November 2003 lunar eclipse

Last updated
Total Lunar Eclipse
8–9 November 2003
Lunar eclipse November 2003-TLR63.jpg
Totality from Minneapolis, 1:16 UTC
Lunar eclipse chart close-03nov09.png
The moon's path through the Earth's shadow
Series (and member) 126 (45 of 72)
Gamma -0.4319
Magnitude 1.0178
Duration (hr:mn:sc)
Totality21:58
Partial3:31:25
Penumbral6:03:09
Contacts (UTC)
P122:16:59 (Nov 8)
U123:32:50 (Nov 8)
U21:07:34
Greatest1:18:34
U31:29:32
U43:04:15
P44:20:08
Lunar eclipse chart-03nov09.png
The moon's hourly motion across the Earth's shadow in the constellation of Aries.

A total lunar eclipse took place on Sunday 9 November 2003, the second of two total lunar eclipses in 2003, the first being on 16 May 2003. It is the first total lunar eclipse of 21st century which happened on a micromoon day. The Moon barely edged into total eclipse for 21 minutes and 58 seconds. With the Moon just 1.78% of its diameter into the Earth's umbral shadow, the Moon may have been quite bright, but even so, this should have been worth seeing. The partial eclipse lasted for 3 hours, 31 minutes and 25 seconds. Occurring only 1.4 days before apogee (Apogee on Monday 10 November 2003), the Moon's apparent diameter was 6.4% smaller than average.

Contents

This was the last of 14 total lunar eclipses of Lunar Saros 126, which started on 19 June 1769 and ended on 9 November 2003.

Visibility

It was completely visible over Americas, Europe, Africa and central Asia, seen rising over the Americas and setting over central Asia.

Lunar eclipse from moon-2003Nov09.png

Relation to other lunar eclipses

Eclipse season

This is the first eclipse this season.

Second eclipse this season: 23 November 2003 Total Solar Eclipse

Eclipses of 2003

Lunar year series

It is the second of four lunar year cycles, repeating every 354 days.

Lunar eclipse series sets from 2002–2005
Descending node Ascending node
Saros
Photo
Date
View
Type
Chart
GammaSaros
Photo
Date
View
Type
Chart
Gamma
111 2002 May 26
Lunar eclipse from moon-2002May26.png
penumbral
Lunar eclipse chart close-2002May26.png
1.1759116 2002 Nov 20
Lunar eclipse from moon-2002Nov20.png
penumbral
Lunar eclipse chart close-2002Nov20.png
−1.1127
121
Lunar eclipse May 2003-TLR75.jpg
2003 May 16
Lunar eclipse from moon-2003May16.png
total
Lunar eclipse chart close-03may16.png
0.4123126
Lunar eclipse November 2003-TLR63.jpg
2003 Nov 09
Lunar eclipse from moon-2003Nov09.png
total
Lunar eclipse chart close-03nov09.png
−0.4319
131
Total lunar eclipse May 4 2004-Jpeter smith.jpg
2004 May 04
Lunar eclipse from moon-2004May04.png
total
Lunar eclipse chart close-04may04.png
−0.3132136
Oct 28 2004 total lunar eclipse-espenak.png
2004 Oct 28
Lunar eclipse from moon-2004Oct28.png
total
Lunar eclipse chart close-04oct28.png
0.2846
141 2005 Apr 24
Lunar eclipse from moon-2005Apr24.png
penumbral
Lunar eclipse chart close-05apr24.png
−1.0885146
MiNe-10D 224-2485F Crop (1511723771) (cropped).jpg
2005 Oct 17
Lunar eclipse from moon-2005Oct17.png
partial
Lunar eclipse chart close-2005Oct17.png
0.9796
Last set 2002 Jun 24 Last set 2001 Dec 30
Next set 2006 Mar 14 Next set 2006 Sep 07

Saros series

It is part of saros series 126 .

Lunar saros series 126, repeating every 18 years and 11 days, has a total of 70 lunar eclipse events including 14 total lunar eclipses. Solar Saros 133 interleaves with this lunar saros with an event occurring every 9 years 5 days alternating between each saros series.

First penumbral lunar eclipse: 18 July 1228

First partial lunar eclipse: 24 March 1625

First total lunar eclipse: 19 June 1769

First central lunar eclipse: 11 July 1805

Greatest eclipse of the lunar saros 126: 13 August 1859, lasting 106 minutes.

Last central lunar eclipse: 26 September 1931

Last total lunar eclipse: 9 November 2003

Last partial lunar eclipse: 5 June 2346

Last penumbral lunar eclipse: 19 August 2472

1901-2100

15 September 1913

26 September 1931

7 October 1949

18 October 1967

28 October 1985

9 November 2003

19 November 2021

30 November 2039

11 December 2057

22 December 2075

1 January 2094

Metonic series

This eclipse is the second of five Metonic cycle lunar eclipses on the same date, 8–9 November, each separated by 19 years:

The Metonic cycle repeats nearly exactly every 19 years and represents a Saros cycle plus one lunar year. Because it occurs on the same calendar date, the Earth's shadow will be in nearly the same location relative to the background stars.

  1. 1984 May 15.19 - penumbral (111)
  2. 2003 May 16.15 - total (121)
  3. 2022 May 16.17 - total (131)
  4. 2041 May 16.03 - penumbral (141)
  1. 1984 Nov 08.75 - penumbral (116)
  2. 2003 Nov 09.05 - total (126)
  3. 2022 Nov 08.46 - total (136)
  4. 2041 Nov 08.19 - partial (146)
  5. 2060 Nov 08.17 - penumbral (156)
Metonic lunar eclipses 1984-2041D.png Metonic lunar eclipses 1984-2041.png

Half-Saros cycle

A lunar eclipse will be preceded and followed by solar eclipses by 9 years and 5.5 days (a half saros). [1] This lunar eclipse is related to two total solar eclipses of Solar Saros 133.

3 November 1994 13 November 2012
SE1994Nov03T.png SE2012Nov13T.png

See also

Related Research Articles

<span class="mw-page-title-main">October 2004 lunar eclipse</span> Total lunar eclipse 28 October, 2004

A total lunar eclipse took place on Thursday 28 October 2004, the second of two total lunar eclipses in 2004, the first being on 4 May 2004. It was the first lunar eclipse to take place during a World Series game, which when seen from Busch Memorial Stadium in St, Louis, Missouri, provided a surreal sight on the night the Boston Red Sox won their first World Series in 86 years to end the Curse of the Bambino. Occurring 5.6 days before apogee, the Moon's apparent diameter was smaller. The moon was 10.1 days after perigee and 5.6 days before apogee.

<span class="mw-page-title-main">April 2005 lunar eclipse</span> Penumbral lunar eclipse 24 April 2005

A penumbral lunar eclipse took place on Sunday 24 April 2005, the first of two lunar eclipses in 2005. At maximum eclipse, 86.5% of the Moon's disc was partially shaded by the Earth, which caused a slight shadow gradient across its disc; this subtle effect may have been visible to careful observers. No part of the Moon was in complete shadow. The eclipse lasted 4 hours and 6 minutes overall, and was visible from east Asia, Australia, and the Americas.

<span class="mw-page-title-main">October 2005 lunar eclipse</span> Partial lunar eclipse 17 October 2005

A partial lunar eclipse took place on Monday 17 October 2005, the second of two lunar eclipses in 2005. A tiny bite out of the Moon may have been visible at maximum, though just 6.25% of the Moon was shadowed in a partial eclipse which lasted for nearly 56 minutes and was visible over east Asia, Australasia, and most of the North America. A shading across the Moon from the Earth's penumbral shadow should have been visible at maximum eclipse.

A total lunar eclipse took place on Monday, October 28, 1985, the second of two total lunar eclipses in 1985, the first being on May 4, 1985.

A penumbral lunar eclipse took place on Thursday, March 3, 1988, the first of two lunar eclipses in 1988, the second being on August 27, 1988. Earlier sources compute this as a 0.3% partial eclipse lasting under 14 minutes, and newest calculations list it as a penumbral eclipse that never enters the umbral shadow. In a rare total penumbral eclipse, the entire Moon was partially shaded by the Earth, and the shading across the Moon should have been quite visible at maximum eclipse. The penumbral phase lasted for 4 hours, 53 minutes and 50.6 seconds in all, though for most of it, the eclipse was extremely difficult or impossible to see. The Moon was 2.2 days after apogee, making it 6.1% smaller than average.

A penumbral lunar eclipse took place on Thursday, November 8, 1984, the last of three lunar eclipses in 1984. This subtle penumbral eclipse may have been visible to a skilled observer at maximum eclipse. 90% of the Moon's disc was partially shaded by the Earth, which caused a gentle shadow gradient across its disc at maximum; the eclipse as a whole lasted 4 hours and 28 minutes.

A penumbral lunar eclipse took place on Tuesday, May 15, 1984, the first of three lunar eclipses in 1984. This was a deep penumbral eclipse, with the southern limb of the Moon close to the Earth's shadow.

<span class="mw-page-title-main">November 2021 lunar eclipse</span> Partial lunar eclipse of 19 November 2021

A partial lunar eclipse occurred on 19 November 2021. The eclipse occurred towards a micromoon. This was the longest partial lunar eclipse since 18 February 1440, and the longest until 8 February, 2669; however, many eclipses, including the November 2022 lunar eclipse, have a longer period of umbral contact at next to 3 hours 40 minutes. It was often referred to as a "Beaver Blood Moon" although not technically fulfilling the criteria for a true blood moon (totality).

<span class="mw-page-title-main">November 2039 lunar eclipse</span>

A partial lunar eclipse will take place on November 30, 2039. At 3 hours 26 minutes, it is the longest partial lunar eclipse since November 19, 2021, which is the previous member of Lunar Saros 126.

A partial lunar eclipse took place on Saturday, February 21, 1970. It was the first of two partial lunar eclipses in 1970, the other being on August 17 of the same year. A tiny bite out of the Moon may have been visible at maximum, though just 5% of the Moon was shadowed in a partial eclipse which lasted for 52 minutes and 42 seconds. A shading across the moon from the Earth's penumbral shadow should have been visible at maximum eclipse.

<span class="mw-page-title-main">October 1967 lunar eclipse</span> Total lunar eclipse October 18, 1967

A total lunar eclipse took place on Wednesday, October 18, 1967, the second of two total lunar eclipses in 1967, the first being on April 24, 1967.

A total lunar eclipse took place on Monday, September 15, 1913. The moon passed through the center of the Earth's shadow.

<span class="mw-page-title-main">Solar eclipse of August 22, 1998</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon’s ascending node of the orbit on August 22, 1998. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible in Indonesia, Malaysia, Papua New Guinea, Solomon Islands and Vanuatu. Occurring only 5.2 days before apogee, the Moon’s apparent diameter was 3.6% smaller than average.

<span class="mw-page-title-main">Solar eclipse of December 4, 1983</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of the orbit on December 4, 1983. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible in Cape Verde, Annobón Island of Equatorial Guinea, Gabon, the People's Republic of Congo, Zaire, northern Uganda, southern Sudan, northwestern Kenya, Ethiopia and Somalia. The Sun's altitude was 66°. Occurring 6.5 days before apogee, the Moon's apparent diameter was near the average diameter.

<span class="mw-page-title-main">Solar eclipse of May 30, 1984</span> 20th-century annular solar eclipse

An annular solar eclipse occurred on May 30, 1984. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible in Mexico, the United States, Azores Islands, Morocco and Algeria. It was the first annular solar eclipse visible in the US in 33 years. The moon's apparent diameter was near the average diameter because occurs 6.7 days after apogee and 7.8 days before perigee.

<span class="mw-page-title-main">Solar eclipse of August 10, 1980</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of the orbit on August 10, 1980, centred over the Pacific Ocean. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible in Tabuaeran of Kiribati, Peru, Bolivia, northern Paraguay and Brazil. Occurring 5 days before apogee, the Moon's apparent diameter was smaller. At greatest eclipse, the Sun was 79 degrees above horizon.

<span class="mw-page-title-main">Solar eclipse of November 4, 2078</span> Future annular solar eclipse

An annular solar eclipse will occur on Friday, November 4, 2078. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. The path of annularity will cross Pacific Ocean, South America, and Atlantic Ocean. The tables below contain detailed predictions and additional information on the Annular Solar Eclipse of 4 November 2078.

<span class="mw-page-title-main">September 1931 lunar eclipse</span> Total lunar eclipse of September 1931

A total lunar eclipse took place on Saturday, September 26, 1931. The Moon passed through the central of the Earth's shadow. This was the last central lunar eclipse of Saros cycle 126.

<span class="mw-page-title-main">June 2123 lunar eclipse</span> Spectacular long central lunar eclipse

A total lunar eclipse will occur on Wednesday, June 9, 2123, with maximum eclipse at 05:06 UTC. A dramatic total eclipse lasting 106 minutes and 6 seconds will plunge the full Moon into deep darkness, as it passes right through the centre of the Earth's umbral shadow. While the visual effect of a total eclipse is variable, the Moon may be stained a deep orange or red colour at maximum eclipse. This will be a great spectacle for everyone who sees it. The partial eclipse will last for 3 hours and 56 minutes in total. The penumbral eclipse lasts for 6 hours and 14 minutes. Maximum eclipse is at 05:06:28 UT. This will be the longest Total Lunar Eclipse since 16 July 2000, and the longest one until 12 May 2264 and 27 July 3107, though the eclipse on June 19, 2141 will be nearly identical in all aspects. This will also be the longest of the 22nd century and the second longest of the 3rd millennium. The eclipse on June 19, 2141 will be the second longest of the 22nd century and the third longest of the third millennium.

<span class="mw-page-title-main">November 2060 lunar eclipse</span> Penumbral

A penumbral lunar eclipse will occur on November 8, 2060. It will be too small to be visually perceptible.

References

  1. Mathematical Astronomy Morsels, Jean Meeus, p.110, Chapter 18, The half-saros