Orogeny

Last updated

} World geologic provinces.jpg
}

An orogeny is an event that leads to both structural deformation and compositional differentiation of the Earth's lithosphere (crust and uppermost mantle) at convergent plate margins. An orogen or orogenic belt develops when a continental plate crumples and is pushed upwards to form one or more mountain ranges; this involves a series of geological processes collectively called orogenesis. [1] [2]

Lithosphere The rigid, outermost shell of a terrestrial-type planet or natural satellite that is defined by its rigid mechanical properties

A lithosphere is the rigid, outermost shell of a terrestrial-type planet, or natural satellite, that is defined by its rigid mechanical properties. On Earth, it is composed of the crust and the portion of the upper mantle that behaves elastically on time scales of thousands of years or greater. The outermost shell of a rocky planet, the crust, is defined on the basis of its chemistry and mineralogy.

Crust (geology) The outermost solid shell of a rocky planet, dwarf planet, or natural satellite

In geology, the crust is the outermost solid shell of a rocky planet, dwarf planet, or natural satellite. It is usually distinguished from the underlying mantle by its chemical makeup; however, in the case of icy satellites, it may be distinguished based on its phase.

A mantle is a layer inside a planetary body bounded below by a core and above by a crust. Mantles are made of rock or ices, and are generally the largest and most massive layer of the planetary body. Mantles are characteristic of planetary bodies that have undergone differentiation by density. All terrestrial planets, a number of asteroids, and some planetary moons have mantles.

Contents

Orogeny is the primary mechanism by which mountains are built on continents. The word "orogeny" comes from Ancient Greek (ὄρος, óros, lit. 'mountain' + γένεσις, génesis, lit.'creation, origin'). [3] Although it was used before him, the term was employed by the American geologist G.K. Gilbert in 1890 to describe the process of mountain building as distinguished from epeirogeny. [4]

Mountain formation The geological processes that underlie the formation of mountains

Mountain formation refers to the geological processes that underlie the formation of mountains. These processes are associated with large-scale movements of the Earth's crust. Folding, faulting, volcanic activity, igneous intrusion and metamorphism can all be parts of the orogenic process of mountain building. The formation of mountains is not necessarily related to the geological structures found on it.

Ancient Greek Version of the Greek language used from roughly the 9th century BCE to the 6th century CE

The Ancient Greek language includes the forms of Greek used in Ancient Greece and the ancient world from around the 9th century BCE to the 6th century CE. It is often roughly divided into the Archaic period, Classical period, and Hellenistic period. It is antedated in the second millennium BCE by Mycenaean Greek and succeeded by medieval Greek.

Literal translation, direct translation, or word-for-word translation is the rendering of text from one language to another one word at a time with or without conveying the sense of the original whole.

Physiography

Two processes that can contribute to the formation of orogens. Top: delamination of orogenic roots into the asthenosphere; Bottom: Subduction of lithospheric plate to mantle depths. The two processes lead to differently located metamorphic rocks (bubbles in diagram), providing evidence as to which process actually occurred at convergent plate margins. SubductionDelamination.JPG
Two processes that can contribute to the formation of orogens. Top: delamination of orogenic roots into the asthenosphere; Bottom: Subduction of lithospheric plate to mantle depths. The two processes lead to differently located metamorphic rocks (bubbles in diagram), providing evidence as to which process actually occurred at convergent plate margins.
Subduction of an oceanic plate beneath a continental plate to form an accretionary orogen. (example: the Andes) Active Margin.svg
Subduction of an oceanic plate beneath a continental plate to form an accretionary orogen. (example: the Andes)
Continental collision of two continental plates to form a collisional orogen. Typically, continental crust is subducted to lithospheric depths for blueschist to eclogite facies metamorphism, and then exhumed along the same subduction channel. (example: the Himalayas) Continental-continental convergence Fig21contcont.gif
Continental collision of two continental plates to form a collisional orogen. Typically, continental crust is subducted to lithospheric depths for blueschist to eclogite facies metamorphism, and then exhumed along the same subduction channel. (example: the Himalayas)

The formation of an orogen can be accomplished by the tectonic processes such as oceanic subduction (where a continent rides forcefully over an oceanic plate for accretionary orogeny) or continental subduction convergence of two or more continents for collisional orogeny). [6]

Subduction A geological process at convergent tectonic plate boundaries where one plate moves under the other

Subduction is a geological process that takes place at convergent boundaries of tectonic plates where one plate moves under another and is forced to sink due to gravity into the mantle. Regions where this process occurs are known as subduction zones. Rates of subduction are typically in centimeters per year, with the average rate of convergence being approximately two to eight centimeters per year along most plate boundaries.

Continent Very large landmass identified by convention

A continent is one of several very large landmasses of the world. Generally identified by convention rather than any strict criteria, up to seven regions are commonly regarded as continents. Ordered from largest in area to smallest, they are: Asia, Africa, North America, South America, Antarctica, Europe, and Australia.

Convergent boundary Region of active deformation between colliding lithospheric plates

A convergent boundary is an area on Earth where two or more lithospheric plates collide. One plate eventually slides beneath the other causing a process known as subduction. The subduction zone can be defined by a plane where many earthquakes occur, called the Benioff Zone. These collisions happen on scales of millions to tens of millions of years and can lead to volcanism, earthquakes, orogenesis, destruction of lithosphere, and deformation. Convergent boundaries occur between oceanic-oceanic lithosphere, oceanic-continental lithosphere, and continental-continental lithosphere. The geologic features related to convergent boundaries vary depending on crust types.

Orogeny usually produces long arcuate (from the Latin arcuare, "to bend like a bow") structures, known as orogenic belts. Generally, orogenic belts consist of long parallel strips of rock exhibiting similar characteristics along the length of the belt. Although orogenic belts are associated with subduction zones, subduction tectonism may be ongoing or past processes. The subducting tectonism would consume crust, thicken lithosphere, produce earthquake and volcanoes, and build island arcs in many cases. [7] Geologists attribute the arcuate structure to the rigidity of the descending plate, and island arc cusps relate to tears in the descending lithosphere. [8] These island arcs may be added to a continental margin during an accretionary orogeny. On the other hand, subduction zones may be reworked at a later time due to lithospheric rifting, leading to amphibolite to granulite facies metamorphism of the thinned orogenic crust.

Rock (geology) A naturally occurring solid aggregate of one or more minerals or mineraloids

A rock is any naturally occurring solid mass or aggregate of minerals or mineraloid matter. It is categorized by the minerals included, its chemical composition and the way in which it is formed. Rocks are usually grouped into three main groups: igneous rocks, metamorphic rocks and sedimentary rocks. Rocks form the Earth's outer solid layer, the crust.

Island arc arc-shaped archipelago

Island arcs are long chains of active volcanoes with intense seismic activity found along convergent tectonic plate boundaries. Most island arcs originate on oceanic crust and have resulted from the descent of the lithosphere into the mantle along the subduction zone. They are the principal way by which continental growth is achieved.

The processes of orogeny can take tens of millions of years and build mountains from plains or from the seabed. The topographic height of orogenic mountains is related to the principle of isostasy, [9] that is, a balance of the downward gravitational force upon an upthrust mountain range (composed of light, continental crust material) and the buoyant upward forces exerted by the dense underlying mantle. [10]

Seabed The bottom of the ocean

The seabed is the bottom of the ocean.

Isostasy is the state of gravitational equilibrium between Earth's crust and mantle such that the crust "floats" at an elevation that depends on its thickness and density.

Newton's law of universal gravitation states that every particle attracts every other particle in the universe with a force which is directly proportional to the product of their masses and inversely proportional to the square of the distance between their centers. This is a general physical law derived from empirical observations by what Isaac Newton called inductive reasoning. It is a part of classical mechanics and was formulated in Newton's work Philosophiæ Naturalis Principia Mathematica, first published on 5 July 1687. When Newton presented Book 1 of the unpublished text in April 1686 to the Royal Society, Robert Hooke made a claim that Newton had obtained the inverse square law from him.

Frequently, rock formations that undergo orogeny are severely deformed and undergo metamorphism. Orogenic processes may push deeply buried rocks to the surface. Sea-bottom and near-shore material may cover some or all of the orogenic area. If the orogeny is due to two continents colliding, very high mountains can result (see Himalayas).

Geological formation The fundamental unit of lithostratigraphy

A formation or geological formation is the fundamental unit of lithostratigraphy. A formation consists of a certain amount of rock strata that have a comparable lithology, facies or other similar properties. Formations are not defined by the thickness of their rock strata; therefore the thickness of different formations can vary widely.

Metamorphism The change of minerals in pre-existing rocks without melting into liquid magma

Metamorphism is the change of minerals or geologic texture in pre-existing rocks (protoliths), without the protolith melting into liquid magma. The change occurs primarily due to heat, pressure, and the introduction of chemically active fluids. The chemical components and crystal structures of the minerals making up the rock may change even though the rock remains a solid. Changes at or just beneath Earth's surface due to weathering or diagenesis are not classified as metamorphism. Metamorphism typically occurs between diagenesis, and melting (~850°C).

Himalayas Mountain range in Asia

The Himalayas, or Himalaya, form a mountain range in Asia, separating the plains of the Indian subcontinent from the Tibetan Plateau. The range has many of the Earth's highest peaks, including the highest, Mount Everest. The Himalayas include over fifty mountains exceeding 7,200 m (23,600 ft) in elevation, including ten of the fourteen 8,000-metre peaks. By contrast, the highest peak outside Asia is 6,961 m (22,838 ft) tall.

An orogenic event may be studied: (a) as a tectonic structural event, (b) as a geographical event, and (c) as a chronological event.

Orogenic events:

Orogen (or "orogenic system")

The Foreland Basin System ForelandBasinSystem.png
The Foreland Basin System

In general, there are two main types of orogens at convergent plate margins: (1) accretionary orogens, which were produced by subduction of one oceanic plate beneath one continental plate to result in either continental arc magmatism or the accretion of island arc terranes to continental margins; (2) collisional orogens, which were produced by collision between two continental blocks, with subduction of one continental block beneath the other continental block.

An orogeny produces an orogen, but a (mountain) range- foreland basin system is only produced on passive plate margins. The foreland basin forms ahead of the orogen due mainly to loading and resulting flexure of the lithosphere by the developing mountain belt. A typical foreland basin is subdivided into a wedge-top basin above the active orogenic wedge, the foredeep immediately beyond the active front, a forebulge high of flexural origin and a back-bulge area beyond, although not all of these are present in all foreland-basin systems. The basin migrates with the orogenic front and early deposited foreland basin sediments become progressively involved in folding and thrusting. Sediments deposited in the foreland basin are mainly derived from the erosion of the actively uplifting rocks of the mountain range, although some sediments derive from the foreland. The fill of many such basins shows a change in time from deepwater marine ( flysch -style) through shallow water to continental ( molasse -style) sediments. [11]

Orogenic cycle

Although orogeny involves plate tectonics, the tectonic forces result in a variety of associated phenomena, including crustal deformation, crustal thickening, crustal thinning and crustal melting as well as magmatism, metamorphism and mineralization. What exactly happens in a specific orogen depends upon the strength and rheology of the continental lithosphere, and how these properties change during orogenesis.

In addition to orogeny, the orogen (once formed) is subject to other processes, such as sedimentation and erosion. [2] The sequence of repeated cycles of sedimentation, deposition and erosion, followed by burial and metamorphism, and then by crustal anatexis to form granitic batholiths and tectonic uplift to form mountain chains, is called the orogenic cycle. [12] [13] For example, the Caledonian Orogeny refers to a series of tectonic events due to the continental collision of Laurentia with Eastern Avalonia and other former fragments of Gondwana in the Early Paleozoic. The Caledonian Orogen resulted from these events and various others that are part of its peculiar orogenic cycle. [14]

In summary, an orogeny is an episode of deformation, metamorphism and magmatism at convergent plate margins, during which many geological processes play a role at convergent plate margins. Every orogeny has its own orogenic cycle, but composite orogenesis is common at convergent plate margins.

Erosion

Erosion represents a subsequent phase of the orogenic cycle. Erosion inevitably removes much of the mountains, exposing the core or mountain roots (metamorphic rocks brought to the surface from a depth of several kilometres). Isostatic movements may help such exhumation by balancing out the buoyancy of the evolving orogen. Scholars debate about the extent to which erosion modifies the patterns of tectonic deformation (see erosion and tectonics). Thus, the final form of the majority of old orogenic belts is a long arcuate strip of crystalline metamorphic rocks sequentially below younger sediments which are thrust atop them and which dip away from the orogenic core.

An orogen may be almost completely eroded away, and only recognizable by studying (old) rocks that bear traces of orogenesis. Orogens are usually long, thin, arcuate tracts of rock that have a pronounced linear structure resulting in terranes or blocks of deformed rocks, separated generally by suture zones or dipping thrust faults. These thrust faults carry relatively thin slices of rock (which are called nappes or thrust sheets, and differ from tectonic plates) from the core of the shortening orogen out toward the margins, and are intimately associated with folds and the development of metamorphism. [15]

Biology

In the 1950s and 1960s the study of orogeny, coupled with biogeography (the study of the distribution and evolution of flora and fauna), [16] geography and mid ocean ridges, contributed greatly to the theory of plate tectonics. Even at a very early stage, life played a significant role in the continued existence of oceans, by affecting the composition of the atmosphere. The existence of oceans is critical to sea-floor spreading and subduction. [17] [ need quotation to verify ] [18] [ need quotation to verify ]

Relationship to mountain building

An example of thin-skinned deformation (thrust faulting) of the Sevier Orogeny in Montana. Note the white Madison Limestone repeated, with one example in the foreground (that pinches out with distance) and another to the upper right corner and top of the picture. SunRiver.JPG
An example of thin-skinned deformation (thrust faulting) of the Sevier Orogeny in Montana. Note the white Madison Limestone repeated, with one example in the foreground (that pinches out with distance) and another to the upper right corner and top of the picture.
Sierra Nevada Mountains (a result of delamination) as seen from the International Space Station. Sierra Nevada Mountains.JPG
Sierra Nevada Mountains (a result of delamination) as seen from the International Space Station.

Mountain formation occurs through a number of mechanisms. [19] [20] [21]

Mountain complexes result from irregular successions of tectonic responses due to sea-floor spreading, shifting lithosphere plates, transform faults, and colliding, coupled and uncoupled continental margins.

Peter J Coney [22]

Large modern orogenies often lie on the margins of present-day continents; the Alleghenian (Appalachian), Laramide, and Andean orogenies exemplify this in the Americas. Older inactive orogenies, such as the Algoman, Penokean and Antler, are represented by deformed and metamorphosed rocks with sedimentary basins further inland.

Areas that are rifting apart, such as mid-ocean ridges and the East African Rift, have mountains due to thermal buoyancy related to the hot mantle underneath them; this thermal buoyancy is known as dynamic topography. In strike-slip orogens, such as the San Andreas Fault, restraining bends result in regions of localized crustal shortening and mountain building without a plate-margin-wide orogeny. Hotspot volcanism results in the formation of isolated mountains and mountain chains that look as if they are not necessarily on present tectonic-plate boundaries, but they are essentially the product of plate tectonism.

Regions can also experience uplift as a result of delamination of the orogenic lithosphere, in which an unstable portion of cold lithospheric root drips down into the asthenospheric mantle, decreasing the density of the lithosphere and causing buoyant uplift. [23] An example is the Sierra Nevada in California. This range of fault-block mountains [24] experienced renewed uplift due to abundant magmatism after a delamination of the orogenic root beneath them. [23] [25]

Finally, uplift and erosion related to epeirogenesis (large-scale vertical motions of portions of continents without much associated folding, metamorphism, or deformation) [26] can create local topographic highs.

Mount Rundle, Banff, Alberta. Mount Rundle, Banff, Canada (200544945).jpg
Mount Rundle, Banff, Alberta.

Mount Rundle on the Trans-Canada Highway between Banff and Canmore provides a classic example of a mountain cut in dipping-layered rocks. Millions of years ago a collision caused an orogeny, forcing horizontal layers of an ancient ocean crust to be thrust up at an angle of 50–60°. That left Rundle with one sweeping, tree-lined smooth face, and one sharp, steep face where the edge of the uplifted layers are exposed. [27]

History of the concept

Before the development of geologic concepts during the 19th century, the presence of marine fossils in mountains was explained in Christian contexts as a result of the Biblical Deluge. This was an extension of Neoplatonic thought, which influenced early Christian writers.[ citation needed ]

The 13th-century Dominican scholar Albert the Great posited that, as erosion was known to occur, there must be some process whereby new mountains and other land-forms were thrust up, or else there would eventually be no land; he suggested that marine fossils in mountainsides must once have been at the sea-floor. Orogeny was used by Amanz Gressly (1840) and Jules Thurmann (1854) as orogenic in terms of the creation of mountain elevations, as the term mountain building was still used to describe the processes. Elie de Beaumont (1852) used the evocative "Jaws of a Vise" theory to explain orogeny, but was more concerned with the height rather than the implicit structures created by and contained in orogenic belts. His theory essentially held that mountains were created by the squeezing of certain rocks. Eduard Suess (1875) recognised the importance of horizontal movement of rocks. The concept of a precursor geosyncline or initial downward warping of the solid earth (Hall, 1859) prompted James Dwight Dana (1873) to include the concept of compression in the theories surrounding mountain-building. With hindsight, we can discount Dana's conjecture that this contraction was due to the cooling of the Earth (aka the cooling Earth theory). The cooling Earth theory was the chief paradigm for most geologists until the 1960s. It was, in the context of orogeny, fiercely contested by proponents of vertical movements in the crust (similar to tephrotectonics), or convection within the asthenosphere or mantle.

Gustav Steinmann (1906) recognised different classes of orogenic belts, including the Alpine type orogenic belt, typified by a flysch and molasse geometry to the sediments; ophiolite sequences, tholeiitic basalts, and a nappe style fold structure.

In terms of recognising orogeny as an event, Leopold von Buch (1855) recognised that orogenies could be placed in time by bracketing between the youngest deformed rock and the oldest undeformed rock, a principle which is still in use today, though commonly investigated by geochronology using radiometric dating.

Based on available observations from the metamorphic differences in orogenic belts of Europe and North America, H. J. Zwart (1967) [28] proposed three types of orogens in relationship to tectonic setting and style: Cordillerotype, Alpinotype, and Hercynotype. His proposal was revised by W. S. Pitcher in 1979 [29] in terms of the relationship to granite occurrences. Cawood et al. (2009) [30] categorized orogenic belts into three types: accretionary, collisional, and intracratonic. Notice that both accretionary and collisional orogens developed in converging plate margins. In contrast, Hercynotype orogens generally show similar features to intracratonic, intracontinental, extensional, and ultrahot orogens, all of which developed in continental detachment systems at converged plate margins.

  1. Accretionary orogens, which were produced by subduction of one oceanic plate beneath one continental plate for arc volcanism. They are dominated by calc-alkaline igneous rocks and high-T/low-P metamorphic facies series at high thermal gradients of >30oC/km. There is a general lack of ophiolites, migmatites and abyssal sediments. Typical examples are all circum-Pacific orogens containing continental arcs.
  2. Collisional orogens, which were produced by subduction of one continental block beneath the other continental block with the absence of arc volcanism. They are typified by the occurrence of blueschist to eclogite facies metamorphic zones, indicating high-P/low-T metamorphism at low thermal gradients of <10oC/km. Orogenic peridotites are present but volumetrically minor, and syn-collisional granites and migmatites are also rare or of only minor extent. Typical examples are the Alps-Himalaya orogens in the southern margin of Eurasian continent and the Dabie-Sulu orogens in east-central China.

See also

Related Research Articles

The Alps form part of a Cenozoic orogenic belt of mountain chains, called the Alpide belt, that stretches through southern Europe and Asia from the Atlantic all the way to the Himalayas. This belt of mountain chains was formed during the Alpine orogeny. A gap in these mountain chains in central Europe separates the Alps from the Carpathians to the east. Orogeny took place continuously and tectonic subsidence has produced the gaps in between.

Obduction was originally defined by Coleman to mean the overthrusting of oceanic lithosphere onto continental lithosphere at a convergent plate boundary where continental lithosphere is being subducted beneath oceanic lithosphere.

Tectonics The processes that control the structure and properties of the Earths crust and its evolution through time

Tectonics is the process that controls the structure and properties of the Earth's crust and its evolution through time. In particular, it describes the processes of mountain building, the growth and behavior of the strong, old cores of continents known as cratons, and the ways in which the relatively rigid plates that constitute the Earth's outer shell interact with each other. Tectonics also provides a framework for understanding the earthquake and volcanic belts that directly affect much of the global population. Tectonic studies are important as guides for economic geologists searching for fossil fuels and ore deposits of metallic and nonmetallic resources. An understanding of tectonic principles is essential to geomorphologists to explain erosion patterns and other Earth surface features.

Tectonic uplift The portion of the total geologic uplift of the mean earth surface that is not attributable to an isostatic response to unloading

Tectonic uplift is the portion of the total geologic uplift of the mean Earth surface that is not attributable to an isostatic response to unloading. While isostatic response is important, an increase in the mean elevation of a region can only occur in response to tectonic processes of crustal thickening, changes in the density distribution of the crust and underlying mantle, and flexural support due to the bending of rigid lithosphere.

The Antler orogeny was a tectonic event that began in the early Late Devonian with widespread effects continuing into the Mississippian and early Pennsylvanian. Most of the evidence for this event is in Nevada but the limits of its reach are unknown. A great volume of conglomeratic deposits of mainly Mississippian age in Nevada and adjacent areas testifies to the existence of an important tectonic event, and implies nearby areas of uplift and erosion, but the nature and cause of that event are uncertain and in dispute. Although it is known as an orogeny, some of the classic features of orogeny as commonly defined such as metamorphism, and granitic intrusives have not been linked to it. In spite of this, the event is universally designated as an orogeny and that practice is continued here. This article outlines what is known and unknown about the Antler orogeny and describes three current theories regarding its nature and origin.

Continental collision

Continental collision is a phenomenon of the plate tectonics of Earth that occurs at convergent boundaries. Continental collision is a variation on the fundamental process of subduction, whereby the subduction zone is destroyed, mountains produced, and two continents sutured together. Continental collision is known only to occur on Earth.

Grenville orogeny

The Grenville orogeny was a long-lived Mesoproterozoic mountain-building event associated with the assembly of the supercontinent Rodinia. Its record is a prominent orogenic belt which spans a significant portion of the North American continent, from Labrador to Mexico, as well as to Scotland.

The Hunter-Bowen Orogeny was a significant arc accretion event in the Permian and Triassic periods affecting approximately 2,500 km of the Australian continental margin.

Foreland basin A structural basin that develops adjacent and parallel to a mountain belt

A foreland basin is a structural basin that develops adjacent and parallel to a mountain belt. Foreland basins form because the immense mass created by crustal thickening associated with the evolution of a mountain belt causes the lithosphere to bend, by a process known as lithospheric flexure. The width and depth of the foreland basin is determined by the flexural rigidity of the underlying lithosphere, and the characteristics of the mountain belt. The foreland basin receives sediment that is eroded off the adjacent mountain belt, filling with thick sedimentary successions that thin away from the mountain belt. Foreland basins represent an endmember basin type, the other being rift basins. Space for sediments is provided by loading and downflexure to form foreland basins, in contrast to rift basins, where accommodation space is generated by lithospheric extension.

Accretionary wedge The sediments accreted onto the non-subducting tectonic plate at a convergent plate boundary

An accretionary wedge or accretionary prism forms from sediments accreted onto the non-subducting tectonic plate at a convergent plate boundary. Most of the material in the accretionary wedge consists of marine sediments scraped off from the downgoing slab of oceanic crust, but in some cases the wedge includes the erosional products of volcanic island arcs formed on the overriding plate.

Trans-Hudson orogeny

The Trans-Hudson orogeny or Trans-Hudsonian orogeny was the major mountain building event (orogeny) that formed the Precambrian Canadian Shield, the North American Craton, and the forging of the initial North American continent. It gave rise to the Trans-Hudson orogen (THO), or Trans-Hudson Orogen Transect (THOT), which is the largest Paleoproterozoic orogenic belt in the world. It consists of a network of belts that were formed by Proterozoic crustal accretion and the collision of pre-existing Archean continents. The event occurred 2.0-1.8 billion years ago.

Gibraltar Arc

The Gibraltar Arc is a geological region corresponding to an arcuate orogen surrounding the Alboran Sea, between the Iberian Peninsula and Africa. It consists of the Betic Cordillera, and the Rif. The Gibraltar Arc is located at the western end of the Mediterranean Alpine belt and formed during the Neogene due to convergence of the Eurasian and African plates.

Rhenohercynian Zone A fold belt of west and central Europe, formed during the Hercynian orogeny

The Rhenohercynian Zone or Rheno-Hercynian zone in structural geology describes a fold belt of west and central Europe, formed during the Hercynian orogeny. The zone consists of folded and thrusted Devonian and early Carboniferous sedimentary rocks that were deposited in a back-arc basin along the southern margin of the then existing paleocontinent Laurussia.

Andean orogeny Ongoing mountain-forming process in South America

The Andean orogeny is an ongoing process of orogeny that began in the Early Jurassic and is responsible for the rise of the Andes mountains. The orogeny is driven by a reactivation of a long-lived subduction system along the western margin of South America. On a continental scale the Cretaceous and Oligocene were periods of re-arrangements in the orogeny. Locally the details of the nature of the orogeny varies depending on the segment and the geological period considered.

Geology of Russia regional geology of Russia

The geology of Russia, the world's largest country, which extends over much of northern Eurasia, consists of several stable cratons and sedimentary platforms bounded by orogenic (mountain) belts.

Tectonic subsidence is the sinking of the Earth's crust on a large scale, relative to crustal-scale features or the geoid. The movement of crustal plates and accommodation spaces created by faulting create subsidence on a large scale in a variety of environments, including passive margins, aulacogens, fore-arc basins, foreland basins, intercontinental basins and pull-apart basins. Three mechanisms are common in the tectonic environments in which subsidence occurs: extension, cooling and loading.

Ultra-high-pressure metamorphism refers to metamorphic processes at pressures high enough to stabilize coesite, the high-pressure polymorph of SiO2. It is important because the processes that form and exhume ultra-high-pressure (UHP) metamorphic rocks may strongly affect plate tectonics, the composition and evolution of Earth's crust. The discovery of UHP metamorphic rocks in 1984 revolutionized our understanding of plate tectonics. Prior to 1984 there was little suspicion that continental rocks could reach such high pressures.

Svecofennian orogeny A series of related orogenies that resulted in the formation of much of the continental crust in what is today Sweden and Finland plus some minor parts of Russia

The Svecofennian orogeny is a series of related orogenies that resulted in the formation of much of the continental crust in what is today Sweden and Finland plus some minor parts of Russia. The orogenies lasted from about 2000 to 1800 million years ago during the Paleoproterozoic Era. The resulting orogen is known as the Svecofennian orogen or Svecofennides. To the west and southwest the Svecofennian orogen limits with the generally younger Transscandinavian Igneous Belt. It is assumed that the westernmost fringes of the Svecofennian orogen have been reworked by the Sveconorwegian orogeny just as the western parts of the Transscandinavian Igneous Belt has. The Svecofennian orogeny involved the accretion of numerous island arcs in such manner that the pre-existing craton grew with this new material from what is today northeast to the southwest. The accretion of the island arcs was also related to two other processes that occurred in the same period; the formation of magma that then cooled to form igneous rocks and the metamorphism of rocks.

Scandinavian Caledonides

The Scandinavian Caledonides are the vestiges of an ancient, today deeply eroded orogenic belt formed during the Silurian–Devonian continental collision of Baltica and Laurentia, which is referred to as the Scandian phase of the Caledonian orogeny. The size of the Scandinavian Caledonides at the time of their formation can be compared with the size of the Himalayas. The area east of the Scandinavian Caledonides, including parts of Finland, developed into a foreland basin where old rocks and surfaces were covered by sediments. Today, the Scandinavian Caledonides underly most of the western and northern Scandinavian Peninsula, whereas other parts of the Caledonides can be traced into West and Central Europe as well as parts of Greenland and eastern North America.

References

  1. Tony Waltham (2009). Foundations of Engineering Geology (3rd ed.). Taylor & Francis. p. 20. ISBN   978-0-415-46959-3.
  2. 1 2 Philip Kearey; Keith A. Klepeis; Frederick J. Vine (2009). "Chapter 10: Orogenic belts". Global Tectonics (3rd ed.). Wiley-Blackwell. p. 287. ISBN   978-1-4051-0777-8.
  3. Chambers 21st Century Dictionary. Allied Publishers. 1999. p. 972. ISBN   978-0550106254 . Retrieved 27 June 2012.
  4. Friedman G.M. (1994). "Pangean Orogenic and Epeirogenic Uplifts and Their Possible Climatic Significance". In Klein G.O. (ed.). Pangea: Paleoclimate, Tectonics, and Sedimentation During Accretion, Zenith, and Breakup of a Supercontinent. Geological Society of America Special Paper. 288. p. 160. ISBN   9780813722887.
  5. N. H. Woodcock; Robin A. Strachan (2000). "Chapter 12: The Caledonian Orogeny: a multiple plate collision". Geological History of Britain and Ireland. Wiley-Blackwell. p. 202, Figure 12.11. ISBN   978-0-632-03656-1.
  6. Frank Press (2003). Understanding Earth (4th ed.). Macmillan. pp. 468–69. ISBN   978-0-7167-9617-6.
  7. Yuan, S.; Pan, G.; Wang, L.; Jiang, X.; Yin, F.; Zhang, W.; Zhuo, J. (2009). "Accretionary Orogenesis in the Active Continental Margins". Earth Science Frontiers. 16 (3): 31–48. Bibcode:2009ESF....16...31Y. doi:10.1016/S1872-5791(08)60095-0.
  8. Gerald Schubert; Donald Lawson Turcotte; Peter Olson (2001). "§2.5.4 Why are island arcs arcs?". Mantle Convection in the Earth and Planets. Cambridge University Press. pp. 35–36. ISBN   978-0-521-79836-5.
  9. PA Allen (1997). "Isostasy in zones of convergence". Earth Surface Processes. Wiley-Blackwell. pp. 36 ff. ISBN   978-0-632-03507-6.
  10. Gerard V. Middleton; Peter R. Wilcock (1994). "§5.5 Isostasy". Mechanics in the Earth and Environmental Sciences (2nd ed.). Cambridge University Press. p. 170. ISBN   978-0-521-44669-3.
  11. DeCelles P.G. & Giles K.A. (1996). "Foreland basin systems" (PDF). Basin Research. 8 (2): 105–23. Bibcode:1996BasR....8..105D. doi:10.1046/j.1365-2117.1996.01491.x. Archived from the original (PDF) on 2 April 2015. Retrieved 30 March 2015.
  12. David Johnson (2004). "The orogenic cycle". The geology of Australia. Cambridge University Press. pp. 48 ff. ISBN   978-0-521-84121-4.
  13. In other words, orogeny is only a phase in the existence of an orogen. Five characteristics of the orogenic cycle are listed by Robert J. Twiss; Eldridge M. Moores (1992). "Plate tectonic models of orogenic core zones". Structural Geology (2nd ed.). Macmillan. p. 493. ISBN   978-0-7167-2252-6.
  14. However, this orogen was superimposed by rifting orogeny at a later time to result in various extents of reworking. N. H. Woodcock; Robin A. Strachan (2000). "Chapter 12: The Caledonian Orogeny: A Multiple Plate Collision". cited work. pp. 187 ff. ISBN   978-0-632-03656-1.
  15. Olivier Merle (1998). "§1.1 Nappes, overthrusts and fold-nappes". Emplacement Mechanisms of Nappes and Thrust Sheets. Petrology and Structural Geology. 9. Springer. pp. 1 ff. ISBN   978-0-7923-4879-5.
  16. For example, see Patrick L Osborne (2000). Tropical Ecosystems and Ecological Concepts. Cambridge University Press. p. 11. Bibcode:2000teec.book.....O. ISBN   978-0-521-64523-2. Continental drift and plate tectonics help to explain both the similarities and the differences in the distribution of plants and animals over the continents and John C Briggs (1987). Biogeography and Plate Tectonics. Elsevier. p. 131. ISBN   978-0-444-42743-4. It will not be possible to construct a thorough account of the history of the southern hemisphere without the evidence from both the biological and the earth sciences
  17. Paul D. Lowman (2002). "Chapter 7: Geology and biology: the influence of life on terrestrial geology". Exploring Space, Exploring Earth: New Understanding of the Earth from Space Research. Cambridge University Press. pp. 286–87. Bibcode:2002esee.book.....L. ISBN   978-0-521-89062-5.
  18. Seema Sharma (2005). "Atmosphere: origin". Encyclopaedia of Climatology. Anmol Publications PVT. LTD. pp. 30 ff. ISBN   978-81-261-2442-8.
  19. Richard J. Huggett (2007). Fundamentals of Geomorphology (2nd ed.). Routledge. p. 104. ISBN   978-0-415-39084-2.
  20. Gerhard Einsele (2000). Sedimentary Basins: Evolution, Facies, and Sediment Budget (2nd ed.). Springer. p. 453. ISBN   978-3-540-66193-1. Without denudation, even relatively low uplift rates as characteristic of epeirogenetic movements (e.g. 20m/MA) would generate highly elevated regions in geological time periods.
  21. Ian Douglas; Richard John Huggett; Mike Robinson (2002). Companion Encyclopedia of Geography: The Environment and Humankind. Taylor & Francis. p. 33. ISBN   978-0-415-27750-1.
  22. Peter J Coney (1970). "The Geotectonic Cycle and the New Global Tectonics". Geological Society of America Bulletin. 81 (3): 739–48. Bibcode:1970GSAB...81..739C. doi:10.1130/0016-7606(1970)81[739:TGCATN]2.0.CO;2.
  23. 1 2 Lee, C.-T.; Yin, Q; Rudnick, RL; Chesley, JT; Jacobsen, SB (2000). "Osmium Isotopic Evidence for Mesozoic Removal of Lithospheric Mantle Beneath the Sierra Nevada, California" (PDF). Science. 289 (5486): 1912–16. Bibcode:2000Sci...289.1912L. doi:10.1126/science.289.5486.1912. PMID   10988067. Archived from the original (PDF) on 15 June 2011.
  24. John Gerrard (1990). Mountain Environments: An Examination of the Physical Geography of Mountains. MIT Press. p. 9. ISBN   978-0-262-07128-4.
  25. Manley, Curtis R.; Glazner, Allen F.; Farmer, G. Lang (2000). "Timing of Volcanism in the Sierra Nevada of California: Evidence for Pliocene Delamination of the Batholithic Root?". Geology. 28 (9): 811. Bibcode:2000Geo....28..811M. doi:10.1130/0091-7613(2000)28<811:TOVITS>2.0.CO;2.
  26. Arthur Holmes; Doris L. Holmes (2004). Holmes Principles of Physical Geology (4th ed.). Taylor & Francis. p. 92. ISBN   978-0-7487-4381-0.
  27. "The Formation of the Rocky Mountains". Mountains in Nature. n.d. Retrieved 29 January 2014.
  28. Zwart, HJ (1967). "The duality of orogenic belts". Geol. Mijnbouw. 46: 283–309.
  29. Pitcher, WS (1979). "The nature, ascent and emplacement of granitic magmas". Journal of the Geological Society. 136 (6): 627–62. Bibcode:1979JGSoc.136..627P. doi:10.1144/gsjgs.136.6.0627.
  30. Cawood, PA; Kroner, A; Collins, WJ; Kusky, TM; Mooney, WD; Windley, BF (2009). Accretionary orogens through Earth history. Geological Society. pp. 1–36. Special Publication 318.

Sources