Natural neighbor interpolation

Last updated
Natural neighbor interpolation with Sibson weights. The area of the green circles are the interpolating weights, wi. The purple-shaded region is the new Voronoi cell, after inserting the point to be interpolated (black dot). The weights represent the intersection areas of the purple-cell with each of the seven surrounding cells. Natural-neighbors-coefficients-example.png
Natural neighbor interpolation with Sibson weights. The area of the green circles are the interpolating weights, wi. The purple-shaded region is the new Voronoi cell, after inserting the point to be interpolated (black dot). The weights represent the intersection areas of the purple-cell with each of the seven surrounding cells.

Natural neighbor (or Sibson) interpolation is a method of spatial interpolation, developed by Robin Sibson. [1] The method is based on Voronoi tessellation of a discrete set of spatial points. This has advantages over simpler methods of interpolation, such as nearest-neighbor interpolation, in that it provides a smoother approximation to the underlying "true" function.

Contents

The basic equation is:

where is the estimate at , are the weights and are the known data at . The weights, , are calculated by finding how much of each of the surrounding areas is "stolen" when inserting into the tessellation.

Sibson weights

where A(x) is the volume of the new cell centered in x, and A(xi) is the volume of the intersection between the new cell centered in x and the old cell centered in xi.

Natural neighbor interpolation with Laplace weights. The interface l(xi) between the cells linked to x and xi is in blue, while the distance d(xi) between x and xi is in red. Natural-neighbors-coefficients-Laplace-example.png
Natural neighbor interpolation with Laplace weights. The interface l(xi) between the cells linked to x and xi is in blue, while the distance d(xi) between x and xi is in red.
Laplace weights [2] [3]

where l(xi) is the measure of the interface between the cells linked to x and xi in the Voronoi diagram (length in 2D, surface in 3D) and d(xi), the distance between x and xi.

Discrete natural neighbor interpolation

Natural neighbor interpolation has also been implemented in a discrete form. This discrete form has been demonstrated to be computationally more efficient in at least some circumstances. [4] A form of discrete natural neighbor interpolation has also been developed that gives a measure of interpolation uncertainty. [5]

Properties

There are several useful properties of natural neighbor interpolation: [5]

  1. The method is an exact interpolator, in that the original data values are retained at the reference data points.
  2. The method creates a smooth surface free from any discontinuities.
  3. The method is entirely local, as it is based on a minimal subset of data locations that excludes locations that, while close, are more distant than another location in a similar direction.
  4. The method is spatially adaptive, automatically adapting to local variation in data density or spatial arrangement.
  5. There is no requirement to make statistical assumptions.
  6. The method can be applied to very small datasets as it is not statistically based.
  7. The method is parameter free, so no input parameters that will affect the success of the interpolation need to be specified.

See also

Related Research Articles

<span class="mw-page-title-main">Discrete Fourier transform</span> Type of Fourier transform in discrete mathematics

In mathematics, the discrete Fourier transform (DFT) converts a finite sequence of equally-spaced samples of a function into a same-length sequence of equally-spaced samples of the discrete-time Fourier transform (DTFT), which is a complex-valued function of frequency. The interval at which the DTFT is sampled is the reciprocal of the duration of the input sequence. An inverse DFT (IDFT) is a Fourier series, using the DTFT samples as coefficients of complex sinusoids at the corresponding DTFT frequencies. It has the same sample-values as the original input sequence. The DFT is therefore said to be a frequency domain representation of the original input sequence. If the original sequence spans all the non-zero values of a function, its DTFT is continuous, and the DFT provides discrete samples of one cycle. If the original sequence is one cycle of a periodic function, the DFT provides all the non-zero values of one DTFT cycle.

<span class="mw-page-title-main">Multivariate normal distribution</span> Generalization of the one-dimensional normal distribution to higher dimensions

In probability theory and statistics, the multivariate normal distribution, multivariate Gaussian distribution, or joint normal distribution is a generalization of the one-dimensional (univariate) normal distribution to higher dimensions. One definition is that a random vector is said to be k-variate normally distributed if every linear combination of its k components has a univariate normal distribution. Its importance derives mainly from the multivariate central limit theorem. The multivariate normal distribution is often used to describe, at least approximately, any set of (possibly) correlated real-valued random variables each of which clusters around a mean value.

<span class="mw-page-title-main">Naive Bayes classifier</span> Probabilistic classification algorithm

In statistics, naive Bayes classifiers are a family of linear "probabilistic classifiers" which assumes that the features are conditionally independent, given the target class. The strength (naivety) of this assumption is what gives the classifier its name. These classifiers are among the simplest Bayesian network models.

<span class="mw-page-title-main">Voronoi diagram</span> Type of plane partition

In mathematics, a Voronoi diagram is a partition of a plane into regions close to each of a given set of objects. It can be classified also as a tessellation. In the simplest case, these objects are just finitely many points in the plane. For each seed there is a corresponding region, called a Voronoi cell, consisting of all points of the plane closer to that seed than to any other. The Voronoi diagram of a set of points is dual to that set's Delaunay triangulation.

<span class="mw-page-title-main">Lagrange polynomial</span> Polynomials used for interpolation

In numerical analysis, the Lagrange interpolating polynomial is the unique polynomial of lowest degree that interpolates a given set of data.

<span class="mw-page-title-main">Logistic regression</span> Statistical model for a binary dependent variable

In statistics, the logistic model is a statistical model that models the log-odds of an event as a linear combination of one or more independent variables. In regression analysis, logistic regression is estimating the parameters of a logistic model. Formally, in binary logistic regression there is a single binary dependent variable, coded by an indicator variable, where the two values are labeled "0" and "1", while the independent variables can each be a binary variable or a continuous variable. The corresponding probability of the value labeled "1" can vary between 0 and 1, hence the labeling; the function that converts log-odds to probability is the logistic function, hence the name. The unit of measurement for the log-odds scale is called a logit, from logistic unit, hence the alternative names. See § Background and § Definition for formal mathematics, and § Example for a worked example.

The finite volume method (FVM) is a method for representing and evaluating partial differential equations in the form of algebraic equations. In the finite volume method, volume integrals in a partial differential equation that contain a divergence term are converted to surface integrals, using the divergence theorem. These terms are then evaluated as fluxes at the surfaces of each finite volume. Because the flux entering a given volume is identical to that leaving the adjacent volume, these methods are conservative. Another advantage of the finite volume method is that it is easily formulated to allow for unstructured meshes. The method is used in many computational fluid dynamics packages. "Finite volume" refers to the small volume surrounding each node point on a mesh.

<span class="mw-page-title-main">Kriging</span> Method of interpolation

In statistics, originally in geostatistics, kriging or Kriging, also known as Gaussian process regression, is a method of interpolation based on Gaussian process governed by prior covariances. Under suitable assumptions of the prior, kriging gives the best linear unbiased prediction (BLUP) at unsampled locations. Interpolating methods based on other criteria such as smoothness may not yield the BLUP. The method is widely used in the domain of spatial analysis and computer experiments. The technique is also known as Wiener–Kolmogorov prediction, after Norbert Wiener and Andrey Kolmogorov.

In plasma physics, the particle-in-cell (PIC) method refers to a technique used to solve a certain class of partial differential equations. In this method, individual particles in a Lagrangian frame are tracked in continuous phase space, whereas moments of the distribution such as densities and currents are computed simultaneously on Eulerian (stationary) mesh points.

Random forests or random decision forests is an ensemble learning method for classification, regression and other tasks that operates by constructing a multitude of decision trees at training time. For classification tasks, the output of the random forest is the class selected by most trees. For regression tasks, the mean or average prediction of the individual trees is returned. Random decision forests correct for decision trees' habit of overfitting to their training set.

<span class="mw-page-title-main">Inverse distance weighting</span> Type of deterministic method for multivariate interpolation

Inverse distance weighting (IDW) is a type of deterministic method for multivariate interpolation with a known scattered set of points. The assigned values to unknown points are calculated with a weighted average of the values available at the known points. This method can also be used to create spatial weights matrices in spatial autocorrelation analyses.

k-means clustering is a method of vector quantization, originally from signal processing, that aims to partition n observations into k clusters in which each observation belongs to the cluster with the nearest mean, serving as a prototype of the cluster. This results in a partitioning of the data space into Voronoi cells. k-means clustering minimizes within-cluster variances, but not regular Euclidean distances, which would be the more difficult Weber problem: the mean optimizes squared errors, whereas only the geometric median minimizes Euclidean distances. For instance, better Euclidean solutions can be found using k-medians and k-medoids.

In mathematics a radial basis function (RBF) is a real-valued function whose value depends only on the distance between the input and some fixed point, either the origin, so that , or some other fixed point , called a center, so that . Any function that satisfies the property is a radial function. The distance is usually Euclidean distance, although other metrics are sometimes used. They are often used as a collection which forms a basis for some function space of interest, hence the name.

The cross-entropy (CE) method is a Monte Carlo method for importance sampling and optimization. It is applicable to both combinatorial and continuous problems, with either a static or noisy objective.

In numerical analysis, multivariate interpolation is interpolation on functions of more than one variable ; when the variates are spatial coordinates, it is also known as spatial interpolation.

In statistics, kernel Fisher discriminant analysis (KFD), also known as generalized discriminant analysis and kernel discriminant analysis, is a kernelized version of linear discriminant analysis (LDA). It is named after Ronald Fisher.

In the mathematical fields of numerical analysis and approximation theory, box splines are piecewise polynomial functions of several variables. Box splines are considered as a multivariate generalization of basis splines (B-splines) and are generally used for multivariate approximation/interpolation. Geometrically, a box spline is the shadow (X-ray) of a hypercube projected down to a lower-dimensional space. Box splines and simplex splines are well studied special cases of polyhedral splines which are defined as shadows of general polytopes.

Beamforming is a signal processing technique used to spatially select propagating waves. In order to implement beamforming on digital hardware the received signals need to be discretized. This introduces quantization error, perturbing the array pattern. For this reason, the sample rate must be generally much greater than the Nyquist rate.

In statistics, the class of vector generalized linear models (VGLMs) was proposed to enlarge the scope of models catered for by generalized linear models (GLMs). In particular, VGLMs allow for response variables outside the classical exponential family and for more than one parameter. Each parameter can be transformed by a link function. The VGLM framework is also large enough to naturally accommodate multiple responses; these are several independent responses each coming from a particular statistical distribution with possibly different parameter values.

Graph cut optimization is a combinatorial optimization method applicable to a family of functions of discrete variables, named after the concept of cut in the theory of flow networks. Thanks to the max-flow min-cut theorem, determining the minimum cut over a graph representing a flow network is equivalent to computing the maximum flow over the network. Given a pseudo-Boolean function , if it is possible to construct a flow network with positive weights such that

References

  1. Sibson, R. (1981). "A brief description of natural neighbor interpolation (Chapter 2)". In V. Barnett (ed.). Interpreting Multivariate Data. Chichester: John Wiley. pp. 21–36.
  2. N.H. Christ; R. Friedberg, R.; T.D. Lee (1982). "Weights of links and plaquettes in a random lattice". Nuclear Physics B. 210 (3): 337–346. Bibcode:1982NuPhB.210..337C. doi:10.1016/0550-3213(82)90124-9.
  3. V.V. Belikov; V.D. Ivanov; V.K. Kontorovich; S.A. Korytnik; A.Y. Semenov (1997). "The non-Sibsonian interpolation: A new method of interpolation of the values of a function on an arbitrary set of points". Computational Mathematics and Mathematical Physics. 37 (1): 9–15.
  4. Park, S.W.; Linsen, L.; Kreylos, O.; Owens, J.D.; Hamann, B. (2006). "Discrete Sibson interpolation". IEEE Transactions on Visualization and Computer Graphics. 12 (2): 243–253. doi:10.1109/TVCG.2006.27. PMID   16509383.
  5. 1 2 Etherington, Thomas R. (2020-07-13). "Discrete natural neighbour interpolation with uncertainty using cross-validation error-distance fields". PeerJ Computer Science. 6: e282. doi: 10.7717/peerj-cs.282 . ISSN   2376-5992. PMC   7924714 . PMID   33816933. Creative Commons by small.svg  This article incorporates text available under the CC BY 4.0 license.