Last updated

Nominalism is a philosophical view which comes at least in two varieties. In one of them it is the rejection of abstract objects, in the other it is the rejection of universals. [1]

Philosophy Study of general and fundamental questions

Philosophy is the study of general and fundamental questions about existence, knowledge, values, reason, mind, and language. Such questions are often posed as problems to be studied or resolved. The term was probably coined by Pythagoras. Philosophical methods include questioning, critical discussion, rational argument, and systematic presentation. Classic philosophical questions include: Is it possible to know anything and to prove it? What is most real? Philosophers also pose more practical and concrete questions such as: Is there a best way to live? Is it better to be just or unjust? Do humans have free will?



Ancient Greek philosophy

The opposite of Nominalism is Realism. Plato was perhaps the first writer in Western philosophy to clearly state a realist i.e. non-nominalist position:

Western philosophy philosophy of the Western world

Western philosophy is the philosophical thought and work of the Western world. Historically, the term refers to the philosophical thinking of Western culture, beginning with Greek philosophy of the pre-Socratics such as Thales and Pythagoras, and eventually covering a large area of the globe. The word philosophy itself originated from the Ancient Greek philosophía (φιλοσοφία), literally, "the love of wisdom".

...We customarily hypothesize a single form in connection with each of the many things to which we apply the same name. ... For example, there are many beds and tables. ... But there are only two forms of such furniture, one of the bed and one of the table. (Republic 596a-b, trans. Grube)

What about someone who believes in beautiful things, but doesn't believe in the beautiful itself…? Don't you think he is living in a dream rather than a wakened state? (Republic 476c)

The Platonic universals corresponding to the names "bed" and "beautiful" were the Form of the Bed and the Form of the Beautiful, or the Bed Itself and the Beautiful Itself. Platonic Forms were the first universals posited as such in philosophy. [2]

Our term "universal" is due to the English translation of Aristotle's technical term katholou which he coined specially for the purpose of discussing the problem of universals. [3] Katholou is a contraction of the phrase kata holou, meaning "on the whole". [4]

Aristotle philosopher in ancient Greece

Aristotle was a Greek philosopher during the Classical period in Ancient Greece, the founder of the Lyceum and the Peripatetic school of philosophy and Aristotelian tradition. Along with his teacher Plato, he has been called the "Father of Western Philosophy". His writings cover many subjects – including physics, biology, zoology, metaphysics, logic, ethics, aesthetics, poetry, theatre, music, rhetoric, psychology, linguistics, economics, politics and government. Aristotle provided a complex synthesis of the various philosophies existing prior to him, and it was above all from his teachings that the West inherited its intellectual lexicon, as well as problems and methods of inquiry. As a result, his philosophy has exerted a unique influence on almost every form of knowledge in the West and it continues to be a subject of contemporary philosophical discussion.

Aristotle famously rejected certain aspects of Plato's Theory of Forms, but he clearly rejected nominalism as well:

...'Man', and indeed every general predicate, signifies not an individual, but some quality, or quantity or relation, or something of that sort. ( Sophistical Refutations xxii, 178b37, trans. Pickard-Cambridge)

<i>Sophistical Refutations</i> work by Aristotle

Sophistical Refutations is a text in Aristotle's Organon in which he identified thirteen fallacies. According to Aristotle, this is the first work to treat the subject of deductive reasoning.. The fallacies Aristotle identifies are the following:

  1. Equivocation
  2. Amphibology
  3. Composition
  4. Division
  5. Accent
  6. Figure of speech or form of expression

The first philosophers to explicitly describe nominalist arguments were the Stoics, especially Chrysippus. [5] [6]

Medieval philosophy

In medieval philosophy, the French philosopher and theologian Roscellinus (c. 1050 – c. 1125) was an early, prominent proponent of nominalism. Nominalist ideas can be found in the work of Peter Abelard and reached their flowering in William of Ockham, who was the most influential and thorough nominalist. Abelard's and Ockham's version of nominalism is sometimes called conceptualism, which presents itself as a middle way between nominalism and realism, asserting that there is something in common among like individuals, but that it is a concept in the mind, rather than a real entity existing independently of the mind. Ockham argued that only individuals existed and that universals were only mental ways of referring to sets of individuals. "I maintain", he wrote, "that a universal is not something real that exists in a subject... but that it has a being only as a thought-object in the mind [objectivum in anima]". As a general rule, Ockham argued against assuming any entities that were not necessary for explanations. Accordingly, he wrote, there is no reason to believe that there is an entity called "humanity" that resides inside, say, Socrates, and nothing further is explained by making this claim. This is in accord with the analytical method that has since come to be called Ockham's razor, the principle that the explanation of any phenomenon should make as few assumptions as possible. Critics argue that conceptualist approaches only answer the psychological question of universals. If the same concept is correctly and non-arbitrarily applied to two individuals, there must be some resemblance or shared property between the two individuals that justifies their falling under the same concept and that is just the metaphysical problem that universals were brought in to address, the starting-point of the whole problem (MacLeod & Rubenstein, 2006, §3d). If resemblances between individuals are asserted, conceptualism becomes moderate realism; if they are denied, it collapses into nominalism. [7]

Modern and contemporary philosophy

In modern philosophy, nominalism was revived by Thomas Hobbes [8] and Pierre Gassendi. [9]

In contemporary analytic philosophy, it has been defended by Rudolf Carnap, [10] Nelson Goodman, [11] H. H. Price, [10] and D. C. Williams. [12]

Indian philosophy

The debate between realism and nominalism also took place in Indian philosophy. Certain orthodox Hindu schools (eg., Purva Mimamsa, Nyaya and Vaisheshika) defended the realist position, saying that the referent of the word is both the individual thing perceived by the subject of knowledge and the class to which the thing belongs. According to Indian realism, both the individual and the class have objective existence, with the second underlying the former.

The Buddhists, especially those of the Yogacara school, took the nominalist position; they were of the opinion that words have as referent, not true objects, but only concepts produced in the intellect. These concepts are not real since they do not have efficient existence, that is, causal powers. Words, as linguistic conventions, are useful to thought and discourse, but even so, it should not be accepted that words apprehend reality as it is.

Dignaga, a Yogacara philosopher, formulated a nominalist theory of meaning called apoha, or theory of exclusions. The theory seeks to explain how it is possible for words to refer to classes of objects even if no such class has an objective existence. Dignaga's thesis is that classes do not refer to positive qualities that their members share in common. On the contrary, classes are exclusions (apoha). As such, the "cow" class, for example, is composed of all exclusions common to individual cows: they are all non-horse, non-elephant, etc.

Among Hindu realists, this thesis was criticized for being negative.

The problem of universals

Nominalism arose in reaction to the problem of universals, specifically accounting for the fact that some things are of the same type. For example, Fluffy and Kitzler are both cats, or, the fact that certain properties are repeatable, such as: the grass, the shirt, and Kermit the Frog are green. One wants to know by virtue of what are Fluffy and Kitzler both cats, and what makes the grass, the shirt, and Kermit green.

The Platonist answer is that all the green things are green in virtue of the existence of a universal: a single abstract thing that, in this case, is a part of all the green things. With respect to the color of the grass, the shirt and Kermit, one of their parts is identical. In this respect, the three parts are literally one. Greenness is repeatable because there is one thing that manifests itself wherever there are green things.

Nominalism denies the existence of universals. The motivation for this flows from several concerns, the first one being where they might exist. Plato famously held, on one interpretation, that there is a realm of abstract forms or universals apart from the physical world (see theory of the forms). Particular physical objects merely exemplify or instantiate the universal. But this raises the question: Where is this universal realm? One possibility is that it is outside space and time. A view sympathetic with this possibility holds that, precisely because some form is immanent in several physical objects, it must also transcend each of those physical objects; in this way, the forms are "transcendent" only insofar as they are "immanent" in many physical objects. In other words, immanence implies transcendence; they are not opposed to one another. (Nor, in this view, would there be a separate "world" or "realm" of forms that is distinct from the physical world, thus shirking much of the worry about where to locate a "universal realm".) However, naturalists assert that nothing is outside of space and time. Some Neoplatonists, such as the pagan philosopher Plotinus and the Christian philosopher Augustine, imply (anticipating conceptualism) that universals are contained within the mind of God. To complicate things, what is the nature of the instantiation or exemplification relation?

Conceptualists hold a position intermediate between nominalism and realism, saying that universals exist only within the mind and have no external or substantial reality.

Moderate realists hold that there is no realm in which universals exist, but rather universals are located in space and time wherever they are manifest. Now, recall that a universal, like greenness, is supposed to be a single thing. Nominalists consider it unusual that there could be a single thing that exists in multiple places simultaneously. The realist maintains that all the instances of greenness are held together by the exemplification relation, but this relation cannot be explained.

Finally, many philosophers prefer simpler ontologies populated with only the bare minimum of types of entities, or as W. V. O. Quine said "They have a taste for 'desert landscapes.'" They try to express everything that they want to explain without using universals such as "catness" or "greenness."


There are various forms of nominalism ranging from extreme to almost-realist. One extreme is predicate nominalism, which states that Fluffy and Kitzler, for example, are both cats simply because the predicate 'is a cat' applies to both of them. And this is the case for all similarity of attribute among objects. The main criticism of this view is that it does not provide a sufficient solution to the problem of universals. It fails to provide an account of what makes it the case that a group of things warrant having the same predicate applied to them. [13]

Proponents of resemblance nominalism believe that 'cat' applies to both cats because Fluffy and Kitzler resemble an exemplar cat closely enough to be classed together with it as members of its kind, or that they differ from each other (and other cats) quite less than they differ from other things, and this warrants classing them together. [14] Some resemblance nominalists will concede that the resemblance relation is itself a universal, but is the only universal necessary. Others argue that each resemblance relation is a particular, and is a resemblance relation simply in virtue of its resemblance to other resemblance relations. This generates an infinite regress, but many argue that it is not vicious. [15]

Class nominalism argues that class membership forms the metaphysical backing for property relationships: two particular red balls share a property in that they are both members of classes corresponding to their properties—that of being red and being balls. A version of class nominalism that sees some classes as "natural classes" is held by Anthony Quinton. [16]

Conceptualism is a philosophical theory that explains universality of particulars as conceptualized frameworks situated within the thinking mind. [17] The conceptualist view approaches the metaphysical concept of universals from a perspective that denies their presence in particulars outside of the mind's perception of them. [18]

Another form of nominalism is trope nominalism. A trope is a particular instance of a property, like the specific greenness of a shirt. One might argue that there is a primitive, objective resemblance relation that holds among like tropes. Another route is to argue that all apparent tropes are constructed out of more primitive tropes and that the most primitive tropes are the entities of complete physics. Primitive trope resemblance may thus be accounted for in terms of causal indiscernibility. Two tropes are exactly resembling if substituting one for the other would make no difference to the events in which they are taking part. Varying degrees of resemblance at the macro level can be explained by varying degrees of resemblance at the micro level, and micro-level resemblance is explained in terms of something no less robustly physical than causal power. David Armstrong, perhaps the most prominent contemporary realist, argues that such a trope-based variant of nominalism has promise, but holds that it is unable to account for the laws of nature in the way his theory of universals can.[ citation needed ]

Ian Hacking has also argued that much of what is called social constructionism of science in contemporary times is actually motivated by an unstated nominalist metaphysical view. For this reason, he claims, scientists and constructionists tend to "shout past each other". [19]

Analytic philosophy and mathematics

A notion that philosophy, especially ontology and the philosophy of mathematics should abstain from set theory owes much to the writings of Nelson Goodman (see especially Goodman 1940 and 1977), who argued that concrete and abstract entities having no parts, called individuals exist. Collections of individuals likewise exist, but two collections having the same individuals are the same collection. Goodman was himself drawing heavily on the work of Stanisław Leśniewski, especially his mereology, which was itself a reaction to the paradoxes associated with Cantorian set theory. Leśniewski denied the existence of the empty set and held that any singleton was identical to the individual inside it. Classes corresponding to what are held to be species or genera are concrete sums of their concrete constituting individuals. For example, the class of philosophers is nothing but the sum of all concrete, individual philosophers.

The principle of extensionality in set theory assures us that any matching pair of curly braces enclosing one or more instances of the same individuals denote the same set. Hence {a, b}, {b, a}, {a, b, a, b} are all the same set. For Goodman and other nominalists, {a, b} is also identical to {a, {b} }, {b, {a, b} }, and any combination of matching curly braces and one or more instances of a and b, as long as a and b are names of individuals and not of collections of individuals. Goodman, Richard Milton Martin, and Willard Quine all advocated reasoning about collectivities by means of a theory of virtual sets (see especially Quine 1969), one making possible all elementary operations on sets except that the universe of a quantified variable cannot contain any virtual sets.

In the foundations of mathematics, nominalism has come to mean doing mathematics without assuming that sets in the mathematical sense exist. In practice, this means that quantified variables may range over universes of numbers, points, primitive ordered pairs, and other abstract ontological primitives, but not over sets whose members are such individuals. To date, only a small fraction of the corpus of modern mathematics can be rederived in a nominalistic fashion.


Critique of the historical origins of the term

As a category of late medieval thought, the concept of 'nominalism' has been increasingly queried. Traditionally, the fourteenth century has been regarded as the heyday of nominalism, with figures such as John Buridan and William of Ockham viewed as founding figures. However, the concept of 'nominalism' as a movement (generally contrasted with 'realism'), first emerged only in the late fourteenth century, [20] and only gradually became widespread during the fifteenth century. [21] The notion of two distinct ways, a via antiqua, associated with realism, and a via moderna, associated with nominalism, became widespread only in the later fifteenth century – a dispute which eventually dried up in the sixteenth century. [22]

Aware that explicit thinking in terms of a divide between 'nominalism' and 'realism' only emerged in the fifteenth century, scholars have increasingly questioned whether a fourteenth-century school of nominalism can really be said to have existed. While one might speak of family resemblances between Ockham, Buridan, Marsilius and others, there are also striking differences. More fundamentally, Robert Pasnau has questioned whether any kind of coherent body of thought that could be called 'nominalism' can be discerned in fourteenth century writing. [23] This makes it difficult, it has been argued, to follow the twentieth century narrative which portrayed late scholastic philosophy as a dispute which emerged in the fourteenth century between the via moderna, nominalism, and the via antiqua, realism, with the nominalist ideas of William of Ockham foreshadowing the eventual rejection of scholasticism in the seventeenth century. [22]

Critique of nominalist reconstructions in mathematics

A critique of nominalist reconstructions in mathematics was undertaken by Burgess (1983) and Burgess and Rosen (1997). Burgess distinguished two types of nominalist reconstructions. Thus, hermeneutic nominalism is the hypothesis that science, properly interpreted, already dispenses with mathematical objects (entities) such as numbers and sets. Meanwhile, revolutionary nominalism is the project of replacing current scientific theories by alternatives dispensing with mathematical objects (see Burgess, 1983, p. 96). A recent study extends the Burgessian critique to three nominalistic reconstructions: the reconstruction of analysis by Georg Cantor, Richard Dedekind, and Karl Weierstrass that dispensed with infinitesimals; the constructivist re-reconstruction of Weierstrassian analysis by Errett Bishop that dispensed with the law of excluded middle; and the hermeneutic reconstruction, by Carl Boyer, Judith Grabiner, and others, of Cauchy's foundational contribution to analysis that dispensed with Cauchy's infinitesimals. [24]

See also


  2. Penner (1987), p. 24.
  3. Peters (1967), p. 100.
  4. "katholou" in Harvard's Archimedes Project online version of Liddell & Scott's A Greek-English Lexicon .
  5. John Sellars, Stoicism, Routledge, 2014, pp. 84–85: "[Stoics] have often been presented as the first nominalists, rejecting the existence of universal concepts altogether. ... For Chrysippus there are no universal entities, whether they be conceived as substantial Platonic Forms or in some other manner.".
  6. Chrysippus (Internet Encyclopedia of Philosophy)
  7. "Meaning and the Problem of Universals".
  8. Thomas Hobbes (Stanford Encyclopedia of Philosophy)
  9. Pierre Gassendi (Stanford Encyclopedia of Philosophy)
  10. 1 2 "Review of Gonzalo Rodriguez-Pereyra, Resemblance Nominalism: A Solution to the Problem of Universals" –
  11. "Nelson Goodman: The Calculus of Individuals in its different versions", Stanford Encyclopedia of Philosophy
  12. Donald Cary Williams, Stanford Encyclopedia of Philosophy.
  13. MacLeod & Rubenstein (2006), §3a.
  14. MacLeod & Rubenstein (2006), §3b.
  15. See, for example, H. H. Price (1953).
  16. Quinton, Anthony (1957). "Properties and Classes". Proceedings of the Aristotelian Society. 58: 33–58. JSTOR   4544588.
  17. Strawson, P. F. "Conceptualism." Universals, concepts and qualities: new essays on the meaning of predicates. Ashgate Publishing, 2006.
  18. "Conceptualism." The Oxford Dictionary of Philosophy. Simon Blackburn. Oxford University Press, 1996. Oxford Reference Online. Oxford University Press. 8 April 2008.
  19. Hacking (1999), pp. 80-84.
  20. The classic starting point of nominalism has been the edict issued by Louis XI in 1474 commanding that realism alone (as contained in scholars such as Averroes, Albert the Great, Aquinas, Duns Scotus and Bonaventure) be taught at the University of Paris, and ordering that the books of various 'renovating scholars', including Ockham, Gregory of Rimini, Buridan and Peter of Ailly be removed. The edict used the word 'nominalist' to describe those students at Paris who 'are not afraid to imitate' the renovators. These students then made a reply to Louis XI, defending nominalism as a movement going back to Ockham, which had been persecuted repeatedly, but which in fact represents the truer philosophy. See Robert Pasnau, Metaphysical Themes, 1274-1671, (New York: OUP, 2011), p. 85.
  21. For example, when Jerome of Prague visited the University of Heidelberg in 1406, he described the nominalists as those who deny the reality of universals outside the human mind, and realists as those who affirm that reality. Also, for instance, in a 1425 document from the University of Cologne which draws a distinction between the via of Thomas Aquinas, Albert the Great, and the via of the 'modern masters' John Buridan and Marsilius of Inghen. See Robert Pasnau, Metaphysical Themes, 1274-1671, (New York: OUP, 2011), p84.
  22. 1 2 See Robert Pasnau, Metaphysical Themes, 1274-1671, (New York: OUP, 2011), p84.
  23. See Robert Pasnau, Metaphysical Themes, 1274-1671, (New York: OUP, 2011), p86.
  24. Usadi Katz, Karin; Katz, Mikhail G. (2011). "A Burgessian Critique of Nominalistic Tendencies in Contemporary Mathematics and its Historiography". Foundations of Science . arXiv: 1104.0375 . doi:10.1007/s10699-011-9223-1.

References and further reading

Related Research Articles

In analytic philosophy, anti-realism is an epistemological position first articulated by British philosopher Michael Dummett. The term was coined as an argument against a form of realism Dummett saw as 'colorless reductionism'.

Existence The ability of an entity to interact with physical or mental reality

Existence is the ability of an entity to interact with physical or mental reality.

In metaphysics, the problem of universals refers to the question of whether properties exist, and if so, what they are. Properties are qualities or relations that two or more entities have in common. The various kinds of properties, such as qualities and relations, are referred to as universals. For instance, one can imagine three cup holders on a table that have in common the quality of being circular or exemplifying circularity, or two daughters that have in common being the female offsprings of Frank. There are many such properties, such as being human, red, male or female, liquid, big or small, taller than, father of, etc. While philosophers agree that human beings talk and think about properties, they disagree on whether these universals exist in reality or merely in thought and speech.

Platonic realism is a philosophical term usually used to refer to the idea of realism regarding the existence of universals or abstract objects after the Greek philosopher Plato. As universals were considered by Plato to be ideal forms, this stance is ambiguously also called Platonic idealism. This should not be confused with idealism as presented by philosophers such as George Berkeley: as Platonic abstractions are not spatial, temporal, or mental, they are not compatible with the later idealism's emphasis on mental existence. Plato's Forms include numbers and geometrical figures, making them a theory of mathematical realism; they also include the Form of the Good, making them in addition a theory of ethical realism.

In metaphysics, a universal is what particular things have in common, namely characteristics or qualities. In other words, universals are repeatable or recurrent entities that can be instantiated or exemplified by many particular things. For example, suppose there are two chairs in a room, each of which is green. These two chairs both share the quality of "chairness", as well as greenness or the quality of being green; in other words, they share a "universal". There are three major kinds of qualities or characteristics: types or kinds, properties, and relations. These are all different types of universals.

Willard Van Orman Quine American philosopher and logician

Willard Van Orman Quine was an American philosopher and logician in the analytic tradition, recognized as "one of the most influential philosophers of the twentieth century." From 1930 until his death 70 years later, Quine was continually affiliated with Harvard University in one way or another, first as a student, then as a professor of philosophy and a teacher of logic and set theory, and finally as a professor emeritus who published or revised several books in retirement. He filled the Edgar Pierce Chair of Philosophy at Harvard from 1956 to 1978. A 2009 poll conducted among analytic philosophers named Quine as the fifth most important philosopher of the past two centuries. He won the first Schock Prize in Logic and Philosophy in 1993 for "his systematical and penetrating discussions of how learning of language and communication are based on socially available evidence and of the consequences of this for theories on knowledge and linguistic meaning." In 1996 he was awarded the Kyoto Prize in Arts and Philosophy for his "outstanding contributions to the progress of philosophy in the 20th century by proposing numerous theories based on keen insights in logic, epistemology, philosophy of science and philosophy of language."

Reality is the sum or aggregate of all that is real or existent, as opposed to that which is merely imaginary. The term is also used to refer to the ontological status of things, indicating their existence. In physical terms, reality is the totality of the universe, known and unknown. Philosophical questions about the nature of reality or existence or being are considered under the rubric of ontology, which is a major branch of metaphysics in the Western philosophical tradition. Ontological questions also feature in diverse branches of philosophy, including the philosophy of science, philosophy of religion, philosophy of mathematics, and philosophical logic. These include questions about whether only physical objects are real, whether reality is fundamentally immaterial, whether hypothetical unobservable entities posited by scientific theories exist, whether God exists, whether numbers and other abstract objects exist, and whether possible worlds exist.

The philosophy of mathematics is the branch of philosophy that studies the assumptions, foundations, and implications of mathematics, and purports to provide a viewpoint of the nature and methodology of mathematics, and to understand the place of mathematics in people's lives. The logical and structural nature of mathematics itself makes this study both broad and unique among its philosophical counterparts.

In philosophy and mathematical logic, mereology is the study of parts and the wholes they form. Whereas set theory is founded on the membership relation between a set and its elements, mereology emphasizes the meronomic relation between entities, which—from a set-theoretic perspective—is closer to the concept of inclusion between sets.

In philosophy, essence is the property or set of properties that make an entity or substance what it fundamentally is, and which it has by necessity, and without which it loses its identity. Essence is contrasted with accident: a property that the entity or substance has contingently, without which the substance can still retain its identity. The concept originates rigorously with Aristotle, who used the Greek expression to ti ên einai or sometimes the shorter phrase to ti esti for the same idea. This phrase presented such difficulties for its Latin translators that they coined the word essentia to represent the whole expression. For Aristotle and his scholastic followers, the notion of essence is closely linked to that of definition.

In metaphysics, conceptualism is a theory that explains universality of particulars as conceptualized frameworks situated within the thinking mind. Intermediate between nominalism and realism, the conceptualist view approaches the metaphysical concept of universals from a perspective that denies their presence in particulars outside the mind's perception of them. Conceptualism is anti-realist about abstract objects, just like immanent realism is.

In metaphysics, realism about a given object is the view that this object exists in reality independently of our conceptual scheme. In philosophical terms, these objects are ontologically independent of someone's conceptual scheme, perceptions, linguistic practices, beliefs, etc.

David Malet Armstrong Australian philosopher

David Malet Armstrong, often D. M. Armstrong, was an Australian philosopher. He is well known for his work on metaphysics and the philosophy of mind, and for his defence of a factualist ontology, a functionalist theory of the mind, an externalist epistemology, and a necessitarian conception of the laws of nature. He was elected a Foreign Honorary Member of the American Academy of Arts and Sciences in 2008.

Anthony Quinton British philosopher

Anthony Meredith Quinton, Baron Quinton, FBA was a British political and moral philosopher, metaphysician, and materialist philosopher of mind.

The term "trope" is both a term which denotes figurative and metaphorical language and one which has been used in various technical senses. The term trope derives from the Greek τρόπος (tropos), "a turn, a change", related to the root of the verb τρέπειν (trepein), "to turn, to direct, to alter, to change"; this means that the term is used metaphorically to denote, among other things, metaphorical language. Perhaps the term can be explained as meaning the same thing as a turn of phrase in its original sense.

Moderate realism is a position in the debate on the metaphysics of universals which holds that there is no realm in which universals exist, nor do they really exist within particulars as universals, but rather universals really exist within particulars as particularised, and multiplied.

In philosophy and second scholasticism, objective precision is the "objective" aspect of abstraction. Objective precision is the process by which certain features of the real object of a formal concept are excluded from the comprehension of that concept; the object is thus being intentionally transformed into a universal objective concept. Objective precision is thus a process by which universal objective concepts arise. It is the "objective" aspect of the process of (total) abstraction or concept-formation.

Scotistic realism

Scotistic realism is the Scotist position on the problem of universals. It is a form of moderate realism.

Literary nominalism is a paradigm of thought that is interested in the interconnections between certain aspects of nominalist philosophy and theology and works of literature.

Donald Cary Williams American philosopher

Donald Cary Williams was an American philosopher and a professor at both the University of California Los Angeles and at Harvard University.