the P-type.

In 2004, Samsung Electronics demonstrated a "Bulk FinFET" design, which made it possible to mass-produce FinFET devices. They demonstrated dynamic random-access memory (DRAM) manufactured with a 90 nm Bulk FinFET process. [19] In 2006, a team of Korean researchers from the Korea Advanced Institute of Science and Technology (KAIST) and the National Nano Fab Center developed a 3 nm transistor, the world's smallest nanoelectronic device, based on FinFET technology. [23] [24] In 2011, Rice University researchers Masoud Rostami and Kartik Mohanram demonstrated that FINFETs can have two electrically independent gates, which gives circuit designers more flexibility to design with efficient, low-power gates. [25]

In 2012, Intel started using FinFETs for its future commercial devices. Leaks suggest that Intel's FinFET has an unusual shape of a triangle rather than rectangle, and it is speculated that this might be either because a triangle has a higher structural strength and can be more reliably manufactured or because a triangular prism has a higher area-to-volume ratio than a rectangular prism, thus increasing switching performance. [26]

In September 2012, GlobalFoundries announced plans to offer a 14-nanometer process technology featuring FinFET three-dimensional transistors in 2014. [27] The next month, the rival company TSMC announced start early or "risk" production of 16 nm FinFETS in November 2013. [28]

In March 2014, TSMC announced that it is nearing implementation of several 16 nm FinFETs die-on wafers manufacturing processes: [29]

AMD released GPUs using their Polaris chip architecture and made on 14 nm FinFET in June 2016. [30] The company has tried to produce a design to provide a "generational jump in power efficiency" while also offering stable frame rates for graphics, gaming, virtual reality, and multimedia applications. [31]

In March 2017, Samsung and eSilicon announced the tapeout for production of a 14 nm finFET ASIC in a 2.5D package. [32] [33]

Tri-gate transistor

A tri-gate transistor, also known as a triple-gate transistor, is a type of MOSFET with a gate on three of its sides. [34] A triple-gate transistor was first demonstrated in 1987, by a Toshiba research team including K. Hieda, Fumio Horiguchi and H. Watanabe. They realized that the fully depleted (FD) body of a narrow bulk Si-based transistor helped improve switching due to a lessened body-bias effect. [35] [36] In 1992, a triple-gate MOSFET was demonstrated by IBM researcher Hon-Sum Wong. [37]

Tri-gate fabrication is used by Intel for the non-planar transistor architecture used in Ivy Bridge, Haswell and Skylake processors. These transistors employ a single gate stacked on top of two vertical gates (a single gate wrapped over three sides of the channel), allowing essentially three times the surface area for electrons to travel. Intel reports that their tri-gate transistors reduce leakage and consume far less power than current transistors. This allows up to 37% higher speed or a power consumption at under 50% of the previous type of transistors used by Intel. [38] [39]

Intel explains: "The additional control enables as much transistor current flowing as possible when the transistor is in the 'on' state (for performance), and as close to zero as possible when it is in the 'off' state (to minimize power), and enables the transistor to switch very quickly between the two states (again, for performance)." [40] Intel has stated that all products after Sandy Bridge will be based upon this design.

Intel announced this technology in September 2002. [41] Intel announced "triple-gate transistors" which maximize "transistor switching performance and decreases power-wasting leakage". A year later, in September 2003, AMD announced that it was working on similar technology at the International Conference on Solid State Devices and Materials. [42] [43] No further announcements of this technology were made until Intel's announcement in May 2011, although it was stated at IDF 2011, that they demonstrated a working SRAM chip based on this technology at IDF 2009. [44]

On April 23, 2012, Intel released a new line of CPUs, termed Ivy Bridge, which feature tri-gate transistors. [45] [46] Intel has been working on its tri-gate architecture since 2002, but it took until 2011 to work out mass-production issues. The new style of transistor was described on May 4, 2011, in San Francisco. [47] Intel factories are expected to make upgrades over 2011 and 2012 to be able to manufacture the Ivy Bridge CPUs. [48] As well as being used in Intel's Ivy Bridge chips for desktop PCs, the new transistors will also be used in Intel's Atom chips for low-powered devices. [47]

The term tri-gate is sometimes used generically to denote any multigate FET with three effective gates or channels.

Gate-all-around FET (GAAFET)

A gate-all-around (GAA) FET, abbreviated GAAFET, and also known as a surrounding-gate transistor (SGT), [49] [50] is similar in concept to a FinFET except that the gate material surrounds the channel region on all sides. Depending on design, gate-all-around FETs can have two or four effective gates. Gate-all-around FETs have been successfully characterized both theoretically and experimentally. [51] [52] They have also been successfully etched onto InGaAs nanowires, which have a higher electron mobility than silicon. [53]

A gate-all-around (GAA) MOSFET was first demonstrated in 1988, by a Toshiba research team including Fujio Masuoka, H. Takato, and K. Sunouchi, who demonstrated a vertical nanowire GAAFET which they called a "surrounding gate transistor" (SGT). [54] [55] [50] Masuoka, best known as the inventor of flash memory, later left Toshiba and founded Unisantis Electronics in 2004 to research surrounding-gate technology along with Tohoku University. [56] In 2006, a team of Korean researchers from the Korea Advanced Institute of Science and Technology (KAIST) and the National Nano Fab Center developed a 3 nm transistor, the world's smallest nanoelectronic device, based on gate-all-around (GAA) FinFET technology. [57] [58]

Multi-bridge channel (MBC) FET

A multi-bridge channel FET (MBCFET) is similar to a GAAFET except for the use of nanosheets instead of nanowires. [59]

Industry need

Planar transistors have been the core of integrated circuits for several decades, during which the size of the individual transistors has steadily decreased. As the size decreases, planar transistors increasingly suffer from the undesirable short-channel effect, especially "off-state" leakage current, which increases the idle power required by the device. [60]

In a multigate device, the channel is surrounded by several gates on multiple surfaces. Thus it provides better electrical control over the channel, allowing more effective suppression of "off-state" leakage current. Multiple gates also allow enhanced current in the "on" state, also known as drive current. Multigate transistors also provide a better analog performance due to a higher intrinsic gain and lower channel length modulation. [61] These advantages translate to lower power consumption and enhanced device performance. Nonplanar devices are also more compact than conventional planar transistors, enabling higher transistor density which translates to smaller overall microelectronics.

Integration challenges

The primary challenges to integrating nonplanar multigate devices into conventional semiconductor manufacturing processes include:

Compact modeling

Different FinFET structures, which can be modeled by BSIM-CMG Different FinFET structures which can be modeled by BSIM-CMG.png
Different FinFET structures, which can be modeled by BSIM-CMG

BSIMCMG106.0.0, [62] officially released on March 1, 2012 by UC Berkeley BSIM Group, is the first standard model for FinFETs. BSIM-CMG is implemented in Verilog-A. Physical surface-potential-based formulations are derived for both intrinsic and extrinsic models with finite body doping. The surface potentials at the source and drain ends are solved analytically with poly-depletion and quantum mechanical effects. The effect of finite body doping is captured through a perturbation approach. The analytic surface potential solution agrees closely with the 2-D device simulation results. If the channel doping concentration is low enough to be neglected, computational efficiency can be further improved by a setting a specific flag (COREMOD = 1).

All of the important multi-gate (MG) transistor behavior is captured by this model. Volume inversion is included in the solution of Poisson’s equation, hence the subsequent I–V formulation automatically captures the volume-inversion effect. Analysis of electrostatic potential in the body of MG MOSFETs provided a model equation for short-channel effects (SCE). The extra electrostatic control from the end gates (top/bottom gates) (triple or quadruple-gate) is also captured in the short-channel model.

See also

Related Research Articles

Moores law Heuristic law stating that the number of transistors on a integrated circuit doubles every two years

Moore's law is the observation that the number of transistors in a dense integrated circuit doubles about every two years. The observation is named after Gordon Moore, the co-founder of Fairchild Semiconductor and CEO of Intel, whose 1965 paper described a doubling every year in the number of components per integrated circuit, and projected this rate of growth would continue for at least another decade. In 1975, looking forward to the next decade, he revised the forecast to doubling every two years, a compound annual growth rate (CAGR) of 41.4%.

CMOS Technology for constructing integrated circuits

Complementary metal–oxide–semiconductor (CMOS), also known as complementary-symmetry metal–oxide–semiconductor (COS-MOS), is a type of MOSFET fabrication process that uses complementary and symmetrical pairs of p-type and n-type MOSFETs for logic functions. CMOS technology is used for constructing integrated circuits (ICs), including microprocessors, microcontrollers, memory chips, and other digital logic circuits. CMOS technology is also used for analog circuits such as image sensors, data converters, RF circuits, and highly integrated transceivers for many types of communication.

In semiconductor manufacturing, Silicon on insulator (SOI) technology is fabrication of silicon semiconductor devices in a layered silicon–insulator–silicon substrate, to reduce parasitic capacitance within the device, thereby improving performance. SOI-based devices differ from conventional silicon-built devices in that the silicon junction is above an electrical insulator, typically silicon dioxide or sapphire. The choice of insulator depends largely on intended application, with sapphire being used for high-performance radio frequency (RF) and radiation-sensitive applications, and silicon dioxide for diminished short-channel effects in other microelectronics devices. The insulating layer and topmost silicon layer also vary widely with application.

The 90 nanometer (90 nm) process refers to the level of metal-oxide-semiconductor (MOS) process technology that was commercialized by the 2003–2005 timeframe, by leading semiconductor companies like Toshiba, Sony, Samsung, IBM, Intel, Fujitsu, TSMC, Elpida, AMD, Infineon, Texas Instruments and Micron Technology.

SONOS, short for "silicon–oxide–nitride–oxide–silicon", more precisely, "polycrystalline silicon"—"silicon dioxide"—"silicon nitride"—"siicon dioxide"—"silicon", is a cross sectional structure of MOSFET, realized by P.C.Y. Chen in 1977. This structure is often used for non-volatile memories, such as EEPROM and flash memories. It is sometimes used for TFT LCD displays. It is one of CTF (charge trap flash) variants. It is distinguished from traditional non-volatile memory structures by the use of silicon nitride (Si3N4 or Si9N10) instead of "polysilicon-based FG (floating-gate)" for the charge storage material. A further variant is "SHINOS" ("silicon"—"hi-k"—"nitride"—"oxide"—"silicon"), which is substituted top oxide layer with high-κ material. Another advanced variant is "MONOS" ("metal–oxide–nitride–oxide–silicon"). Companies offering SONOS-based products include Cypress Semiconductor, Macronix, Toshiba, United Microelectronics Corporation and Floadia.

The 22 nanometer (22 nm) node is the process step following the 32 nm in CMOS semiconductor device fabrication. The typical half-pitch for a memory cell using the process is around 22 nm. It was first demonstrated by semiconductor companies for use in RAM memory in 2008. In 2010, Toshiba began shipping 24 nm flash memory chips, and Samsung Electronics began mass-producing 20 nm flash memory chips. The first consumer-level CPU deliveries using a 22 nm process started in April 2012.

The 14 nanometer technology node is the successor to the 22 nm/(20 nm) node. The 14 nm was so named by the International Technology Roadmap for Semiconductors (ITRS). One nanometer (nm) is one billionth of a meter. Until about 2011, the node following 22 nm was expected to be 16 nm. All 14 nm nodes use FinFET technology, a type of multi-gate MOSFET technology that is an evolution of silicon CMOS technology.

Nanoelectronics refers to the use of nanotechnology in electronic components. The term covers a diverse set of devices and materials, with the common characteristic that they are so small that inter-atomic interactions and quantum mechanical properties need to be studied extensively. Some of these candidates include: hybrid molecular/semiconductor electronics, one-dimensional nanotubes/nanowires or advanced molecular electronics.

Ghavam G. Shahidi is an Iranian-American electrical engineer and IBM Fellow. He is the director of Silicon Technology at the IBM Thomas J Watson Research Center. He is best known for his pioneering work in silicon-on-insulator (SOI) complementary metal–oxide–semiconductor (CMOS) technology since the late 1980s.

Nanocircuits are electrical circuits operating on the nanometer scale. This is well into the quantum realm, where quantum mechanical effects become very important. One nanometer is equal to 10−9 meters or a row of 10 hydrogen atoms. With such progressively smaller circuits, more can be fitted on a computer chip. This allows faster and more complex functions using less power. Nanocircuits are composed of three different fundamental components. These are transistors, interconnections, and architecture, all fabricated on the nanometer scale.

LDMOS is a planar double-diffused MOSFET used in microwave/RF power amplifiers as well as audio power amplifiers. These transistors are often fabricated on p/p+ silicon epitaxial layers. The fabrication of LDMOS devices mostly involves various ion-implantation and subsequent annealing cycles. As an example, The drift region of this power MOSFET is fabricated using up to three ion implantation sequences in order to achieve the appropriate doping profile needed to withstand high electric fields.

In semiconductor fabrication, the International Technology Roadmap for Semiconductors (ITRS) defines the 10 nanometer (10 nm) node as the technology node following the 14 nm node. "10 nm class" denotes chips made using process technologies between 10 and 20 nanometers.

Per the International Technology Roadmap for Semiconductors, the 45 nanometer (45 nm) technology node should refer to the average half-pitch of a memory cell manufactured at around the 2007–2008 time frame.

In semiconductor manufacturing, the International Roadmap for Devices and Systems defines the 5 nanometer (5 nm) node as the metal-oxide-semiconductor (MOS) technology node following the 7 nm node. As of 2019, Samsung Electronics and TSMC have begun commercial production of 5 nm nodes.

Field-effect transistor transistor that uses an electric field to control the electrical behaviour of the device. FETs are also known as unipolar transistors since they involve single-carrier-type operation

The field-effect transistor (FET) is an electronic device which uses an electric field to control the flow of current. FETs are devices with three terminals: source, gate, and drain. FETs control the flow of current by the application of a voltage to the gate, which in turn alters the conductivity between the drain and source.

In semiconductor manufacturing, 3 nanometer, usually abbreviated 3 nm, is the next die shrink after the 5 nanometer node. As of 2019, Samsung and TSMC have announced plans to put a 3nm semiconductor node into commercial production. It is based on GAAFET technology, a type of multi-gate MOSFET technology.

References

  1. Risch, L. "Pushing CMOS Beyond the Roadmap", Proceedings of ESSCIRC, 2005, p. 63.
  2. Table39b Archived September 27, 2007, at the Wayback Machine
  3. "3N201 (Motorola) - Dual Gate Mosfet Vhf Amplifier". Doc.chipfind.ru. Retrieved 2014-03-10.
  4. "3SK45 datasheet pdf datenblatt - Hitachi Semiconductor - SILICON N-CHANNEL DUAL GATE MOSFET". Alldatasheet.com. Retrieved 2014-03-10.
  5. "BF1217WR" (PDF). Retrieved 2015-05-10.
  6. Wong, H-S.; Chan, K.; Taur, Y. (December 10, 1997). Self-aligned (top and bottom) double-gate MOSFET with a 25 nm thick silicon channel. Electron Devices Meeting, 1997. IEDM '97. Technical Digest. pp. 427–430. doi:10.1109/IEDM.1997.650416. ISBN   978-0-7803-4100-5. ISSN   0163-1918.
  7. "1960: Metal Oxide Semiconductor (MOS) Transistor Demonstrated". The Silicon Engine. Computer History Museum . Retrieved 25 September 2019.
  8. 1 2 3 Koike, Hanpei; Nakagawa, Tadashi; Sekigawa, Toshiro; Suzuki, E.; Tsutsumi, Toshiyuki (23 February 2003). "Primary Consideration on Compact Modeling of DG MOSFETs with Four-terminal Operation Mode" (PDF). TechConnect Briefs. 2 (2003): 330–333.
  9. 1 2 Colinge, J.P. (2008). FinFETs and Other Multi-Gate Transistors. Springer Science & Business Media. pp. 11 & 39. ISBN   9780387717517.
  10. Sekigawa, Toshihiro; Hayashi, Yutaka (August 1984). "Calculated threshold-voltage characteristics of an XMOS transistor having an additional bottom gate". Solid-State Electronics. 27 (8): 827–828. doi:10.1016/0038-1101(84)90036-4. ISSN   0038-1101.
  11. Balestra, Francis; Cristoloveanu, Sorin; Benachir, M.; Elewa, Tarek; Brini, Jean (September 1987). "Double-gate silicon-on-insulator transistor with volume inversion: A new device with greatly enhanced performance". IEEE Electron Device Letters. 8 (9): 410–412. doi:10.1109/EDL.1987.26677. ISSN   0741-3106.
  12. Davari, Bijan; Chang, Wen-Hsing; Wordeman, Matthew R.; Oh, C. S.; Taur, Yuan; Petrillo, Karen E.; Rodriguez, M. D. (December 1988). "A high performance 0.25 mu m CMOS technology". Technical Digest., International Electron Devices Meeting: 56–59. doi:10.1109/IEDM.1988.32749.
  13. Davari, Bijan; Wong, C. Y.; Sun, Jack Yuan-Chen; Taur, Yuan (December 1988). "Doping of n/sup +/ and p/sup +/ polysilicon in a dual-gate CMOS process". Technical Digest., International Electron Devices Meeting: 238–241. doi:10.1109/IEDM.1988.32800.
  14. Wilson, D.; Hayhurst, R.; Oblea, A.; Parke, S.; Hackler, D. "Flexfet: Independently-Double-Gated SOI Transistor With Variable Vt and 0.5V Operation Achieving Near Ideal Subthreshold Slope" SOI Conference, 2007 IEEE International Archived April 3, 2015, at the Wayback Machine
  15. "What is Finfet?". Computer Hope . April 26, 2017. Retrieved 4 July 2019.
  16. "IEEE Andrew S. Grove Award Recipients". IEEE Andrew S. Grove Award . Institute of Electrical and Electronics Engineers . Retrieved 4 July 2019.
  17. Hisamoto, D.; Kaga, T.; Kawamoto, Y.; Takeda, E. (December 1989). "A fully depleted lean-channel transistor (DELTA)-a novel vertical ultra thin SOI MOSFET". International Technical Digest on Electron Devices Meeting: 833–836. doi:10.1109/IEDM.1989.74182.
  18. "The Breakthrough Advantage for FPGAs with Tri-Gate Technology" (PDF). Intel. 2014. Retrieved 4 July 2019.
  19. 1 2 Tsu‐Jae King, Liu (June 11, 2012). "FinFET: History, Fundamentals and Future". University of California, Berkeley . Symposium on VLSI Technology Short Course. Retrieved 9 July 2019.
  20. Hisamoto, Digh; Hu, Chenming; Bokor, J.; King, Tsu-Jae; Anderson, E.; et al. (December 2000). "FinFET-a self-aligned double-gate MOSFET scalable to 20 nm". IEEE Transactions on Electron Devices. 47 (12): 2320–2325. CiteSeerX   10.1.1.211.204 . doi:10.1109/16.887014.
  21. "AMD Newsroom". Amd.com. 2002-09-10. Archived from the original on 2010-05-13. Retrieved 2015-07-07.
  22. "Intel Silicon Technology Innovations". Intel.com. Archived from the original on September 3, 2011. Retrieved 2014-03-10.
  23. "Still Room at the Bottom.(nanometer transistor developed by Yang-kyu Choi from the Korea Advanced Institute of Science and Technology )", Nanoparticle News, 1 April 2006, archived from the original on 6 November 2012
  24. Lee, Hyunjin; et al. (2006), "Sub-5nm All-Around Gate FinFET for Ultimate Scaling", Symposium on VLSI Technology, 2006: 58–59, doi:10.1109/VLSIT.2006.1705215, ISBN   978-1-4244-0005-8
  25. Rostami, M.; Mohanram, K. (2011). "IEEE Xplore Abstract - Dual- Independent-Gate FinFETs for Low Power Logic Circuits". IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. 30 (3): 337–349. doi:10.1109/TCAD.2010.2097310.
  26. "Intel's FinFETs are less fin and more triangle". EE Times. Retrieved 2014-03-10.
  27. "Globalfoundries looks leapfrog fab rivals with new process". EE Times. Retrieved 2014-03-10.
  28. "TSMC taps ARM's V8 on road to 16 nm FinFET". EE Times. Retrieved 2014-03-10.
  29. Josephine Lien, Taipei; Steve Shen, [Monday 31 March 2014]. "TSMC likely to launch 16 nm FinFET+ process at year-end 2014, and "FinFET Turbo" later in 2015-16". DIGITIMES. Retrieved 2014-03-31.CS1 maint: uses authors parameter (link)
  30. Smith, Ryan. "The AMD Radeon RX 480 Preview: Polaris Makes Its Mainstream Mark" . Retrieved 2018-06-03.
  31. "AMD Demonstrates Revolutionary 14nm FinFET Polaris GPU Architecture". AMD. Retrieved 2016-01-04.
  32. "High-performance, high-bandwidth IP platform for Samsung 14LPP process technology". 2017-03-22.
  33. "Samsung and eSilicon Taped Out 14nm Network Processor with Rambus 28G SerDes Solution". 2017-03-22.
  34. Colinge, J.P. (2008). FinFETs and Other Multi-Gate Transistors (PDF). Springer Science & Business Media. p. 12. ISBN   9780387717517.
  35. Hieda, K.; Horiguchi, Fumio; Watanabe, H.; Sunouchi, Kazumasa; Inoue, I.; Hamamoto, Takeshi (December 1987). "New effects of trench isolated transistor using side-wall gates". 1987 International Electron Devices Meeting: 736–739. doi:10.1109/IEDM.1987.191536.
  36. Brozek, Tomasz (2017). Micro- and Nanoelectronics: Emerging Device Challenges and Solutions. CRC Press. pp. 116–7. ISBN   9781351831345.
  37. Wong, Hon-Sum (December 1992). "Gate-current injection and surface impact ionization in MOSFET's with a gate induced virtual drain". 1992 International Technical Digest on Electron Devices Meeting: 151–154. doi:10.1109/IEDM.1992.307330.
  38. Cartwright J. (2011). "Intel enters the third dimension". Nature. doi:10.1038/news.2011.274 . Retrieved 2015-05-10.
  39. Intel to Present on 22-nm Tri-gate Technology at VLSI Symposium (ElectroIQ 2012) Archived April 15, 2012, at the Wayback Machine
  40. "Below 22nm, spacers get unconventional: Interview with ASM". ELECTROIQ. Retrieved 2011-05-04.
  41. High Performance Non-Planar Tri-gate Transistor Architecture; Dr. Gerald Marcyk. Intel, 2002
  42. [ dead link ]
  43. "AMD Details Its Triple-Gate Transistors". Xbitlabs.com. Archived from the original on 2014-03-10. Retrieved 2014-03-10.
  44. "IDF 2011: Intel Looks to Take a Bite Out of ARM, AMD With 3D FinFET Tech". DailyTech. Archived from the original on 2014-03-10. Retrieved 2014-03-10.
  45. Miller, Michael J. "Intel Releases Ivy Bridge: First Processor with "Tri-Gate" Transistor". PC Magazine.
  46. "Intel Reinvents Transistors Using New 3-D Structure". Intel. Retrieved 5 April 2011.
  47. 1 2 "Transistors go 3D as Intel re-invents the microchip". Ars Technica. 5 May 2011. Retrieved 7 May 2011.
  48. Murray, Matthew (4 May 2011). "Intel's New Tri-Gate Ivy Bridge Transistors: 9 Things You Need to Know". PC Magazine. Retrieved 7 May 2011.
  49. Claeys, C.; Murota, J.; Tao, M.; Iwai, H.; Deleonibus, S. (2015). ULSI Process Integration 9. The Electrochemical Society. p. 109. ISBN   9781607686750.
  50. 1 2 Ishikawa, Fumitaro; Buyanova, Irina (2017). Novel Compound Semiconductor Nanowires: Materials, Devices, and Applications. CRC Press. p. 457. ISBN   9781315340722.
  51. Singh, N.; Agarwal, A.; Bera, L. K.; Liow, T. Y.; Yang, R.; Rustagi, S. C.; Tung, C. H.; Kumar, R.; Lo, G. Q.; Balasubramanian, N.; Kwong, D. (2006). "High-Performance fully depleted Silicon Nanowire Gate-All-Around CMOS devices". IEEE Electron Device Letters. 27 (5): 383–386. Bibcode:2006IEDL...27..383S. doi:10.1109/LED.2006.873381. ISSN   0741-3106.
  52. Dastjerdy, E.; Ghayour, R.; Sarvari, H. (August 2012). "Simulation and analysis of the frequency performance of a new silicon nanowire MOSFET structure". Physica E. 45: 66–71. Bibcode:2012PhyE...45...66D. doi:10.1016/j.physe.2012.07.007.
  53. Gu, J. J.; Liu, Y. Q.; Wu, Y. Q.; Colby, R.; Gordon, R. G.; Ye, P. D. (December 2011). "First Experimental Demonstration of Gate-all-around III-V MOSFETs by Top-down Approach" (PDF). 2011 International Electron Devices Meeting. pp. 33.2.1–33.2.4. doi:10.1109/IEDM.2011.6131662 . Retrieved 2015-05-10.
  54. Masuoka, Fujio; Takato, H.; Sunouchi, K.; Okabe, N.; Nitayama, A.; Hieda, K.; Horiguchi, F. (December 1988). "High performance CMOS surrounding-gate transistor (SGT) for ultra high density LSIs". Technical Digest., International Electron Devices Meeting: 222–225. doi:10.1109/IEDM.1988.32796.
  55. Brozek, Tomasz (2017). Micro- and Nanoelectronics: Emerging Device Challenges and Solutions. CRC Press. p. 117. ISBN   9781351831345.
  56. "Company Profile". Unisantis Electronics. Archived from the original on 2007-02-22. Retrieved 17 July 2019.
  57. "Still Room at the Bottom.(nanometer transistor developed by Yang-kyu Choi from the Korea Advanced Institute of Science and Technology )", Nanoparticle News, 1 April 2006, archived from the original on 6 November 2012
  58. Lee, Hyunjin; et al. (2006), "Sub-5nm All-Around Gate FinFET for Ultimate Scaling", Symposium on VLSI Technology, 2006: 58–59, doi:10.1109/VLSIT.2006.1705215, hdl:10203/698, ISBN   978-1-4244-0005-8
  59. Cutress, Ian. "Samsung Announces 3nm GAA MBCFET PDK, Version 0.1". www.anandtech.com.
  60. Subramanian V (2010). "Multiple gate field-effect transistors for future CMOS technologies". IETE Technical Review. 27 (6): 446–454. doi:10.4103/0256-4602.72582. Archived from the original on March 23, 2012.
  61. Subramanian (5 Dec 2005). "Device and circuit-level analog performance trade-offs: a comparative study of planar bulk FETs versus FinFETs". Electron Devices Meeting, 2005. IEDM Technical Digest. IEEE International: 898–901.
  62. "BSIMCMG Model". UC Berkeley. Archived from the original on 2012-07-21.