Organic acid

Last updated

An organic acid is an organic compound with acidic properties. The most common organic acids are the carboxylic acids, whose acidity is associated with their carboxyl group  –COOH. Sulfonic acids, containing the group –SO2OH, are relatively stronger acids. Alcohols, with –OH, can act as acids but they are usually very weak. The relative stability of the conjugate base of the acid determines its acidity. Other groups can also confer acidity, usually weakly: the thiol group –SH, the enol group, and the phenol group. In biological systems, organic compounds containing these groups are generally referred to as organic acids.

Organic compound Chemical compound that contains carbon (except for several compounds traditionally classified as inorganic compounds)

In chemistry, organic compounds are generally any chemical compounds that contain carbon. Due to carbon's ability to catenate, millions of organic compounds are known. The study of the properties, reactions, and syntheses of organic compounds comprises the discipline known as organic chemistry. For historical reasons, a few classes of carbon-containing compounds, along with a handful of other exceptions, are not classified as organic compounds and are considered inorganic. Other than those just named, little consensus exists among chemists on precisely which carbon-containing compounds are excluded, making any rigorous definition of an organic compound elusive.

Acid type of chemical substance that reacts with a base

An acid is a molecule or ion capable of donating a proton (hydrogen ion H+), or, alternatively, capable of forming a covalent bond with an electron pair (a Lewis acid).

Carboxylic acid oxoacid having the structure RC(=O)OH, used as a suffix in systematic name formation to denote the –C(=O)OH group including its carbon atom

A carboxylic acid is an organic compound that contains a carboxyl group. The general formula of a carboxylic acid is R–COOH, with R referring to the rest of the molecule. Carboxylic acids occur widely. Important examples include the amino acids and acetic acid. Deprotonation of a carboxyl group gives a carboxylate anion.

Contents

A few common examples include:

Lactic acid group of stereoisomers

Lactic acid is an organic acid. It has a molecular formula CH3CH(OH)CO2H. It is white in solid state and it is miscible with water. While in liquid state (dissolved state) it is a colorless solution. Production includes both artificial synthesis as well as natural sources. Lactic acid is an alpha-hydroxy acid (AHA) due to the presence of carboxyl group adjacent to the hydroxyl group. It is used as a synthetic intermediate in many organic synthesis industries and in various biochemical industries. The conjugate base of lactic acid is called lactate.

Acetic acid A colourless liquid organic compound found in vinegar

Acetic acid, systematically named ethanoic acid, is a colourless liquid organic compound with the chemical formula CH3COOH (also written as CH3CO2H or C2H4O2). When undiluted, it is sometimes called glacial acetic acid. Vinegar is no less than 4% acetic acid by volume, making acetic acid the main component of vinegar apart from water. Acetic acid has a distinctive sour taste and pungent smell. In addition to household vinegar, it is mainly produced as a precursor to polyvinyl acetate and cellulose acetate. It is classified as a weak acid since it only partially dissociates in solution, but concentrated acetic acid is corrosive and can attack the skin.

Formic acid chemical compound

Formic acid, systematically named methanoic acid, is the simplest carboxylic acid. The chemical formula is . The chemical composition is HCOOH. It is an important intermediate in chemical synthesis and occurs naturally, most notably in some ants. The word "formic" comes from the Latin word for ant, formica, referring to its early isolation by the distillation of ant bodies. Esters, salts, and the anion derived from formic acid are called formates. Industrially, formic acid is produced from methanol.

Characteristics

In general, organic acids are weak acids and do not dissociate completely in water, whereas the strong mineral acids do. Lower molecular mass organic acids such as formic and lactic acids are miscible in water, but higher molecular mass organic acids, such as benzoic acid, are insoluble in molecular (neutral) form.

A mineral acid is an acid derived from one or more inorganic compounds. All mineral acids form hydrogen ions and the conjugate base when dissolved in water.

Miscibility

Miscibility is the property of two substances to mix in all proportions, forming a homogeneous solution. The term is most often applied to liquids but applies also to solids and gases. Water and ethanol, for example, are miscible because they mix in all proportions.

Benzoic acid chemical compound

Benzoic acid is a white (or colorless) solid with the formula C6H5CO2H. It is the simplest aromatic carboxylic acid. The name is derived from gum benzoin, which was for a long time its only source. Benzoic acid occurs naturally in many plants and serves as an intermediate in the biosynthesis of many secondary metabolites. Salts of benzoic acid are used as food preservatives. Benzoic acid is an important precursor for the industrial synthesis of many other organic substances. The salts and esters of benzoic acid are known as benzoates.

On the other hand, most organic acids are very soluble in organic solvents. p-Toluenesulfonic acid is a comparatively strong acid used in organic chemistry often because it is able to dissolve in the organic reaction solvent.

<i>p</i>-Toluenesulfonic acid chemical compound

p-Toluenesulfonic acid (PTSA or pTsOH) or tosylic acid (TsOH) is an organic compound with the formula CH3C6H4SO3H. It is a white solid that is soluble in water, alcohols, and other polar organic solvents. The CH3C6H4SO2 group is known as the tosyl group and is often abbreviated as Ts or Tos. Most often, TsOH refers to the monohydrate, TsOH.H2O.

Exceptions to these solubility characteristics exist in the presence of other substituents that affect the polarity of the compound.

Applications

Simple organic acids like formic or acetic acids are used for oil and gas well stimulation treatments. These organic acids are much less reactive with metals than are strong mineral acids like hydrochloric acid (HCl) or mixtures of HCl and hydrofluoric acid (HF). For this reason, organic acids are used at high temperatures or when long contact times between acid and pipe are needed.[ citation needed ]

Hydrochloric acid strong mineral acid

Hydrochloric acid or muriatic acid is a colorless inorganic chemical system with the formula H
2
O:HCl
. Hydrochloric acid has a distinctive pungent smell. It is classified as strongly acidic and can attack the skin over a wide composition range, since the hydrogen chloride completely dissociates in aqueous solution.

Hydrofluoric acid Solution of hydrogen fluoride in water

Hydrofluoric acid is a solution of hydrogen fluoride (HF) in water. It is a precursor to almost all fluorine compounds, including pharmaceuticals such as fluoxetine (Prozac), diverse materials such as PTFE (Teflon), and elemental fluorine itself. It is a colourless solution that is highly corrosive, capable of dissolving many materials, especially oxides. Its ability to dissolve glass has been known since the 17th century, even before Carl Wilhelm Scheele prepared it in large quantities in 1771. Because of its high reactivity toward glass and moderate reactivity toward many metals, hydrofluoric acid is usually stored in plastic containers.

The conjugate bases of organic acids such as citrate and lactate are often used in biologically-compatible buffer solutions.

Citric acid chemical compound

Citric acid is a weak organic acid that has the chemical formula C
6
H
8
O
7
. It occurs naturally in citrus fruits. In biochemistry, it is an intermediate in the citric acid cycle, which occurs in the metabolism of all aerobic organisms.

A buffer solution is an aqueous solution consisting of a mixture of a weak acid and its conjugate base, or vice versa. Its pH changes very little when a small amount of strong acid or base is added to it. Buffer solutions are used as a means of keeping pH at a nearly constant value in a wide variety of chemical applications. In nature, there are many systems that use buffering for pH regulation. For example, the bicarbonate buffering system is used to regulate the pH of blood.

Citric and oxalic acids are used as rust removal. As acids, they can dissolve the iron oxides, but without damaging the base metal as do stronger mineral acids. In the dissociated form, they may be able to chelate the metal ions, helping to speed removal.

Biological systems create many and more complex organic acids such as L-lactic, citric, and D-glucuronic acids that contain hydroxyl or carboxyl groups. Human blood and urine contain these plus organic acid degradation products of amino acids, neurotransmitters, and intestinal bacterial action on food components. Examples of these categories are alpha-ketoisocaproic, vanilmandelic, and D-lactic acids, derived from catabolism of L-leucine and epinephrine (adrenaline) by human tissues and catabolism of dietary carbohydrate by intestinal bacteria, respectively.

The general structure of a few weak organic acids. From left to right: phenol, enol, alcohol, thiol. The acidic hydrogen in each molecule is colored red. Weak Organic Acids.svg
The general structure of a few weak organic acids. From left to right: phenol, enol, alcohol, thiol. The acidic hydrogen in each molecule is colored red.
The general structure of a few organic acids. From left to right: carboxylic acid, sulfonic acid. The acidic hydrogen in each molecule is colored red. Strong Organic Acids.svg
The general structure of a few organic acids. From left to right: carboxylic acid, sulfonic acid. The acidic hydrogen in each molecule is colored red.

Application in food

Organic acids are used in food preservation because of their effects on bacteria. The key basic principle on the mode of action of organic acids on bacteria is that non-dissociated (non-ionized) organic acids can penetrate the bacteria cell wall and disrupt the normal physiology of certain types of bacteria that we call pH-sensitive, meaning that they cannot tolerate a wide internal and external pH gradient. Among those bacteria are Escherichia coli , Salmonella spp., C. perfringens , Listeria monocytogenes , and Campylobacter species.

Upon passive diffusion of organic acids into the bacteria, where the pH is near or above neutrality, the acids will dissociate and lower the bacteria internal pH, leading to situations that will impair or stop the growth of bacteria. On the other hand, the anionic part of the organic acids that cannot escape the bacteria in its dissociated form will accumulate within the bacteria and disrupt many metabolic functions, leading to osmotic pressure increase, incompatible with the survival of the bacteria.

It has been well demonstrated that the state of the organic acids (undissociated or dissociated) is extremely important to define their capacity to inhibit the growth of bacteria, compared to undissociated acids.

Lactic acid and its salts sodium lactate and potassium lactate are widely used as antimicrobials in food products, in particular, meat and poultry such as ham and sausages. [1]

Application in nutrition and animal feeds

Organic acids have been used successfully in pig production for more than 25 years. Although less research has been done in poultry, organic acids have also been found to be effective in poultry production.

Organic acids (C1–C7) are widely distributed in nature as normal constituents of plants or animal tissues. They are also formed through microbial fermentation of carbohydrates mainly in the large intestine. They are sometimes found in their sodium, potassium, or calcium salts, or even stronger double salts.

Organic acids added to feeds should be protected to avoid their dissociation in the crop and in the intestine (high pH segments) and reach far into the gastrointestinal tract, where the bulk of the bacteria population is located.

From the use of organic acids in poultry and pigs, one can expect an improvement in performance similar to or better than that of antibiotic growth promoters, without the public health concern, a preventive effect on the intestinal problems like necrotic enteritis in chickens and Escherichia coli infection in young pigs. Also one can expect a reduction of the carrier state for Salmonella species and Campylobacter species.

See also

Related Research Articles

A conjugate acid, within the Brønsted–Lowry acid–base theory, is a chemical compound formed by the reception of a proton (H+) by a base—in other words, it is a base with a hydrogen ion added to it. On the other hand, a conjugate base is what is left over after an acid has donated a proton during a chemical reaction. Hence, a conjugate base is a species formed by the removal of a proton from an acid. Because some acids are capable of releasing multiple protons, the conjugate base of an acid may itself be acidic.

Pyruvic acid (CH3COCOOH) is the simplest of the alpha-keto acids, with a carboxylic acid and a ketone functional group. Pyruvate, the conjugate base, CH3COCOO, is a key intermediate in several metabolic pathways throughout the cell.

Lactic acid fermentation metabolic process by which glucose and other six-carbon sugars (also, disaccharides of six-carbon sugars, e.g. sucrose or lactose) are converted into cellular energy and the metabolite lactate, which is lactic acid in solution

Lactic acid fermentation is a metabolic process by which glucose and other six-carbon sugars are converted into cellular energy and the metabolite lactate, which is lactic acid in solution. It is an anaerobic fermentation reaction that occurs in some bacteria and animal cells, such as muscle cells.

Protein catabolism is the breakdown of proteins into amino acids and simple derivative compounds, for transport into the cell through the plasma membrane and ultimately for the polymerization into new proteins via the use of ribonucleic acids (RNA) and ribosomes. Protein catabolism, which is the breakdown of macromolecules, is essentially a digestion process. Protein catabolism is most commonly carried out by non-specific endo- and exo-proteases. However, specific proteases are used for cleaving of proteins for regulatory and protein trafficking purposes. One example is the subclass of proteolytic enzymes called oligopeptidase.

Lactic acidosis acquired metabolic disease that has material basis in low pH in body tissues and blood accompanied by the buildup of lactate especially D-lactate

Lactic acidosis is a medical condition characterized by the buildup of lactate in the body, with formation of an excessively low pH in the bloodstream. It is a form of metabolic acidosis, in which excessive acid accumulates due to a problem with the body's oxidative metabolism.

Oxalic acid simplest dicarboxylic acid

Oxalic acid is an organic compound with the formula C2H2O4. It is a colorless crystalline solid that forms a colorless solution in water. Its condensed formula is HOOCCOOH, reflecting its classification as the simplest dicarboxylic acid.

Malolactic fermentation The anaerobic enzymatic conversion of L-malate to L-lactate and carbon dioxide, yielding energy in the form of ATP.

Malolactic fermentation is a process in winemaking in which tart-tasting malic acid, naturally present in grape must, is converted to softer-tasting lactic acid. Malolactic fermentation is most often performed as a secondary fermentation shortly after the end of the primary fermentation, but can sometimes run concurrently with it. The process is standard for most red wine production and common for some white grape varieties such as Chardonnay, where it can impart a "buttery" flavor from diacetyl, a byproduct of the reaction.

Carboxylate salt or ester of any carboxylic acid

A carboxylate is the conjugate base of a carboxylic acid.

Calcium lactate group of stereoisomers

Calcium lactate is a white crystalline salt with formula C
6
H
10
CaO
6
, consisting of two lactate anions H
3
C
(CHOH)CO
2
for each calcium cation Ca2+
. It forms several hydrates, the most common being the pentahydrate C
6
H
10
CaO
6
·5H
2
O
.

Sodium bisulfate sodium bisulfate

Sodium bisulfate, also known as sodium hydrogen sulfate, is the sodium salt of the bisulfate anion, with the molecular formula NaHSO4. Sodium bisulfate is an acid salt formed by partial neutralization of sulfuric acid by an equivalent of sodium base, typically either in the form of sodium hydroxide (lye) or sodium chloride (table salt). It is a dry granular product that can be safely shipped and stored. The anhydrous form is hygroscopic. Solutions of sodium bisulfate are acidic, with a 1M solution having a pH of around 1.

Lactic acid bacteria

Lactic acid bacteria (LAB) are an order of gram-positive, low-GC, acid-tolerant, generally nonsporulating, nonrespiring, either rod-shaped (bacilli) or spherical (cocci) bacteria that share common metabolic and physiological characteristics. These bacteria, usually found in decomposing plants and milk products, produce lactic acid as the major metabolic end product of carbohydrate fermentation. This trait has, throughout history, linked LAB with food fermentations, as acidification inhibits the growth of spoilage agents. Proteinaceous bacteriocins are produced by several LAB strains and provide an additional hurdle for spoilage and pathogenic microorganisms. Furthermore, lactic acid and other metabolic products contribute to the organoleptic and textural profile of a food item. The industrial importance of the LAB is further evidenced by their generally recognized as safe (GRAS) status, due to their ubiquitous appearance in food and their contribution to the healthy microbiota of animal and human mucosal surfaces. The genera that comprise the LAB are at its core Lactobacillus, Leuconostoc, Pediococcus, Lactococcus, and Streptococcus, as well as the more peripheral Aerococcus, Carnobacterium, Enterococcus, Oenococcus, Sporolactobacillus, Tetragenococcus, Vagococcus, and Weissella; these belong to the order Lactobacillales.

Beeturia

Beeturia is the passing of red or pink urine after eating beetroots or foods colored with beetroot extract or beetroot pigments. The color is caused by the excretion of betalain (betacyanin) pigments such as betanin. The coloring is highly variable between individuals and between different occasions, and can vary in intensity from invisible to strong. The pigment is sensitive to oxidative degradation under strongly acidic conditions. Therefore, the urine coloring depends on stomach acidity and dwell time as well as the presence of protecting substances such as oxalic acid. Beeturia is often associated with red or pink feces.

Potassium lactate chemical compound

Potassium lactate is a compound with formula KC3H5O3, or H3C-CHOH-COOK. It is the potassium salt of lactic acid. It is produced by neutralizing lactic acid which is fermented from a sugar source. It has E number "E326". Potassium lactate is a liquid product that is usually 60% solids but is available at up to 78% solids.

Acids in wine

The acids in wine are an important component in both winemaking and the finished product of wine. They are present in both grapes and wine, having direct influences on the color, balance and taste of the wine as well as the growth and vitality of yeast during fermentation and protecting the wine from bacteria. The measure of the amount of acidity in wine is known as the “titratable acidity” or “total acidity”, which refers to the test that yields the total of all acids present, while strength of acidity is measured according to pH, with most wines having a pH between 2.9 and 3.9. Generally, the lower the pH, the higher the acidity in the wine. However, there is no direct connection between total acidity and pH. In wine tasting, the term “acidity” refers to the fresh, tart and sour attributes of the wine which are evaluated in relation to how well the acidity balances out the sweetness and bitter components of the wine such as tannins. Three primary acids are found in wine grapes: tartaric, malic and citric acids. During the course of winemaking and in the finished wines, acetic, butyric, lactic and succinic acids can play significant roles. Most of the acids involved with wine are fixed acids with the notable exception of acetic acid, mostly found in vinegar, which is volatile and can contribute to the wine fault known as volatile acidity. Sometimes, additional acids, such as ascorbic, sorbic and sulfurous acids, are used in winemaking.

Acid strength refers to the tendency of an acid, symbolised by the chemical formula HA, to dissociate into a proton, H+, and an anion, A. The dissociation of a strong acid in solution is effectively complete, except in its most concentrated solutions.

References

Further reading