Last updated

Temporal range: Precambrian–Recent [1]
Caenorhabditis elegans ,
a model species of roundworm
Scientific classification Red Pencil Icon.png
Kingdom: Animalia
Subkingdom: Eumetazoa
Clade: ParaHoxozoa
Clade: Bilateria
Clade: Nephrozoa
(unranked): Protostomia
Superphylum: Ecdysozoa
Clade: Nematoida
Phylum: Nematoda
Diesing, 1861

(see text)

  • Nematodes Burmeister, 1837
  • Nematoidea sensu stricto Cobb, 1919
  • Nemates Cobb, 1919
  • Nemata Cobb, 1919 emend.

The nematodes ( /ˈnɛmətdz/ NEM-ə-tohdz or NEEM- Greek : Νηματώδη; Latin : Nematoda) or roundworms constitute the phylum Nematoda (also called Nemathelminthes), [2] [3] with plant-parasitic nematodes also known as eelworms. [4] They are a diverse animal phylum inhabiting a broad range of environments. Less formally, they are categorized as helminths, but are taxonomically classified along with arthropods, tardigrades and other moulting animals in the clade Ecdysozoa, and unlike flatworms, have tubular digestive systems with openings at both ends. Like tardigrades, they have a reduced number of Hox genes, but their sister phylum Nematomorpha has kept the ancestral protostome Hox genotype, which shows that the reduction has occurred within the nematode phylum. [5]


Nematodes species can be difficult to distinguish from one another. Consequently, estimates of the number of nematode species described to date vary by author and may change rapidly over time. A 2013 survey of animal biodiversity published in the mega journal Zootaxa puts this figure at over 25,000. [6] [7] Estimates of the total number of extant species are subject to even greater variation. A widely referenced [8] article published in 1993 estimated there may be over 1 million species of nematode. [9] A subsequent publication challenged this claim, estimating the figure to be at least 40,000 species. [10] Although the highest estimates (up to 100 million species) have since been deprecated, estimates supported by rarefaction curves, [11] [12] together with the use of DNA barcoding [13] and the increasing acknowledgment of widespread cryptic species among nematodes, [14] have placed the figure closer to 1 million species. [15]

Nematodes have successfully adapted to nearly every ecosystem: from marine (salt) to fresh water, soils, from the polar regions to the tropics, as well as the highest to the lowest of elevations. They are ubiquitous in freshwater, marine, and terrestrial environments, where they often outnumber other animals in both individual and species counts, and are found in locations as diverse as mountains, deserts, and oceanic trenches. They are found in every part of the earth's lithosphere, [16] even at great depths, 0.9–3.6 km (3,000–12,000 ft) below the surface of the Earth in gold mines in South Africa. [17] [18] [19] [20] [21] They represent 90% of all animals on the ocean floor. [22] In total, 4.4 × 1020 nematodes inhabit the Earth's topsoil, or approximately 60 billion for each human, with the highest densities observed in tundra and boreal forests. [23] Their numerical dominance, often exceeding a million individuals per square meter and accounting for about 80% of all individual animals on earth, their diversity of lifecycles, and their presence at various trophic levels point to an important role in many ecosystems. [23] [24] They have been shown to play crucial roles in polar ecosystems. [25] [26] The roughly 2,271  genera are placed in 256  families. [27] The many parasitic forms include pathogens in most plants and animals. A third of the genera occur as parasites of vertebrates; about 35 nematode species occur in humans. [27]

Nathan Cobb, a nematologist, described the ubiquity of nematodes on Earth thus:

In short, if all the matter in the universe except the nematodes were swept away, our world would still be dimly recognizable, and if, as disembodied spirits, we could then investigate it, we should find its mountains, hills, vales, rivers, lakes, and oceans represented by a film of nematodes. The location of towns would be decipherable since, for every massing of human beings, there would be a corresponding massing of certain nematodes. Tree would still stand in ghostly rows representing our streets and highways. The location of the various plants and animals would still be decipherable, and, had we sufficient knowledge, in many cases even their species could be determined by an examination of their erstwhile nematode parasites. [28]


The word nematode comes from the Modern Latin compound of nemat- "thread" (from Greek nema, genitive nematos "thread," from stem of nein "to spin"; see needle) + -odes "like, of the nature of" (see -oid).

Taxonomy and systematics

Eophasma jurasicum, a fossilized nematode Eophasma jurasicum.JPG
Eophasma jurasicum, a fossilized nematode
Caenorhabditis elegans Celegans wt nhr80rnai.png
Caenorhabditis elegans
Rhabditia Hookworms.JPG
Nippostrongylus brasiliensis Gravid adult female Nippostrongylus brasiliensis - image.pntd.v07.i08.g001.png
Nippostrongylus brasiliensis
Unidentified Anisakidae (Ascaridina: Ascaridoidea) Anisakids.jpg
Unidentified Anisakidae (Ascaridina: Ascaridoidea)
Oxyuridae Threadworm Threadworm.jpg
Oxyuridae Threadworm
Spiruridae Dirofilaria immitis Microfilaria.jpg
Spiruridae Dirofilaria immitis


In 1758, Linnaeus described some nematode genera (e.g., Ascaris ), then included in the Vermes.

The name of the group Nematoda, informally called "nematodes", came from Nematoidea, originally defined by Karl Rudolphi (1808), [29] from Ancient Greek νῆμα (nêma, nêmatos, 'thread') and -eiδἠς (-eidēs, 'species'). It was treated as family Nematodes by Burmeister (1837). [29]

At its origin, the "Nematoidea" erroneously included Nematodes and Nematomorpha, attributed by von Siebold (1843). Along with Acanthocephala, Trematoda, and Cestoidea, it formed the obsolete group Entozoa, [30] created by Rudolphi (1808). [31] They were also classed along with Acanthocephala in the obsolete phylum Nemathelminthes by Gegenbaur (1859).

In 1861, K. M. Diesing treated the group as order Nematoda. [29] In 1877, the taxon Nematoidea, including the family Gordiidae (horsehair worms), was promoted to the rank of phylum by Ray Lankester. The first clear distinction between the nemas and gordiids was realized by Vejdovsky when he named a group to contain the horsehair worms the order Nematomorpha. In 1919, Nathan Cobb proposed that nematodes should be recognized alone as a phylum. [32] He argued they should be called "nema" in English rather than "nematodes" and defined the taxon Nemates (later emended as Nemata, Latin plural of nema), listing Nematoidea sensu restricto as a synonym.

However, in 1910, Grobben proposed the phylum Aschelminthes and the nematodes were included in as class Nematoda along with class Rotifera, class Gastrotricha, class Kinorhyncha, class Priapulida, and class Nematomorpha (The phylum was later revived and modified by Libbie Henrietta Hyman in 1951 as Pseudoceolomata, but remained similar). In 1932, Potts elevated the class Nematoda to the level of phylum, leaving the name the same. Despite Potts' classification being equivalent to Cobbs', both names have been used (and are still used today) and Nematode became a popular term in zoological science. [33]

Since Cobb was the first to include nematodes in a particular phylum separated from Nematomorpha, some researchers consider the valid taxon name to be Nemates or Nemata, rather than Nematoda, [34] because of the zoological rule that gives priority to the first used term in case of synonyms.


The phylogenetic relationships of the nematodes and their close relatives among the protostomian Metazoa are unresolved. Traditionally, they were held to be a lineage of their own, but in the 1990s, they were proposed to form the group Ecdysozoa together with moulting animals, such as arthropods. The identity of the closest living relatives of the Nematoda has always been considered to be well resolved. Morphological characters and molecular phylogenies agree with placement of the roundworms as a sister taxon to the parasitic Nematomorpha; together, they make up the Nematoida. Along with the Scalidophora (formerly Cephalorhyncha), the Nematoida form the clade Cycloneuralia, but much disagreement occurs both between and among the available morphological and molecular data. The Cycloneuralia or the Introverta—depending on the validity of the former—are often ranked as a superphylum. [35]

Nematode systematics

Due to the lack of knowledge regarding many nematodes, their systematics is contentious. An early and influential classification was proposed by Chitwood and Chitwood [36] —later revised by Chitwood [37] —who divided the phylum into two classes—Aphasmidia and Phasmidia. These were later renamed Adenophorea (gland bearers) and Secernentea (secretors), respectively. [38] The Secernentea share several characteristics, including the presence of phasmids, a pair of sensory organs located in the lateral posterior region, and this was used as the basis for this division. This scheme was adhered to in many later classifications, though the Adenophorea were not in a uniform group.

Initial studies of incomplete DNA sequences [39] suggested the existence of five clades: [40]

The Secernentea seem to be a natural group of close relatives, while the "Adenophorea" appear to be a paraphyletic assemblage of roundworms that retain a good number of ancestral traits. The old Enoplia do not seem to be monophyletic, either, but do contain two distinct lineages. The old group "Chromadoria" seems to be another paraphyletic assemblage, with the Monhysterida representing a very ancient minor group of nematodes. Among the Secernentea, the Diplogasteria may need to be united with the Rhabditia, while the Tylenchia might be paraphyletic with the Rhabditia. [41]

The understanding of roundworm systematics and phylogeny as of 2002 is summarised below:

Phylum Nematoda

Later work has suggested the presence of 12 clades. [42] The Secernentea—a group that includes virtually all major animal and plant 'nematode' parasites—apparently arose from within the Adenophorea.

In 2019, a study identified one conserved signature indel (CSI) found exclusively in members of the phylum Nematoda through comparative genetic analyses. [43] The CSI consists of a single amino acid insertion within a conserved region of a Na(+)/H(+) exchange regulatory factor protein NRFL-1 and is a molecular marker that distinguishes the phylum from other species. [43]

A major effort by a collaborative wiki called 959 Nematode Genomes is underway to improve the systematics of this phylum. [44]

An analysis of the mitochondrial DNA suggests that the following groupings are valid [45]

In 2022 a new classification of the entire phylum Nematoda was presented by M. Hodda. It was based on current molecular, developmental and morphological evidence. [46]


Internal anatomy of a male C. elegans nematode C elegans male.svg
Internal anatomy of a male C. elegans nematode

Nematodes are very small, slender worms: typically about 5 to 100 µm thick, and 0.1 to 2.5 mm long. [47] The smallest nematodes are microscopic, while free-living species can reach as much as 5 cm (2 in), and some parasitic species are larger still, reaching over 1 m (3 ft) in length. [48] :271 The body is often ornamented with ridges, rings, bristles, or other distinctive structures. [49]

The head of a nematode is relatively distinct. Whereas the rest of the body is bilaterally symmetrical, the head is radially symmetrical, with sensory bristles and, in many cases, solid 'head-shields' radiating outwards around the mouth. The mouth has either three or six lips, which often bear a series of teeth on their inner edges. An adhesive 'caudal gland' is often found at the tip of the tail. [50]

The epidermis is either a syncytium or a single layer of cells, and is covered by a thick collagenous cuticle. The cuticle is often of a complex structure and may have two or three distinct layers. Underneath the epidermis lies a layer of longitudinal muscle cells. The relatively rigid cuticle works with the muscles to create a hydroskeleton, as nematodes lack circumferential muscles. Projections run from the inner surface of muscle cells towards the nerve cords; this is a unique arrangement in the animal kingdom, in which nerve cells normally extend fibers into the muscles rather than vice versa. [50]

Digestive system

The oral cavity is lined with cuticle, which is often strengthened with structures, such as ridges, especially in carnivorous species, which may bear a number of teeth. The mouth often includes a sharp stylet, which the animal can thrust into its prey. In some species, the stylet is hollow and can be used to suck liquids from plants or animals. [50]

The oral cavity opens into a muscular, sucking pharynx, also lined with cuticle. Digestive glands are found in this region of the gut, producing enzymes that start to break down the food. In stylet-bearing species, these may even be injected into the prey. [50]

No stomach is present, with the pharynx connecting directly to a muscleless intestine that forms the main length of the gut. This produces further enzymes, and also absorbs nutrients through its single-cell-thick lining. The last portion of the intestine is lined by cuticle, forming a rectum, which expels waste through the anus just below and in front of the tip of the tail. The movement of food through the digestive system is the result of the body movements of the worm. The intestine has valves or sphincters at either end to help control the movement of food through the body. [50]

Excretory system

Nitrogenous waste is excreted in the form of ammonia through the body wall, and is not associated with any specific organs. However, the structures for excreting salt to maintain osmoregulation are typically more complex. [50]

In many marine nematodes, one or two unicellular 'renette glands' excrete salt through a pore on the underside of the animal, close to the pharynx. In most other nematodes, these specialized cells have been replaced by an organ consisting of two parallel ducts connected by a single transverse duct. This transverse duct opens into a common canal that runs to the excretory pore. [50]

Nervous system

At the anterior end of the animal a dense, circular nerve ring which serves as the brain surrounds the pharynx. [50] From this ring six labial papillary nerve cords extend anteriorly, while six nerve cords; a large ventral, a smaller dorsal and two pairs of sublateral cords extend posteriorly. [51] Each nerve lies within a cord of connective tissue lying beneath the cuticle and between the muscle cells. The ventral nerve is the largest, and has a double structure forward of the excretory pore. The dorsal nerve is responsible for motor control, while the lateral nerves are sensory, and the ventral combines both functions. [50]

The nervous system is also the only place in the nematode body that contains cilia, which are all nonmotile and with a sensory function. [52] [53]

The bodies of nematodes are covered in numerous sensory bristles and papillae that together provide a sense of touch. Behind the sensory bristles on the head lie two small pits, or 'amphids'. These are well supplied with nerve cells and are probably chemoreception organs. A few aquatic nematodes possess what appear to be pigmented eye-spots, but whether or not these are actually sensory in nature is unclear. [50]


Extremity of a male nematode showing the spicule, used for copulation, bar = 100 um Eucoleus aerophilus male spicule.jpg
Extremity of a male nematode showing the spicule, used for copulation, bar = 100 µm

Most nematode species are dioecious, with separate male and female individuals, though some, such as Caenorhabditis elegans , are androdioecious, consisting of hermaphrodites and rare males. Both sexes possess one or two tubular gonads. In males, the sperm are produced at the end of the gonad and migrate along its length as they mature. The testis opens into a relatively wide seminal vesicle and then during intercourse into a glandular and muscular ejaculatory duct associated with the vas deferens and cloaca. In females, the ovaries each open into an oviduct (in hermaphrodites, the eggs enter a spermatheca first) and then a glandular uterus. The uteri both open into a common vulva/vagina, usually located in the middle of the morphologically ventral surface. [50]

Reproduction is usually sexual, though hermaphrodites are capable of self-fertilization. Males are usually smaller than females or hermaphrodites (often much smaller) and often have a characteristically bent or fan-shaped tail. During copulation, one or more chitinized spicules move out of the cloaca and are inserted into the genital pore of the female. Amoeboid sperm crawl along the spicule into the female worm. Nematode sperm is thought to be the only eukaryotic cell without the globular protein G-actin.

Eggs may be embryonated or unembryonated when passed by the female, meaning their fertilized eggs may not yet be developed. A few species are known to be ovoviviparous. The eggs are protected by an outer shell, secreted by the uterus. In free-living roundworms, the eggs hatch into larvae, which appear essentially identical to the adults, except for an underdeveloped reproductive system; in parasitic roundworms, the lifecycle is often much more complicated. [50] The structure of the eggshell is complicated and includes several layers; a detailed anatomical and terminological framework has been proposed for these layers in 2023. [55]

Nematodes as a whole possess a wide range of modes of reproduction. [56] Some nematodes, such as Heterorhabditis spp., undergo a process called endotokia matricida: intrauterine birth causing maternal death. [57] Some nematodes are hermaphroditic, and keep their self-fertilized eggs inside the uterus until they hatch. The juvenile nematodes then ingest the parent nematode. This process is significantly promoted in environments with a low food supply. [57]

The nematode model species C. elegans, C. briggsae , and Pristionchus pacificus , among other species, exhibit androdioecy, [58] which is otherwise very rare among animals. The single genus Meloidogyne (root-knot nematodes) exhibits a range of reproductive modes, including sexual reproduction, facultative sexuality (in which most, but not all, generations reproduce asexually), and both meiotic and mitotic parthenogenesis.

The genus Mesorhabditis exhibits an unusual form of parthenogenesis, in which sperm-producing males copulate with females, but the sperm do not fuse with the ovum. Contact with the sperm is essential for the ovum to begin dividing, but because no fusion of the cells occurs, the male contributes no genetic material to the offspring, which are essentially clones of the female. [50]

Free-living species

Different free-living species feed on materials as varied as bacteria, algae, fungi, small animals, fecal matter, dead organisms, and living tissues. Free-living marine nematodes are important and abundant members of the meiobenthos. They play an important role in the decomposition process, aid in recycling of nutrients in marine environments, and are sensitive to changes in the environment caused by pollution. One roundworm of note, C. elegans, lives in the soil and has found much use as a model organism. C. elegans has had its entire genome sequenced, the developmental fate of every cell determined, and every neuron mapped.

Parasitic species

Eggs (mostly nematodes) from stools of wild primates Parasite140080-fig3 Gastrointestinal parasites in seven primates of the Tai National Park - Helminths.png
Eggs (mostly nematodes) from stools of wild primates

Nematodes that commonly parasitise humans include ascarids (Ascaris), filarias, hookworms, pinworms (Enterobius), and whipworms (Trichuris trichiura). The species Trichinella spiralis , commonly known as the 'trichina worm', occurs in rats, pigs, bears, and humans, and is responsible for the disease trichinosis. Baylisascaris usually infests wild animals, but can be deadly to humans, as well. Dirofilaria immitis is known for causing heartworm disease by inhabiting the hearts, arteries, and lungs of dogs and some cats. Haemonchus contortus is one of the most abundant infectious agents in sheep around the world, causing great economic damage to sheep. In contrast, entomopathogenic nematodes parasitize insects and are mostly considered beneficial by humans, but some attack beneficial insects.

One form of nematode is entirely dependent upon fig wasps, which are the sole source of fig fertilization. They prey upon the wasps, riding them from the ripe fig of the wasp's birth to the fig flower of its death, where they kill the wasp, and their offspring await the birth of the next generation of wasps as the fig ripens.

Colorized electron micrograph of soybean cyst nematode (Heterodera sp.) and egg Soybean cyst nematode and egg SEM.jpg
Colorized electron micrograph of soybean cyst nematode (Heterodera sp.) and egg

A newly discovered parasitic tetradonematid nematode, Myrmeconema neotropicum , apparently induces fruit mimicry in the tropical ant Cephalotes atratus . Infected ants develop bright red gasters (abdomens), tend to be more sluggish, and walk with their gasters in a conspicuous elevated position. These changes likely cause frugivorous birds to confuse the infected ants for berries, and eat them. Parasite eggs passed in the bird's feces are subsequently collected by foraging C. atratus and are fed to their larvae, thus completing the lifecycle of M. neotropicum. [59]

Similarly, multiple varieties of nematodes have been found in the abdominal cavities of the primitively social sweat bee, Lasioglossum zephyrus . Inside the female body, the nematode hinders ovarian development and renders the bee less active, thus less effective in pollen collection. [60]

Agriculture and horticulture

Depending on its species, a nematode may be beneficial or detrimental to plant health. From agricultural and horticulture perspectives, the two categories of nematodes are the predatory ones, which kill garden pests; and the pest nematodes, which attack plants, or act as vectors spreading plant viruses between crop plants. [61] Predatory nematodes include Phasmarhabditis hermaphrodita which is a lethal parasite of gastropods such as slugs and snails. [62] Some members of the genus Steinernema such as Steinernema carpocapsae and Steinernema riobrave are generalist parasites of webworms, cutworms, armyworms, girdlers, some weevils, wood-borers and corn earworm moths. [63] These organisms are grown commercially as biological pest control agents which can be used as an alternative to pesticides; their use is considered very safe. [64] Plant-parasitic nematodes include several groups causing severe crop losses, taking 10% of crops worldwide every year. [65] The most common genera are Aphelenchoides (foliar nematodes), Ditylenchus , Globodera (potato cyst nematodes), Heterodera (soybean cyst nematodes), Longidorus , Meloidogyne (root-knot nematodes), Nacobbus , Pratylenchus (lesion nematodes), Trichodorus , and Xiphinema (dagger nematodes). Several phytoparasitic nematode species cause histological damages to roots, including the formation of visible galls (e.g. by root-knot nematodes), which are useful characters for their diagnostic in the field. Some nematode species transmit plant viruses through their feeding activity on roots. One of them is Xiphinema index , vector of grapevine fanleaf virus, an important disease of grapes, another one is Xiphinema diversicaudatum , vector of arabis mosaic virus . Other nematodes attack bark and forest trees. The most important representative of this group is Bursaphelenchus xylophilus , the pine wood nematode, present in Asia and America and recently discovered in Europe.

Greenhouse growers use beneficial nematodes to control fungus gnats, the nematodes enter the larva of the gnats by way of their anus, mouth, and spiracles (breathing pores) and then release a bacteria which kills the gnat larvae; commonly used nematode species to control pests on greenhouse crops include Steinernema feltiae for fungus gnats and western flower thrips, Steinernema carpocapsae used to control shore flies, Steinernema kraussei for control of black vine weevils, and Heterorhabditis bacteriophora to control beetle larvae. [66]

Rotations of plants with nematode-resistant species or varieties is one means of managing parasitic nematode infestations. For example, marigolds, grown over one or more seasons (the effect is cumulative), can be used to control nematodes. [67] Another is treatment with natural antagonists such as the fungus Gliocladium roseum . Chitosan, a natural biocontrol, elicits plant defense responses to destroy parasitic cyst nematodes on roots of soybean, corn, sugar beet, potato, and tomato crops without harming beneficial nematodes in the soil. [68] Soil steaming is an efficient method to kill nematodes before planting a crop, but indiscriminately eliminates both harmful and beneficial soil fauna.

The golden nematode Globodera rostochiensis is a particularly harmful variety of nematode pest that has resulted in quarantines and crop failures worldwide. CSIRO has found a 13- to 14-fold reduction of nematode population densities in plots having Indian mustard Brassica juncea green manure or seed meal in the soil. [69]


Disability-adjusted life year for intestinal nematode infections per 100,000 in 2002.
.mw-parser-output .div-col{margin-top:0.3em;column-width:30em}.mw-parser-output .div-col-small{font-size:90%}.mw-parser-output .div-col-rules{column-rule:1px solid #aaa}.mw-parser-output .div-col dl,.mw-parser-output .div-col ol,.mw-parser-output .div-col ul{margin-top:0}.mw-parser-output .div-col li,.mw-parser-output .div-col dd{page-break-inside:avoid;break-inside:avoid-column}
.mw-parser-output .legend{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .legend-color{display:inline-block;min-width:1.25em;height:1.25em;line-height:1.25;margin:1px 0;text-align:center;border:1px solid black;background-color:transparent;color:black}.mw-parser-output .legend-text{}
<  25
>  240
no data Intestinal nematode infections world map - DALY - WHO2002.svg
Disability-adjusted life year for intestinal nematode infections per 100,000 in 2002.
    <  25
    >  240
  no data
Anthelmintic effect of papain on Heligmosomoides bakeri

A number of intestinal nematodes cause diseases affecting human beings, including ascariasis, trichuriasis, and hookworm disease. Filarial nematodes cause filariases. Furthermore, studies have shown that parasitic nematodes infect American eels causing damage to the eel's swim bladder, [70] dairy animals like cattle and buffalo, [71] and all species of sheep. [72]

Gastrointestinal nematode infections in humans are common, with approximately 50% of the global population being affected. Developing countries are most heavily impacted, in part due to lack of access to medical care. [73]

Soil ecosystems

About 90% of nematodes reside in the top 15 cm (6") of soil. Nematodes do not decompose organic matter, but, instead, are parasitic and free-living organisms that feed on living material. Nematodes can effectively regulate bacterial population and community composition—they may eat up to 5,000 bacteria per minute. Also, nematodes can play an important role in the nitrogen cycle by way of nitrogen mineralization. [47]

One group of carnivorous fungi, the nematophagous fungi, are predators of soil nematodes. [74] They set enticements for the nematodes in the form of lassos or adhesive structures. [75] [76] [77]


Nematode worms (C. elegans), part of an ongoing research project conducted on the 2003 Space Shuttle Columbia mission STS-107, survived the re-entry breakup. It is believed to be the first known life form to survive a virtually unprotected atmospheric descent to Earth's surface. [78] [79] In a research project published in 2012, it was found that the Antarctic Nematodes (P. davidi) was able to withstand intracellular freezing depending on how well it was fed. When compared between fed and starved nematodes, the survival rate increased in the fed group and decreased in the starved group. [80]

See also

Related Research Articles

<span class="mw-page-title-main">Nematomorpha</span> Phylum of parasitoid animals, horsehair worms

Nematomorpha are a phylum of parasitoid animals superficially similar to nematode worms in morphology, hence the name. Most species range in size from 50 to 100 millimetres long, reaching 2 metres in extreme cases, and 1 to 3 millimetres in diameter. Horsehair worms can be discovered in damp areas, such as watering troughs, swimming pools, streams, puddles, and cisterns. The adult worms are free-living, but the larvae are parasitic on arthropods, such as beetles, cockroaches, mantises, orthopterans, and crustaceans. About 351 freshwater species are known and a conservative estimate suggests that there may be about 2000 freshwater species worldwide. The name "Gordian" stems from the legendary Gordian knot. This relates to the fact that nematomorphs often coil themselves in tight balls that resemble knots.

<span class="mw-page-title-main">Enoplea</span> Class of roundworms

Enoplea (enopleans) is a class, which with the classes Secernentea and Chromadorea make up the phylum Nematoda in current taxonomy. The Enoplea are considered to be a more ancestral group than the Chromadorea, and researchers have referred to its members as the "ancestrally diverged nematodes", compared to the "more recently diverged nematodes" of Chromadorea.

<span class="mw-page-title-main">Root-knot nematode</span> Genus of parasitic worms

Root-knot nematodes are plant-parasitic nematodes from the genus Meloidogyne. They exist in soil in areas with hot climates or short winters. About 2000 plants worldwide are susceptible to infection by root-knot nematodes and they cause approximately 5% of global crop loss. Root-knot nematode larvae infect plant roots, causing the development of root-knot galls that drain the plant's photosynthate and nutrients. Infection of young plants may be lethal, while infection of mature plants causes decreased yield.

<i>Ascaris</i> Genus of roundworms

Ascaris is a genus of parasitic nematode worms known as the "small intestinal roundworms", which is a type of parasitic worm. One species, Ascaris lumbricoides, affects humans and causes the disease ascariasis. Another species, Ascaris suum, typically infects pigs. Parascaris equorum, the equine roundworm, is also commonly called an "ascarid".

<i>Ascaridia galli</i> Species of roundworm

Ascaridia galli is a parasitic roundworm belonging to the phylum Nematoda. Nematodes of the genus Ascaridia are essentially intestinal parasites of birds. A. galli is the most prevalent and pathogenic species, especially in domestic fowl, Gallus domesticus. It causes ascaridiasis, a disease of poultry due to heavy worm infection, particularly in chickens and turkeys. It inhabits the small intestine, and can be occasionally seen in commercial eggs.

<span class="mw-page-title-main">Secernentea</span> Class of roundworms

Secernentea was a class of nematodes in the Classical Phylogeny System and is no longer in use. This morphological-based classification system has been replaced by the Modern Phylogeny system, where taxonomy assignment is based on small subunit ribosomal DNA.

<span class="mw-page-title-main">Parasitic worm</span> Large type of parasitic organism

Parasitic worms, also known as helminths, are large macroparasites; adults can generally be seen with the naked eye. Many are intestinal worms that are soil-transmitted and infect the gastrointestinal tract. Other parasitic worms such as schistosomes reside in blood vessels.

<span class="mw-page-title-main">Entomopathogenic nematode</span> Group of thread worms that attack insects

Entomopathogenic nematodes (EPN) are a group of nematodes (thread worms), that cause death to insects. The term entomopathogenic has a Greek origin, with entomon, meaning insect, and pathogenic, which means causing disease. They are animals that occupy a bio control middle ground between microbial pathogens and predator/parasitoids. Although many other parasitic thread worms cause diseases in living organisms (sterilizing or otherwise debilitating their host), entomopathogenic nematodes are specific in only infecting insects. Entomopathogenic nematodes (EPNs) live parasitically inside the infected insect host, and so they are termed as endoparasitic. They infect many different types of insects living in the soil like the larval forms of moths, butterflies, flies and beetles as well as adult forms of beetles, grasshoppers and crickets. EPNs have been found in all over the world and a range of ecologically diverse habitats. They are highly diverse, complex and specialized. The most commonly studied entomopathogenic nematodes are those that can be used in the biological control of harmful insects, the members of Steinernematidae and Heterorhabditidae (Gaugler 2006). They are the only insect-parasitic nematodes possessing an optimal balance of biological control attributes. (Cranshaw & Zimmerman 2013).

<span class="mw-page-title-main">Chromadorea</span> Class of roundworms

The Chromadorea are a class of the roundworm phylum, Nematoda. They contain a single subclass (Chromadoria) and several orders. With such a redundant arrangement, the Chromadoria are liable to be divided if the orders are found to form several clades, or abandoned if they are found to constitute a single radiation.

Heterodera sacchari, the sugarcane cyst nematode, mitotic parthenogenic sedentary endoparasitic nematode. This plant-parasitic nematode infects the roots of sugarcane, and the female nematode eventually becomes a thick-walled cyst filled with eggs. Aboveground symptoms are species specific and are similar to those caused by other Heterodera species. Symptoms include: stunted and chlorotic plants, and reduced root growth. Seedlings may be killed in heavily infested soils.

<span class="mw-page-title-main">Nematology</span> Scientific study of roundworms

Nematology is the scientific discipline concerned with the study of nematodes, or roundworms. Although nematological investigation dates back to the days of Aristotle or even earlier, nematology as an independent discipline has its recognizable beginnings in the mid to late 19th century.

<span class="mw-page-title-main">Worm</span> Limbless invertebrate animal

Worms are many different distantly related bilateral animals that typically have a long cylindrical tube-like body, no limbs, and no eyes.

<span class="mw-page-title-main">Mermithidae</span> Family of roundworms

Mermithidae is a family of nematode worms that are endoparasites in arthropods. As early as 1877, Mermithidae was listed as one of nine subdivisions of the Nematoidea. Mermithidae are confused with the horsehair worms of the phylum Nematomorpha that have a similar life history and appearance. is a publicly available resource dedicated to the study of parasitic nematodes. It stemmed from an Expressed Sequence Tag (EST) project that began at The Genome Institute at Washington University School of Medicine. The site was launched in 2000 to accompany the project “A Genomic Approach to Parasites from the Phylum Nematoda,” funded by the National Institute of Allergy and Infectious Diseases (NIAID). It was created to provide access to the data from this project and as a broader resource for the scientific community studying parasitic nematodes.

<span class="mw-page-title-main">Diplogasteridae</span> Family of roundworms

Diplogastridae, formerly Diplogasteridae, are a family of nematodes (roundworms) known from a wide range of habitats, often in commensal or parasitic associations with insects.

Trichodoridae is a family of terrestrial root feeding nematodes, being one of two that constitute suborder Triplonchida. They are economically important plant parasites and virus vectors.

<i>Trichodorus</i> Genus of roundworms

Trichodorus is a genus of terrestrial root feeding (stubby-root) nematodes in the Trichodoridae family (trichorids), being one of five genera. They are economically important plant parasites and virus vectors.

Host microbe interactions in <i>Caenorhabditis elegans</i>

Caenorhabditis elegans- microbe interactions are defined as any interaction that encompasses the association with microbes that temporarily or permanently live in or on the nematode C. elegans. The microbes can engage in a commensal, mutualistic or pathogenic interaction with the host. These include bacterial, viral, unicellular eukaryotic, and fungal interactions. In nature C. elegans harbours a diverse set of microbes. In contrast, C. elegans strains that are cultivated in laboratories for research purposes have lost the natural associated microbial communities and are commonly maintained on a single bacterial strain, Escherichia coli OP50. However, E. coli OP50 does not allow for reverse genetic screens because RNAi libraries have only been generated in strain HT115. This limits the ability to study bacterial effects on host phenotypes. The host microbe interactions of C. elegans are closely studied because of their orthologs in humans. Therefore, the better we understand the host interactions of C. elegans the better we can understand the host interactions within the human body.

<i>Steinernema carpocapsae</i> Species of roundworm

Steinernema carpocapsae is an entomopathogenic nematode and a member of the family Steinernematidae. It is a parasitic roundworm that has evolved an insect-killing symbiosis with bacteria, and kills its hosts within a few days of infection. This parasite releases its bacterial symbiont along with a variety of proteins into the host after infection, and together the bacteria and nematode overcome host immunity and kill the host quickly. As a consequence, S. carpocapsae has been widely adapted for use as a biological control agent in agriculture and pest control. S. carpocapsae is considered a generalist parasite and has been effectively used to control a variety of insects including: Webworms, cutworms, armyworms, girdlers, some weevils, and wood-borers. This species is an example of an "ambush" forager, standing on its tail in an upright position near the soil surface and attaching to passing hosts, even capable of jumping. As an ambush forager, S. carpocapsae is thought to be especially effective when applied against highly mobile surface-adapted insects. S. carpocapsae can sense carbon dioxide production, making the spiracles a key portal of entry into its insect hosts. It is most effective at temperatures ranging from 22–28 °C (72–82 °F).

Nectonema is a genus of marine horsehair worms first described by Addison E. Verrill in 1879. It is the only genus in the family Nectonematidae described by Henry B. Ward in 1892, in the order Nectonematoidea, and in the class Nectonematoida. The genus contains five species; all species have a parasitic larval stage inhabiting crustacean hosts and a free-living adult stage that swims in open water.


  1. "Nematode Fossils—Nematoda". The Virtual Fossil Museum.
  2. "Classification of Animal Parasites". Archived from the original on 2017-10-06. Retrieved 2016-02-25.
  3. Garcia, Lynne (29 October 1999). "Classification of Human Parasites, Vectors, and Similar Organisms". Clinical Infectious Diseases. Los Angeles, California: Department of Pathology and Laboratory Medicine, UCLA Medical Center. 29 (4): 734–6. doi: 10.1086/520425 . PMID   10589879.
  4. Hay, Frank. "Nematodes - the good, the bad and the ugly". APS News & Views. American Phytopathological Society. Retrieved 28 November 2020.
  5. Baker, Emily A.; Woollard, Alison (2019). "How Weird is the Worm? Evolution of the Developmental Gene Toolkit in Caenorhabditis elegans". Journal of Developmental Biology. 7 (4): 19. doi: 10.3390/jdb7040019 . PMC   6956190 . PMID   31569401.
  6. Hodda, M (2011). "Phylum Nematoda Cobb, 1932. In: Zhang, Z.-Q. (Ed.) Animal biodiversity: An outline of higher-level classification and survey of taxonomic richness". Zootaxa. 3148: 63–95. doi:10.11646/zootaxa.3148.1.11.
  7. Zhang, Z (2013). "Animal biodiversity: An update of classification and diversity in 2013. In: Zhang, Z.-Q. (Ed.) Animal Biodiversity: An Outline of Higher-level Classification and Survey of Taxonomic Richness (Addenda 2013)". Zootaxa. 3703 (1): 5–11. doi:10.11646/zootaxa.3703.1.3.
  8. "Recent developments in marine benthic biodiversity research". ResearchGate. Retrieved 5 November 2018.
  9. Lambshead, PJD (1993). "Recent developments in marine benthic biodiversity research". Oceanis. 19 (6): 5–24.
  10. Anderson, Roy C. (8 February 2000). Nematode Parasites of Vertebrates: Their Development and Transmission. CABI. pp. 1–2. ISBN   9780851994215. Estimates of 500,000 to a million species have no basis in fact.
  11. Lambshead PJ, Boucher G (2003). "Marine nematode deep-sea biodiversity—hyperdiverse or hype?". Journal of Biogeography. 30 (4): 475–485. doi:10.1046/j.1365-2699.2003.00843.x. S2CID   86504164.
  12. Qing X, Bert W (2019). "Family Tylenchidae (Nematoda): an overview and perspectives". Organisms Diversity & Evolution. 19 (3): 391–408. doi:10.1007/s13127-019-00404-4. S2CID   190873905.
  13. Floyd R, Abebe E, Papert A, Blaxter M (2002). "Molecular barcodes for soil nematode identification". Molecular Ecology. 11 (4): 839–850. doi:10.1046/j.1365-294X.2002.01485.x. PMID   11972769. S2CID   12955921.
  14. Derycke S, Sheibani Tezerji R, Rigaux A, Moens T (2012). "Investigating the ecology and evolution of cryptic marine nematode species through quantitative real-time PCR of the ribosomal ITS region". Molecular Ecology Resources. 12 (4): 607–619. doi:10.1111/j.1755-0998.2012.03128.x. hdl: 1854/LU-3127487 . PMID   22385909. S2CID   4818657.
  15. Blaxter, Mark (2016). "Imagining Sisyphus happy: DNA barcoding and the unnamed majority". Philosophical Transactions of the Royal Society of London B. 371 (1702): 20150329. doi:10.1098/rstb.2015.0329. PMC   4971181 . PMID   27481781.
  16. Borgonie G, García-Moyano A, Litthauer D, Bert W, Bester A, van Heerden E, Möller C, Erasmus M, Onstott TC (June 2011). "Nematoda from the terrestrial deep subsurface of South Africa". Nature. 474 (7349): 79–82. Bibcode:2011Natur.474...79B. doi:10.1038/nature09974. hdl: 1854/LU-1269676 . PMID   21637257. S2CID   4399763.
  17. Lemonick MD (8 June 2011). "Could 'worms from Hell' mean there's life in space?". Time. ISSN   0040-781X. Archived from the original on 10 June 2011. Retrieved 8 June 2011.
  18. Bhanoo SN (1 June 2011). "Nematode found in mine is first subsurface multicellular organism". The New York Times. ISSN   0362-4331 . Retrieved 13 June 2011.
  19. "Gold mine". Nature. 474 (7349): 6. June 2011. doi: 10.1038/474006b . PMID   21637213.
  20. Drake N (1 June 2011). "Subterranean worms from hell: Nature News". Nature News. doi: 10.1038/news.2011.342 . Retrieved 13 June 2011.
  21. Borgonie G, García-Moyano A, Litthauer D, Bert W, Bester A, van Heerden E, Möller C, Erasmus M, Onstott TC (2 June 2011). "Nematoda from the terrestrial deep subsurface of South Africa". Nature. 474 (7349): 79–82. Bibcode:2011Natur.474...79B. doi:10.1038/nature09974. hdl: 1854/LU-1269676 . ISSN   0028-0836. PMID   21637257. S2CID   4399763.
  22. Danovaro R, Gambi C, Dell'Anno A, Corinaldesi C, Fraschetti S, Vanreusel A, Vincx M, Gooday AJ (January 2008). "Exponential decline of deep-sea ecosystem functioning linked to benthic biodiversity loss". Curr. Biol. 18 (1): 1–8. doi: 10.1016/j.cub.2007.11.056 . PMID   18164201. S2CID   15272791.
  23. 1 2 van den Hoogen, Johan; Geisen, Stefan; Routh, Devin; Ferris, Howard; Traunspurger, Walter; Wardle, David A.; de Goede, Ron G. M.; Adams, Byron J.; Ahmad, Wasim (2019-07-24). "Soil nematode abundance and functional group composition at a global scale". Nature. 572 (7768): 194–198. Bibcode:2019Natur.572..194V. doi:10.1038/s41586-019-1418-6. hdl: 20.500.11755/c8c7bc6a-585c-4a13-9e36-4851939c1b10 . ISSN   0028-0836. PMID   31341281. S2CID   198492891. Archived from the original on 2020-03-02. Retrieved 2019-12-10.
  24. Platt HM (1994). "foreword". In Lorenzen S, Lorenzen SA (eds.). The phylogenetic systematics of freeliving nematodes. London, UK: The Ray Society. ISBN   978-0-903874-22-9.
  25. Cary, S. Craig; Green, T. G. Allan; Storey, Bryan C.; Sparrow, Ashley D.; Hogg, Ian D.; Katurji, Marwan; Zawar-Reza, Peyman; Jones, Irfon; Stichbury, Glen A. (2019-02-15). "Biotic interactions are an unexpected yet critical control on the complexity of an abiotically driven polar ecosystem". Communications Biology. 2 (1): 62. doi:10.1038/s42003-018-0274-5. ISSN   2399-3642. PMC   6377621 . PMID   30793041.
  26. Adams, Byron J.; Wall, Diana H.; Storey, Bryan C.; Green, T. G. Allan; Barrett, John E.; S. Craig Cary; Hopkins, David W.; Lee, Charles K.; Bottos, Eric M. (2019-02-15). "Nematodes in a polar desert reveal the relative role of biotic interactions in the coexistence of soil animals". Communications Biology. 2 (1): 63. doi:10.1038/s42003-018-0260-y. ISSN   2399-3642. PMC   6377602 . PMID   30793042.
  27. 1 2 Roy C. Anderson (8 February 2000). Nematode Parasites of Vertebrates: Their development and transmission. CABI. p. 1. ISBN   978-0-85199-786-5.
  28. Cobb, Nathan (1914). "Nematodes and their relationships". Yearbook. United States Department of Agriculture. pp. 472, 457–490. Archived from the original on 9 June 2016. Retrieved 25 September 2012. Quote on p. 472.
  29. 1 2 3 Chitwood BG (1957). "The English word "Nema" revised". Systematic Biology. 4 (45): 1619. doi:10.2307/sysbio/6.4.184.
  30. Siddiqi MR (2000). Tylenchida: parasites of plants and insects. Wallingford, Oxon, UK: CABI Pub. ISBN   978-0-85199-202-0.
  31. Schmidt-Rhaesa A (2014). "Gastrotricha, Cycloneuralia and Gnathifera: General History and Phylogeny". In Schmidt-Rhaesa A (ed.). Handbook of Zoology (founded by W. Kükenthal). Vol. 1, Nematomorpha, Priapulida, Kinorhyncha, Loricifera. Berlin, Boston: de Gruyter.
  32. Cobb NA (1919). "The orders and classes of nemas". Contrib. Sci. Nematol. 8: 213–216.
  33. Wilson, E. O. "Phylum Nemata". Plant and insect parasitic nematodes. Archived from the original on 30 April 2018. Retrieved 29 April 2018.
  34. "ITIS report: Nematoda". Retrieved 12 June 2012.
  35. "Bilateria". Tree of Life Web Project. Tree of Life Web Project. 2002. Retrieved 2 November 2008.
  36. Chitwood BG, Chitwood MB (1933). "The characters of a protonematode". J Parasitol. 20: 130.
  37. Chitwood BG (1937). "A revised classification of the Nematoda". Papers on Helminthology published in commemoration of the 30 year Jubileum of ... K.J. Skrjabin ... Moscow: All-Union Lenin Academy of Agricultural Sciences. pp. 67–79.
  38. Chitwood BG (1958). "The designation of official names for higher taxa of invertebrates". Bull Zool Nomencl. 15: 860–895. doi: 10.5962/bhl.part.19410 .
  39. Coghlan, A. (7 Sep 2005). "Nematode genome evolution" (PDF). WormBook: 1–15. doi:10.1895/wormbook.1.15.1. PMC   4781476 . PMID   18050393. Archived from the original (PDF) on 5 March 2016. Retrieved 13 January 2016.
  40. Blaxter ML, De Ley P, Garey JR, Liu LX, Scheldeman P, Vierstraete A, Vanfleteren JR, Mackey LY, Dorris M, Frisse LM, Vida JT, Thomas WK (March 1998). "A molecular evolutionary framework for the phylum Nematoda". Nature. 392 (6671): 71–75. Bibcode:1998Natur.392...71B. doi:10.1038/32160. PMID   9510248. S2CID   4301939.
  41. "Nematoda". Tree of Life Web Project. Tree of Life Web Project. 2002. Retrieved 2 November 2008.
  42. Holterman M, van der Wurff A, van den Elsen S, van Megen H, Bongers T, Holovachov O, Bakker J, Helder J (2006). "Phylum-wide analysis of SSU rDNA reveals deep phylogenetic relationships among nematodes and accelerated evolution toward crown Clades". Mol Biol Evol. 23 (9): 1792–1800. doi: 10.1093/molbev/msl044 . PMID   16790472.
  43. 1 2 Khadka, Bijendra; Chatterjee, Tonuka; Gupta, Bhagwati P.; Gupta, Radhey S. (2019-09-24). "Genomic Analyses Identify Novel Molecular Signatures Specific for the Caenorhabditis and other Nematode Taxa Providing Novel Means for Genetic and Biochemical Studies". Genes. 10 (10): 739. doi: 10.3390/genes10100739 . ISSN   2073-4425. PMC   6826867 . PMID   31554175.
  44. "959 Nematode Genomes – NematodeGenomes". 11 November 2011. Archived from the original on 5 August 2015. Retrieved 12 June 2012.
  45. Liu GH, Shao R, Li JY, Zhou DH, Li H, Zhu XQ (2013). "The complete mitochondrial genomes of three parasitic nematodes of birds: a unique gene order and insights into nematode phylogeny". BMC Genomics. 14 (1): 414. doi:10.1186/1471-2164-14-414. PMC   3693896 . PMID   23800363.
  46. Hodda, M. (2022). "Phylum Nematoda: a classification, catalogue and index of valid genera, with a census of valid species". Zootaxa. 5114 (1): 1–289. doi: 10.11646/zootaxa.5114.1.1 . PMID   35391386.
  47. 1 2 Nyle C. Brady & Ray R. Weil (2009). Elements of the Nature and Properties of Soils (3rd ed.). Prentice Hall. ISBN   9780135014332.
  48. Ruppert EE, Fox RS, Barnes RD (2004). Invertebrate Zoology: A Functional Evolutionary Approach (7th ed.). Belmont, California: Brooks/Cole. ISBN   978-0-03-025982-1.
  49. Weischer B, Brown DJ (2000). An Introduction to Nematodes: General Nematology. Sofia, Bulgaria: Pensoft. pp. 75–76. ISBN   978-954-642-087-9.
  50. 1 2 3 4 5 6 7 8 9 10 11 12 13 Barnes RG (1980). Invertebrate zoology. Philadelphia: Sanders College. ISBN   978-0-03-056747-6.
  51. Free-living Marine Nematodes from the East China Sea
  52. "The sensory cilia of Caenorhabditis elegans".
  53. Kavlie, RG; Kernan, MJ; Eberl, DF (May 2010). "Hearing in Drosophila requires TilB, a conserved protein associated with ciliary motility". Genetics. 185 (1): 177–88. doi:10.1534/genetics.110.114009. PMC   2870953 . PMID   20215474.
  54. Lalošević, V.; Lalošević, D.; Capo, I.; Simin, V.; Galfi, A.; Traversa, D. (2013). "High infection rate of zoonotic Eucoleus aerophilus infection in foxes from Serbia". Parasite. 20: 3. doi:10.1051/parasite/2012003. PMC   3718516 . PMID   23340229.
  55. Bond, Alan Thomas; Huffman, David George (2023). "Nematode eggshells: A new anatomical and terminological framework, with a critical review of relevant literature and suggested guidelines for the interpretation and reporting of eggshell imagery". Parasite. 30: 6. doi:10.1051/parasite/2023007. Open Access logo PLoS transparent.svg
  56. Bell G (1982). The masterpiece of nature: the evolution and genetics of sexuality. Berkeley: University of California Press. ISBN   978-0-520-04583-5.
  57. 1 2 Johnigk SA, Ehlers RU (1999). "Endotokia matricida in hermaphrodites of Heterorhabditis spp. and the effect of the food supply". Nematology. 1 (7–8): 717–726. doi:10.1163/156854199508748. ISSN   1388-5545. S2CID   85279418.
  58. Haag ES, Helder J, Mooijman PJ, Yin D, Hu S (2018). "The Evolution of Uniparental Reproduction in Rhabditina Nematodes: Phylogenetic Patterns, Developmental Causes, and Surprising Consequences". In Leonard, J.L. (ed.). Transitions Between Sexual Systems. Springer. pp. 99–122. doi:10.1007/978-3-319-94139-4_4. ISBN   978-3-319-94137-0.
  59. Yanoviak SP, Kaspari M, Dudley R, Poinar G (April 2008). "Parasite-induced fruit mimicry in a tropical canopy ant". Am. Nat. 171 (4): 536–44. doi:10.1086/528968. PMID   18279076. S2CID   23857167.
  60. Batra, Suzanne W. T. (1965-10-01). "Organisms associated with Lasioglossum zephyrum (Hymenoptera: Halictidae)". Journal of the Kansas Entomological Society. 38 (4): 367–389. JSTOR   25083474.
  61. Purcell M, Johnson MW, Lebeck LM, Hara AH (1992). "Biological Control of Helicoverpa zea (Lepidoptera: Noctuidae) with Steinernema carpocapsae (Rhabditida: Steinernematidae) in Corn Used as a Trap Crop". Environmental Entomology. 21 (6): 1441–1447. doi:10.1093/ee/21.6.1441.{{cite journal}}: CS1 maint: uses authors parameter (link)
  62. Wilson, M. J.; Glen, D. M.; George, S. K. (January 1993). "The rhabditid nematode Phasmarhabditis hermaphrodita as a potential biological control agent for slugs". Biocontrol Science and Technology. 3 (4): 503–511. doi:10.1080/09583159309355306.
  63. Rajamani, Meenatchi; Negi, Aditi (2021). "Biopesticides for Pest Management". Sustainable Bioeconomy: 239–266. doi:10.1007/978-981-15-7321-7_11. ISBN   978-981-15-7320-0. S2CID   228845133.
  64. Ehlers, R.-U.; Hokkanen, H. M. T. (September 1996). "Insect Biocontrol with Non-endemic Entomopathogenic Nematodes (Steinernema and Heterorhabditis spp.): Conclusions and Recommendations of a Combined OECD and COST Workshop on Scientific and Regulatory Policy Issues". Biocontrol Science and Technology. 6 (3): 295–302. doi:10.1080/09583159631280.
  65. Smiley RW, Dababat AA, Iqbal S, Jones MG, Maafi ZT, Peng D, Subbotin SA, Waeyenberge L (2017). "Cereal Cyst Nematodes: A Complex and Destructive Group of Heterodera Species". Plant Disease . American Phytopathological Society. 101 (10): 1692–1720. doi: 10.1094/pdis-03-17-0355-fe . ISSN   0191-2917. PMID   30676930.
  66. Kloosterman, Stephen (April 2022). "Small Soldiers". Green House Product News. Vol. 32, no. 4. pp. 26–29.
  67. Riotte L (1975). Secrets of companion planting for successful gardening. p. 7.
  68. USapplication 2008072494,Stoner RJ, Linden JC,"Micronutrient elicitor for treating nematodes in field crops",published 2008-03-27
  69. Loothfar R, Tony S (22 March 2005). "Suppression of root knot nematode (Meloidogyne javanica) after incorporation of Indian mustard cv. Nemfix as green manure and seed meal in vineyards". Australasian Plant Pathology . 34 (1): 77–83. doi:10.1071/AP04081. S2CID   24299033 . Retrieved 14 June 2010.
  70. Warshafsky, Z. T., Tuckey, T. D., Vogelbein, W. K., Latour, R. J., & Wargo, A. R. (2019). Temporal, spatial, and biological variation of nematode epidemiology in American eels. Canadian Journal of Fisheries & Aquatic Sciences, 76(10), 1808–1818.
  71. Jithendran, & Bhat, T. . (1999). Epidemiology of Parasitoses in Dairy Animals in the North West Humid Himalayan Region of India with Particular Reference to Gastrointestinal Nematodes. Tropical Animal Health and Production, 31(4), 205–214.
  72. Morgan, & van Dijk, J. (2012). Climate and the epidemiology of gastrointestinal nematode infections of sheep in Europe. Veterinary Parasitology, 189(1), 8–14.
  73. Stepek, Gillian; Buttle, David J; Duce, Ian R; Behnke, Jerzy M (October 2006). "Human gastrointestinal nematode infections: are new control methods required?". International Journal of Experimental Pathology. 87 (5): 325–341. doi:10.1111/j.1365-2613.2006.00495.x. ISSN   0959-9673. PMC   2517378 . PMID   16965561.
  74. Nosowitz, Fan (2021-02-08). "How California Crops Fought Off a Pest Without Using Pesticide". Modern Farmer. Retrieved 2021-02-15.
  75. Pramer C (1964). "Nematode-trapping fungi". Science. 144 (3617): 382–388. Bibcode:1964Sci...144..382P. doi:10.1126/science.144.3617.382. PMID   14169325.
  76. Hauser JT (December 1985). "Nematode-trapping fungi" (PDF). Carnivorous Plant Newsletter. 14 (1): 8–11.
  77. Ahrén D, Ursing BM, Tunlid A (1998). "Phylogeny of nematode-trapping fungi based on 18S rDNA sequences". FEMS Microbiology Letters. 158 (2): 179–184. doi:10.1016/s0378-1097(97)00519-3. PMID   9465391.
  78. "Columbia Survivors". Astrobiology Magazine. Jan 1, 2006. Archived from the original on March 4, 2016. Retrieved January 12, 2016.{{cite magazine}}: CS1 maint: unfit URL (link)
  79. Szewczyk, Nathaniel J.; Mancinelli, Rocco L.; McLamb, William; Reed, David; Blumberg, Baruch S.; Conley, Catharine A. (December 2005). "Caenorhabditis elegans Survives Atmospheric Breakup of STS–107, Space Shuttle Columbia". Astrobiology. 5 (6): 690–705. Bibcode:2005AsBio...5..690S. doi:10.1089/ast.2005.5.690. PMID   16379525.
  80. Raymond, Mélianie R.; Wharton, David A. (February 2013). "The ability of the Antarctic nematode Panagrolaimus davidi to survive intracellular freezing is dependent upon nutritional status". Journal of Comparative Physiology B. 183 (2): 181–188. doi:10.1007/s00360-012-0697-0. ISSN   0174-1578. PMID   22836298. S2CID   17294698.

Further reading