Neuromodulation (disambiguation)

Last updated

Neuromodulation is the physiological process by which a given neuron uses one or more chemicals to regulate diverse populations of neurons.

Neuromodulation is the physiological process by which a given neuron uses one or more chemicals to regulate diverse populations of neurons. This is in contrast to synaptic transmission in which an axonal terminal secretes neurotransmitters to target fast-acting receptors of only one particular partner neuron. Neuromodulators are neurotransmitters that diffuse through neural tissue to affect slow-acting receptors of many neurons. Major neuromodulators in the central nervous system include dopamine, serotonin, acetylcholine, histamine, and norepinephrine. Neuromodulators are known to have modulatory effects on target areas such as decorrelation of spiking, increase of firing rate, sharpening of spatial tuning curves, maintenance of increased spiking during working memory.

Neuromodulation may also refer to:

Neuromodulation is "the alteration of nerve activity through targeted delivery of a stimulus, such as electrical stimulation or chemical agents, to specific neurological sites in the body". It is carried out to normalize – or modulate – nervous tissue function. Neuromodulation is an evolving therapy that can involve a range of electromagnetic stimuli such as a magnetic field (rTMS), an electric current, or a drug instilled directly in the subdural space. Emerging applications involve targeted introduction of genes or gene regulators and light (optogenetics), and by 2014, these had been at minimum demonstrated in mammalian models, or first-in-human data had been acquired. The most clinical experience has been with electrical stimulation.

<i>Neuromodulation</i> (journal) journal

Neuromodulation: Technology at the Neural Interface is a peer-reviewed medical journal covering clinical, translational, and basic science research in the field of neuromodulation. It was established in 1998 by founding editor Elliot S. Krames and is published by Wiley on behalf of the International Neuromodulation Society. The editor-in-chief is Robert M. Levy. The acting editor-in-chief is Robert Foreman, PhD, professor and chair emeritus of the Department of Physiology at the University of Oklahoma Health Sciences Center.

Related Research Articles

Neuron electrically excitable cell

A neuron, also known as a neurone or nerve cell, is an electrically excitable cell that communicates with other cells via specialized connections called synapses. It is the main component of nervous tissue. All animals except sponges and placozoans have neurons, but other multicellular organisms such as plants do not.

Acetylcholine chemical compound

Acetylcholine (ACh) is an organic chemical that functions in the brain and body of many types of animals, and humans, as a neurotransmitter—a chemical message released by nerve cells to send signals to other cells [neurons, muscle cells, and gland cells]. Its name is derived from its chemical structure: it is an ester of acetic acid and choline. Parts in the body that use or are affected by acetylcholine are referred to as cholinergic. Substances that interfere with acetylcholine activity are called anticholinergics. Acetylcholine is the neurotransmitter used at the neuromuscular junction—in other words, it is the chemical that motor neurons of the nervous system release in order to activate muscles. This property means that drugs that affect cholinergic systems can have very dangerous effects ranging from paralysis to convulsions. Acetylcholine is also a neurotransmitter in the autonomic nervous system, both as an internal transmitter for the sympathetic nervous system and as the final product released by the parasympathetic nervous system.

Neurochemistry is the study of chemicals, including neurotransmitters and other molecules such as psychopharmaceuticals and neuropeptides, that control and influence the physiology of the nervous system. This field within neuroscience examines how neurochemicals influence the operation of neurons, synapses, and neural networks. Neurochemists analyze the biochemistry and molecular biology of organic compounds in the nervous system, and their roles in such neural processes including cortical plasticity, neurogenesis, and neural differentiation.

Critical period maturational stage in the lifespan of an organism during which the nervous system is especially sensitive to certain environmental stimuli

In developmental psychology and developmental biology, a critical period is a maturational stage in the lifespan of an organism during which the nervous system is especially sensitive to certain environmental stimuli. If, for some reason, the organism does not receive the appropriate stimulus during this "critical period" to learn a given skill or trait, it may be difficult, ultimately less successful, or even impossible, to develop some functions later in life. Functions that are indispensable to an organism's survival, such as vision, are particularly likely to develop during critical periods. "Critical period" also relates to the ability to acquire one's first language. Researchers found that people who passed the "critical period" would not acquire their first language fluently.

Central pattern generators (CPGs) are biological neural circuits that produce rhythmic outputs in the absence of rhythmic input. They are the source of the tightly-coupled patterns of neural activity that drive rhythmic motions like walking, breathing, or chewing. The ability to function without input from higher brain areas still requires modulatory inputs, and their outputs are not fixed. Flexibility in response to sensory input is a fundamental quality of CPG-driven behavior. To be classified as a rhythmic generator, a CPG requires:

  1. "two or more processes that interact such that each process sequentially increases and decreases, and
  2. that, as a result of this interaction, the system repeatedly returns to its starting condition."
Spinal cord stimulator

A Spinal Cord Stimulator (SCS) or Dorsal Column Stimulator (DCS) is a type of implantable neuromodulation device that is used to send electrical signals to select areas of the spinal cord for the treatment of certain pain conditions. SCS is a consideration for people who have a pain condition that has not responded to more conservative therapy.

Michael Hasselmo is a neuroscientist at Boston University.

North American Neuromodulation Society is a scientific organization that serves to promote and advance neuromodulation as a treatment for various diseases.

Pre-Bötzinger complex

The pre-Bötzinger complex (preBötC) is a cluster of interneurons in the ventral respiratory group of the medulla of the brainstem. This complex has been proven to be essential for the generation of the respiratory rhythm in mammals. The exact mechanism of the rhythm generation and transmission to motor nuclei remains controversial and the topic of much research.

Neurorobotics, a combined study of neuroscience, robotics, and artificial intelligence, is the science and technology of embodied autonomous neural systems. Neural systems include brain-inspired algorithms, computational models of biological neural networks and actual biological systems. Such neural systems can be embodied in machines with mechanic or any other forms of physical actuation. This includes robots, prosthetic or wearable systems but also, at smaller scale, micro-machines and, at the larger scales, furniture and infrastructures.

SCN8A protein-coding gene in the species Homo sapiens

Sodium channel, voltage gated, type VIII, alpha subunit also known as SCN8A or Nav1.6 is a membrane protein encoded by the SCN8A gene. Nav1.6 is one sodium channel isoform and is the primary voltage-gated sodium channel at the nodes of Ranvier. The channels are highly concentrated in sensory and motor axons in the peripheral nervous system and cluster at the nodes in the central nervous system.

The International Neuromodulation Society (INS) is a non-profit group of clinicians, scientists and engineers dedicated to the scientific development and awareness of neuromodulation – the alteration of nerve activity through the delivery of electromagnetic stimulation or chemical agents to targeted sites of the body. Neuromodulation is a burgeoning field – analysts predicted a 27 percent annual growth rate through 2012. Founded in 1989 and based in San Francisco, CA, the INS educates and promotes the field through meetings, its bimonthly, peer-reviewed journal Neuromodulation: Technology at the Neural Interface and chapter websites.

<i>Journal of Neurotherapy</i> journal

The Journal of Neurotherapy: Investigations in Neuromodulation, Neurofeedback and Applied Neuroscience was a scientific journal for the study and application of neuromodulation and neurofeedback. On December 4, 2013 in volume 17, issue 4, the editor announced that no more issues would be published. It was published quarterly by Taylor & Francis. The journal provided a multidisciplinary perspective on research, treatment, and public policy for neurotherapy. It is indexed by PsycINFO, Excerpta Medica, Scopus, and Ulrichs

Developmental plasticity is a general term referring to changes in neural connections during development as a result of environmental interactions as well as neural changes induced by learning. Much like neuroplasticity or brain plasticity, developmental plasticity is specific to the change in neurons and synaptic connections as a consequence of developmental processes. A child creates most of these connections from birth to early childhood.

Nucleus basalis

The nucleus basalis, also known as the nucleus basalis of Meynert or nucleus basalis magnocellularis, is a group of neurons located mainly in the substantia innominata of the basal forebrain. Most neurons of the nucleus basalis are rich in the neurotransmitter acetylcholine, and they have widespread projections to the neocortex and other brain structures.

Heterosynaptic plasticity

Synaptic plasticity refers to a chemical synapse's ability to undergo changes in strength. Synaptic plasticity is typically input-specific, meaning that the activity in a particular neuron alters the efficacy of a synaptic connection between that neuron and its target. However, in the case of heterosynaptic plasticity, the activity of a particular neuron leads to input unspecific changes in the strength of synaptic connections from other unactivated neurons. A number of distinct forms of heterosynaptic plasticity have been found in a variety of brain regions and organisms. These different forms of heterosynaptic plasticity contribute to a variety of neural processes including associative learning, the development of neural circuits, and homeostasis of synaptic input.

Christiane Linster

Christiane Linster is a Luxembourg-born behavioral neuroscientist and a professor in the Department of Neurobiology and Behavior at Cornell University. Her work focuses on neuromodulation along with learning and memory, using the olfactory system of rodents as a model. Her lab integrates behavioral, electrophysiological, and computational work. Linster was the founding President of the Organization for Computational Neurosciences (OCNS), which was created to coordinate and lead the annual meeting of aspiring and senior computational neuroscientists. Linster served as president of the OCNS from 2003 until 2005 when she was replaced by her successor Ranu Jung.