Nickel(II) chloride

Last updated
Nickel chloride
structure of hexahydrate
Anhydrous Nickel(II)-chloride.jpg
IUPAC name
Nickel(II) chloride
Other names
Nickelous chloride, nickel(II) salt of hydrochloric acid
3D model (JSmol)
ECHA InfoCard 100.028.858 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 231-743-0
PubChem CID
RTECS number
  • QR6480000
UN number 3288 3077
  • InChI=1S/2ClH.Ni/h2*1H;/q;;+2/p-2 Yes check.svgY
  • InChI=1/2ClH.Ni/h2*1H;/q;;+2/p-2
  • Cl[Ni]Cl
Molar mass 129.5994 g/mol (anhydrous)
237.69 g/mol (hexahydrate)
Appearanceyellow-brown crystals
deliquescent (anhydrous)
green crystals (hexahydrate)
Odor odorless
Density 3.55 g/cm3 (anhydrous)
1.92 g/cm3 (hexahydrate)
Melting point 1,001 °C (1,834 °F; 1,274 K) (anhydrous)
140 °C (hexahydrate)
67.5 g/100 mL (25 °C) [1]
87.6 g/100 mL (100 °C)
123.8 g/100 mL (25 °C) [1]
160.7 g/100 mL (100 °C)
Solubility 0.8 g/100 mL (hydrazine)
soluble in ethylene glycol, ethanol, ammonium hydroxide
insoluble in ammonia, nitric acid
Acidity (pKa)4 (hexahydrate)
+6145.0·10−6 cm3/mol
octahedral at Ni
107 J·mol−1·K−1 [2]
−316 kJ·mol−1 [2]
Occupational safety and health (OHS/OSH):
Main hazards
Very toxic (T+)
Irritant (Xi)
Dangerous for the environment (N)
GHS labelling:
GHS-pictogram-skull.svg GHS-pictogram-silhouette.svg GHS-pictogram-pollu.svg
H301, H315, H317, H331, H334, H341, H350i, H360D, H372, H410
P201, P202, P260, P261, P264, P270, P271, P272, P273, P280, P281, P285, P301+P310, P302+P352, P304+P340, P304+P341, P308+P313, P311, P314, P321, P330, P332+P313, P333+P313, P342+P311, P362, P363, P391, P403+P233, P405, P501
NFPA 704 (fire diamond)
Flash point Non-flammable
Lethal dose or concentration (LD, LC):
105 mg/kg (rat, oral) [3]
Safety data sheet (SDS) Fischer Scientific
Related compounds
Other anions
Nickel(II) fluoride
Nickel(II) bromide
Nickel(II) iodide
Other cations
Palladium(II) chloride
Platinum(II) chloride
Platinum(II,IV) chloride
Platinum(IV) chloride
Related compounds
Cobalt(II) chloride
Copper(II) chloride
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Nickel(II) chloride (or just nickel chloride) is the chemical compound NiCl2. The anhydrous salt is yellow, but the more familiar hydrate NiCl2·6H2O is green. Nickel(II) chloride, in various forms, is the most important source of nickel for chemical synthesis. The nickel chlorides are deliquescent, absorbing moisture from the air to form a solution. Nickel salts have been shown to be carcinogenic to the lungs and nasal passages in cases of long-term inhalation exposure. [4]


Production and syntheses

The largest scale production of nickel chloride involves the extraction with hydrochloric acid of nickel matte and residues obtained from roasting refining nickel-containing ores.

Nickel chloride is not usually prepared in the laboratory because it is inexpensive and has a long shelf-life. Heating the hexahydrate in the range 66–133.°C gives the yellowish dihydrate, NiCl2·2H2O. [5] The hydrates convert to the anhydrous form upon heating in thionyl chloride or by heating under a stream of HCl gas. Simply heating the hydrates does not afford the anhydrous dichloride.

The dehydration is accompanied by a color change from green to yellow. [6]

In case one needs a pure compound without presence of cobalt, nickel chloride can be obtained cautiously heating hexaamminenickel chloride: [7]

Structure of NiCl2 and its hydrates

NiCl2 adopts the CdCl2 structure. [8] In this motif, each Ni2+ center is coordinated to six Cl centers, and each chloride is bonded to three Ni(II) centers. In NiCl2 the Ni-Cl bonds have "ionic character". Yellow NiBr2 and black NiI2 adopt similar structures, but with a different packing of the halides, adopting the CdI2 motif.

In contrast, NiCl2·6H2O consists of separated trans-[NiCl2(H2O)4] molecules linked more weakly to adjacent water molecules. Only four of the six water molecules in the formula is bound to the nickel, and the remaining two are water of crystallization. [8] Cobalt(II) chloride hexahydrate has a similar structure. The hexahydrate occurs in nature as the very rare mineral nickelbischofite.

The dihydrate NiCl2·2H2O adopts a structure intermediate between the hexahydrate and the anhydrous forms. It consists of infinite chains of NiCl2, wherein both chloride centers are bridging ligands. The trans sites on the octahedral centers occupied by aquo ligands. [9] A tetrahydrate NiCl2·4H2O is also known.


Nickel(II) chloride solutions are acidic, with a pH of around 4 due to the hydrolysis of the Ni2+ ion.

Coordination complexes

Color of various Ni(II) complexes in aqueous solution. From left to right, [Ni(NH3)6] , [Ni(en)3] , [NiCl4] , [Ni(H2O)6] Color of various Ni(II) complexes in aqueous solution.jpg
Color of various Ni(II) complexes in aqueous solution. From left to right, [Ni(NH3)6] , [Ni(en)3] , [NiCl4] , [Ni(H2O)6]

Most of the reactions ascribed to "nickel chloride" involve the hexahydrate, although specialized reactions require the anhydrous form.

Reactions starting from NiCl2·6H2O can be used to form a variety of nickel coordination complexes because the H2O ligands are rapidly displaced by ammonia, amines, thioethers, thiolates, and organophosphines. In some derivatives, the chloride remains within the coordination sphere, whereas chloride is displaced with highly basic ligands. Illustrative complexes include:

[Ni(NH3)6]Cl2 blue/violetparamagneticoctahedral
NiCl2(dppe) orangediamagneticsquare planar
[Ni(CN)4]2−colorlessdiamagneticsquare planar
[NiCl4]2− [10] [11] Yellowish-greenparamagnetictetrahedral
Crystals of hexammine nickel chloride Hexammine nickel chloride, bulk.jpg
Crystals of hexammine nickel chloride

Some nickel chloride complexes exist as an equilibrium mixture of two geometries; these examples are some of the most dramatic illustrations of structural isomerism for a given coordination number. For example, NiCl2(PPh3)2, containing four-coordinate Ni(II), exists in solution as a mixture of both the diamagnetic square planar and the paramagnetic tetrahedral isomers. Square planar complexes of nickel can often form five-coordinate adducts.

NiCl2 is the precursor to acetylacetonate complexes Ni(acac)2(H2O)2 and the benzene-soluble (Ni(acac)2)3, which is a precursor to Ni(1,5-cyclooctadiene)2, an important reagent in organonickel chemistry.

In the presence of water scavengers, hydrated nickel(II) chloride reacts with dimethoxyethane (dme) to form the molecular complex NiCl2(dme)2. [5] The dme ligands in this complex are labile. For example, this complex reacts with sodium cyclopentadienide to give the sandwich compound nickelocene.

Hexammine nickel chloride complex is soluble when respective cobalt complex is not, which allows for easy separating of these close-related metals in laboratory conditions.

Applications in organic synthesis

NiCl2 and its hydrate are occasionally useful in organic synthesis. [12]

ArI + P(OEt)3 → ArP(O)(OEt)2 + EtI

NiCl2-dme (or NiCl2-glyme) is used due to its increased solubility in comparison to the hexahydrate. [13]

Application of NiCl2 precatalyst. NiCl2 schemes.tif
Application of NiCl2 precatalyst.

Other uses

Nickel chloride solutions are used for electroplating nickel onto other metal items.


Nickel(II) chloride is irritating upon ingestion, inhalation, skin contact, and eye contact. Prolonged inhalation exposure to nickel and its compounds has been linked to increased cancer risk to the lungs and nasal passages. [4]

Related Research Articles

Iron(III) chloride Inorganic compound

Iron(III) chloride is the inorganic compound with the formula FeCl3. Also called ferric chloride, it is a common compound of iron in the +3 oxidation state. The anhydrous compound is a crystalline solid with a melting point of 307.6 °C. The color depends on the viewing angle: by reflected light the crystals appear dark green, but by transmitted light they appear purple-red.

Zinc chloride Chemical compound

Zinc chloride is the name of chemical compounds with the formula ZnCl2 and its hydrates. Zinc chlorides, of which nine crystalline forms are known, are colorless or white, and are highly soluble in water. This white salt is hygroscopic and even deliquescent. Samples should therefore be protected from sources of moisture, including the water vapor present in ambient air. Zinc chloride finds wide application in textile processing, metallurgical fluxes, and chemical synthesis. No mineral with this chemical composition is known aside from the very rare mineral simonkolleite, Zn5(OH)8Cl2·H2O.

In chemistry, water(s) of crystallization or water(s) of hydration are water molecules that are present inside crystals. Water is often incorporated in the formation of crystals from aqueous solutions. In some contexts, water of crystallization is the total mass of water in a substance at a given temperature and is mostly present in a definite (stoichiometric) ratio. Classically, "water of crystallization" refers to water that is found in the crystalline framework of a metal complex or a salt, which is not directly bonded to the metal cation.

Europium(III) chloride Chemical compound

Europium(III) chloride is an inorganic compound with the formula EuCl3. The anhydrous compound is a yellow solid. Being hygroscopic it rapidly absorbs water to form a white crystalline hexahydrate, EuCl3·6H2O, which is colourless. The compound is used in research.

Aluminium chloride Chemical compound

Aluminium chloride (AlCl3), also known as aluminium trichloride, describe compounds with the formula AlCl3(H2O)n (n = 0 or 6). They consist of aluminium and chlorine atoms in a 1:3 ratio, and one form also contains six waters of hydration. Both are white solids, but samples are often contaminated with iron(III) chloride, giving a yellow color.

Manganese(II) chloride Chemical compound

Manganese(II) chloride is the dichloride salt of manganese, MnCl2. This inorganic chemical exists in the anhydrous form, as well as the dihydrate (MnCl2·2H2O) and tetrahydrate (MnCl2·4H2O), with the tetrahydrate being the most common form. Like many Mn(II) species, these salts are pink, with the paleness of the color being characteristic of transition metal complexes with high spin d5 configurations. It is a paramagnetic salt.

Dysprosium(III) chloride Chemical compound

Dysprosium(III) chloride (DyCl3), also known as dysprosium trichloride, is a compound of dysprosium and chlorine. It is a white to yellow solid which rapidly absorbs water on exposure to moist air to form a hexahydrate, DyCl3·6H2O. Simple rapid heating of the hydrate causes partial hydrolysis to an oxychloride, DyOCl.

Cobalt(II) chloride Chemical compound

Cobalt(II) chloride is an inorganic compound of cobalt and chlorine, with the formula CoCl
. The compound forms several hydrates CoCl
, for n = 1, 2, 6, and 9. Claims of the formation of tri- and tetrahydrates have not been confirmed. The anhydrous form is a blue crystalline solid; the dihydrate is purple and the hexahydrate is pink. Commercial samples are usually the hexahydrate, which is one of the most commonly used cobalt compounds in the lab.

Copper(II) chloride Chemical compound

Copper(II) chloride is the chemical compound with the chemical formula CuCl2. The anhydrous form is yellowish brown but slowly absorbs moisture to form a blue-green dihydrate.

Chromium(III) chloride Chemical compound

Chromium(III) chloride (also called chromic chloride) describes any of several chemical compounds with the formula CrCl3 · xH2O, where x can be 0, 5, and 6. The anhydrous compound with the formula CrCl3 is a violet solid. The most common form of the trichloride is the dark green hexahydrate, CrCl3 · 6 H2O. Chromium chlorides find use as catalysts and as precursors to dyes for wool.

Iron(II) chloride Chemical compound

Iron(II) chloride, also known as ferrous chloride, is the chemical compound of formula FeCl2. It is a paramagnetic solid with a high melting point. The compound is white, but typical samples are often off-white. FeCl2 crystallizes from water as the greenish tetrahydrate, which is the form that is most commonly encountered in commerce and the laboratory. There is also a dihydrate. The compound is highly soluble in water, giving pale green solutions.

Gadolinium(III) chloride Chemical compound

Gadolinium(III) chloride, also known as gadolinium trichloride, is GdCl3. It is a colorless, hygroscopic, water-soluble solid. The hexahydrate GdCl3∙6H2O is commonly encountered and is sometimes also called gadolinium trichloride. Gd3+ species are of special interest because the ion has the maximum number of unpaired spins possible, at least for known elements. With seven valence electrons and seven available f-orbitals, all seven electrons are unpaired and symmetrically arranged around the metal. The high magnetism and high symmetry combine to make Gd3+ a useful component in NMR spectroscopy and MRI.

Ruthenium(III) chloride Chemical compound

Ruthenium(III) chloride is the chemical compound with the formula RuCl3. "Ruthenium(III) chloride" more commonly refers to the hydrate RuCl3·xH2O. Both the anhydrous and hydrated species are dark brown or black solids. The hydrate, with a varying proportion of water of crystallization, often approximating to a trihydrate, is a commonly used starting material in ruthenium chemistry.

Nickel(II) iodide Chemical compound

Nickel(II) iodide is an inorganic compound with the formula NiI2. This paramagnetic black solid dissolves readily in water to give bluish-green solutions, from which crystallizes the aquo complex [Ni(H2O)6]I2 (image above). This bluish-green colour is typical of hydrated nickel(II) compounds. Nickel iodides find some applications in homogeneous catalysis.

Tetraphenylphosphonium chloride Chemical compound

Tetraphenylphosphonium chloride is the chemical compound with the formula (C6H5)4PCl, abbreviated Ph4PCl or PPh4Cl. Tetraphenylphosphonium and especially tetraphenylarsonium salts were formerly of interest in gravimetric analysis of perchlorate and related oxyanions. This colourless salt is used to generate lipophilic salts from inorganic and organometallic anions. Thus, Ph4P+ is useful as a phase-transfer catalyst, again because it allows inorganic anions to dissolve in organic solvents.

Cobalt(II) bromide Chemical compound

Cobalt(II) bromide (CoBr2) is an inorganic compound. In its anhydrous form, it is a green solid that is soluble in water, used primarily as a catalyst in some processes.

Dichlorobis(ethylenediamine)nickel(II) Chemical compound

Dichlorobis(ethylenediamine)nickel(II) is the inorganic compound with the formula NiCl2(en)2, where en = ethylenediamine. The formula is deceptive: the compound is the chloride salt of the coordination complex [Ni2Cl2(en)4]2+. This blue solid is soluble in water and some polar organic solvents. It is prepared by ligand redistribution from [Ni(en)3]Cl2 · 2 H2O and hydrated nickel chloride:

Nickel(II) bromide Chemical compound

Nickel(II) bromide is the name for the inorganic compounds with the chemical formula NiBr2(H2O)x. The value of x can be 0 for the anhydrous material, as well as 2, 3, or 6 for the three known hydrate forms. The anhydrous material is a yellow-brown solid which dissolves in water to give blue-green hexahydrate (see picture).

Nickel compounds are chemical compounds containing the element nickel which is a member of the group 10 of the periodic table. Most compounds in the group have an oxidation state of +2. Nickel is classified as a transition metal with nickel(II) having much chemical behaviour in common with iron(II) and cobalt(II). Many salts of nickel(II) are isomorphous with salts of magnesium due to the ionic radii of the cations being almost the same. Nickel forms many coordination complexes. Nickel tetracarbonyl was the first pure metal carbonyl produced, and is unusual in its volatility. Metalloproteins containing nickel are found in biological systems.

Nickel(II) perchlorate Compound of nickel

Nickel(II) perchlorate is a inorganic compound with the chemical formula of Ni(ClO4)2, and it is a strong oxidizing agent. Its colours are different depending on water. For example, the hydrate forms cyan crystals, the pentahydrate forms green crystals, but the hexahydrate (Ni(ClO4)2·6H2O) forms blue crystals.


  1. 1 2 Lide, David S. (2003). CRC Handbook of Chemistry and Physics, 84th Edition. CRC Press. pp. 4–71. ISBN   9780849304842.
  2. 1 2 Zumdahl, Steven S. (2009). Chemical Principles 6th Ed. Houghton Mifflin Company. p. A22. ISBN   978-0-618-94690-7.
  3. "Nickel metal and other compounds (as Ni)". Immediately Dangerous to Life or Health Concentrations (IDLH). National Institute for Occupational Safety and Health (NIOSH).
  4. 1 2 Grimsrud, Tom K; Andersen, Aage (2010). "Evidence of carcinogenicity in humans of water-soluble nickel salts". Journal of Occupational Medicine and Toxicology. 5 (1): 7. doi:10.1186/1745-6673-5-7. PMC   2868037 . PMID   20377901.
  5. 1 2 Ward, Laird G. L. (1972). "Anhydrous Nickel(II) Halides and their Tetrakis(ethanol) and 1,2-Dimethoxyethane Complexes". Inorganic Syntheses. Inorganic Syntheses. Vol. 13. pp. 154–164. doi:10.1002/9780470132449.ch30. ISBN   9780470132449.
  6. Pray, A. P. (1990). "Anhydrous Metal Chlorides". Inorganic Syntheses . 28: 321–2. doi:10.1002/9780470132593.ch80. ISBN   9780470132593.
  7. Karyakin, Yu.V. (1947). Pure chemicals. Manual for laboratory preparation of inorganic substances (in Russian) (Moscow, Leningrad "State Scientific Technical Publishing of Chemical Literature" ed.). p. 416.
  8. 1 2 Wells, A. F. Structural Inorganic Chemistry, Oxford Press, Oxford, United Kingdom, 1984.
  9. B. Morosin "An X-ray diffraction study on nickel(II) chloride dihydrate" Acta Crystallogr. 1967. volume 23, pp. 630-634. doi : 10.1107/S0365110X67003305
  10. Gill, N. S. & Taylor, F. B. (1967). "Tetrahalo Complexes of Dipositive Metals in the First Transition Series". Inorganic Syntheses . 9: 136–142. doi:10.1002/9780470132401.ch37. ISBN   9780470132401.
  11. G. D. Stucky; J. B. Folkers; T. J. Kistenmacher (1967). "The Crystal and Molecular Structure of Tetraethylammonium Tetrachloronickelate(II)". Acta Crystallographica . 23 (6): 1064–1070. doi:10.1107/S0365110X67004268.
  12. Tien-Yau Luh, Yu-Tsai Hsieh Nickel(II) Chloride" in Encyclopedia of Reagents for Organic Synthesis (L. A. Paquette, Ed.) 2001 J. Wiley & Sons, New York. doi : 10.1002/047084289X.rn012. Article Online Posting Date: April 15, 2001.
  13. Cornella, Josep; Edwards, Jacob T.; Qin, Tian; Kawamura, Shuhei; Wang, Jie; Pan, Chung-Mao; Gianatassio, Ryan; Schmidt, Michael; Eastgate, Martin D. (2016-02-24). "Practical Ni-Catalyzed Aryl–Alkyl Cross-Coupling of Secondary Redox-Active Esters". Journal of the American Chemical Society. 138 (7): 2174–2177. doi: 10.1021/jacs.6b00250 . PMC   4768290 . PMID   26835704.