Paul Drude

Last updated
Paul Drude
Paul Drude.jpg
Paul Karl Ludwig Drude
Born(1863-07-12)12 July 1863
Died5 July 1906(1906-07-05) (aged 42)
Cause of death Suicide
Residence Germany
Nationality German
Alma mater University of Göttingen
Known forThe Drude model
Scientific career
Fields Physicist
Institutions Humboldt University of Berlin
University of Giessen
Doctoral advisor Woldemar Voigt

Paul Karl Ludwig Drude (German: [ˈdʁuːdə] ; 12 July 1863 – 5 July 1906) was a German physicist specializing in optics. He wrote a fundamental textbook integrating optics with Maxwell's theories of electromagnetism.

Germany Federal parliamentary republic in central-western Europe

Germany, officially the Federal Republic of Germany, is a country in Central and Western Europe, lying between the Baltic and North Seas to the north, and the Alps, Lake Constance and the High Rhine to the south. It borders Denmark to the north, Poland and the Czech Republic to the east, Austria and Switzerland to the south, France to the southwest, and Luxembourg, Belgium and the Netherlands to the west.

Physicist scientist who does research in physics

A physicist is a scientist who specializes in the field of physics, which encompasses the interactions of matter and energy at all length and time scales in the physical universe. Physicists generally are interested in the root or ultimate causes of phenomena, and usually frame their understanding in mathematical terms. Physicists work across a wide range of research fields, spanning all length scales: from sub-atomic and particle physics, through biological physics, to cosmological length scales encompassing the universe as a whole. The field generally includes two types of physicists: experimental physicists who specialize in the observation of physical phenomena and the analysis of experiments, and theoretical physicists who specialize in mathematical modeling of physical systems to rationalize, explain and predict natural phenomena. Physicists can apply their knowledge towards solving practical problems or to developing new technologies.

Optics The branch of physics that studies light

Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behaviour of visible, ultraviolet, and infrared light. Because light is an electromagnetic wave, other forms of electromagnetic radiation such as X-rays, microwaves, and radio waves exhibit similar properties.



Born into a Jewish family, [1] the son of a physician in Braunschweig, Drude began his studies in mathematics at the University of Göttingen, but later changed his major to physics. His dissertation covering the reflection and diffraction of light in crystals was completed in 1887, under Woldemar Voigt.

Braunschweig City and district in Lower Saxony, Germany

Braunschweig, also called Brunswick in English, is a city in Lower Saxony, Germany, north of the Harz mountains at the farthest navigable point of the Oker River which connects it to the North Sea via the Aller and Weser Rivers. In 2016, it had a population of 250,704.

Mathematics Field of study concerning quantity, patterns and change

Mathematics includes the study of such topics as quantity, structure, space, and change. It has no generally accepted definition.

University of Göttingen university in the city of Göttingen, Germany

The University of Göttingen is a public research university in the city of Göttingen, Germany. Founded in 1734 by George II, King of Great Britain and Elector of Hanover, and starting classes in 1737, the Georgia Augusta was conceived to promote the ideals of the Enlightenment. It is the oldest university in the state of Lower Saxony and the largest in student enrollment, which stands at around 31,500.


In 1894 Drude became an extraordinarius professor at the University of Leipzig; in the same year he married Emilie Regelsberger, daughter of a Göttingen lawyer. They had four children. In 1900, he became the editor for the scientific journal Annalen der Physik , the most respected physics journal at that time. From 1901-1905, he was ordinarius professor of physics at Giessen University. In 1905 he became the director of the physics institute of the University of Berlin. In 1906, at the height of his career, he became a member of the Prussian Academy of Sciences. A few days after his inauguration lecture, for inexplicable reasons, he committed suicide. Drude was survived by his wife and four children.

Editing process of selecting and preparing media to convey information

Editing is the process of selecting and preparing writing, photography, visual, audible, and film media used to convey information. The editing process can involve correction, condensation, organization, and many other modifications performed with an intention of producing a correct, consistent, accurate and complete work.

Scientific journal Periodical journal publishing scientific research

In academic publishing, a scientific journal is a periodical publication intended to further the progress of science, usually by reporting new research.

Annalen der Physik is one of the oldest scientific journals on physics and has been published since 1799. The journal publishes original, peer-reviewed papers in the areas of experimental, theoretical, applied, and mathematical physics and related areas. The current editor-in-chief is Stefan Hildebrandt. Prior to 2008, its ISO 4 abbreviation was Ann. Phys. (Leipzig), and after 2008 Ann. Phys. (Berl.).


Drude graduated the year Heinrich Hertz began publishing his findings from his experiments on the electromagnetic theories of James Clerk Maxwell. Thus Drude began his professional career at the time Maxwell's theories were being introduced into Germany. [2] His first experiments were the determination of the optical constants of various solids, measured to unprecedented levels of accuracy. He then worked to derive relationships between the optical and electrical constants and the physical structure of substances. In 1894 he was responsible for introducing the symbol "c" for the speed of light in a perfect vacuum.

Heinrich Hertz German physicist

Heinrich Rudolf Hertz was a German physicist who first conclusively proved the existence of the electromagnetic waves theorized by James Clerk Maxwell's electromagnetic theory of light. The unit of frequency, cycle per second, was named the "Hertz" in his honor.

Electromagnetism Branch of science concerned with the phenomena of electricity and magnetism

Electromagnetism is a branch of physics involving the study of the electromagnetic force, a type of physical interaction that occurs between electrically charged particles. The electromagnetic force is carried by electromagnetic fields composed of electric fields and magnetic fields, is responsible for electromagnetic radiation such as light, and is one of the four fundamental interactions in nature. The other three fundamental interactions are the strong interaction, the weak interaction, and gravitation. At high energy the weak force and electromagnetic force are unified as a single electroweak force.

James Clerk Maxwell Scottish physicist

James Clerk Maxwell was a Scottish scientist in the field of mathematical physics. His most notable achievement was to formulate the classical theory of electromagnetic radiation, bringing together for the first time electricity, magnetism, and light as different manifestations of the same phenomenon. Maxwell's equations for electromagnetism have been called the "second great unification in physics" after the first one realised by Isaac Newton.

Toward the end of his tenure at Leipzig, Drude was invited to write a textbook on optics, which he accepted. The book, Lehrbuch der Optik, [3] published in 1900, brought together the formerly distinct subjects of electricity and optics, which was cited by Drude as an “epoch-making advance in natural science.” [4]

Electricity Physical phenomena associated with the presence and flow of electric charge

Electricity is the set of physical phenomena associated with the presence and motion of matter that has a property of electric charge. In early days, electricity was considered as being not related to magnetism. Later on, many experimental results and the development of Maxwell's equations indicated that both electricity and magnetism are from a single phenomenon: electromagnetism. Various common phenomena are related to electricity, including lightning, static electricity, electric heating, electric discharges and many others.

In 1900 he developed a powerful model to explain the thermal, electrical, and optical properties of matter. The Drude model would be further advanced in 1933 by Arnold Sommerfeld and Hans Bethe.

Drude model to explain the transport properties of electrons in materials (especially metals)

The Drude model of electrical conduction was proposed in 1900 by Paul Drude to explain the transport properties of electrons in materials. The model, which is an application of kinetic theory, assumes that the microscopic behavior of electrons in a solid may be treated classically and looks much like a pinball machine, with a sea of constantly jittering electrons bouncing and re-bouncing off heavier, relatively immobile positive ions.

Arnold Sommerfeld German theoretical physicist

Arnold Johannes Wilhelm Sommerfeld, was a German theoretical physicist who pioneered developments in atomic and quantum physics, and also educated and mentored a large number of students for the new era of theoretical physics. He served as doctoral supervisor for many Nobel Prize winners in physics and chemistry.

Hans Bethe German-American nuclear physicist

Hans Albrecht Bethe was a German-American nuclear physicist who made important contributions to astrophysics, quantum electrodynamics and solid-state physics, and won the 1967 Nobel Prize in Physics for his work on the theory of stellar nucleosynthesis.




  1. Mansel Davies, Some Electrical and Optical Aspects of Molecular Behaviour: The Commonwealth and International Library: Chemistry Division, Elsevier (2014), p. 146
  2. Jungnickel, 1990b, p. 167.
  3. The book was translated into English by C. R. Mann and Robert Millikan and published in 1902, under the title The Theory of Optics. (Jungnickel, 1990b, p. 171.) As of 2006, Dover Publishing still offers the 1902 translation.
  4. Jungnickel, 1990b, p. 171.


Related Research Articles

History of physics aspect of history

Physics is the fundamental branch of science. The primary objects of study are matter and energy. Physics is, in one sense, the oldest and most basic academic pursuit; its discoveries find applications throughout the natural sciences, since matter and energy are the basic constituents of the natural world. The other sciences are generally more limited in their scope and may be considered branches that have split off from physics to become sciences in their own right. Physics today may be divided loosely into classical physics and modern physics.

Atomic, molecular, and optical physics (AMO) is the study of matter-matter and light-matter interactions; at the scale of one or a few atoms and energy scales around several electron volts. The three areas are closely interrelated. AMO theory includes classical, semi-classical and quantum treatments. Typically, the theory and applications of emission, absorption, scattering of electromagnetic radiation (light) from excited atoms and molecules, analysis of spectroscopy, generation of lasers and masers, and the optical properties of matter in general, fall into these categories.

Max Born physicist

Max Born was a German-Jewish physicist and mathematician who was instrumental in the development of quantum mechanics. He also made contributions to solid-state physics and optics and supervised the work of a number of notable physicists in the 1920s and 1930s. Born won the 1954 Nobel Prize in Physics for his "fundamental research in quantum mechanics, especially in the statistical interpretation of the wave function".

Hendrik Lorentz Dutch physicist

Hendrik Antoon Lorentz was a Dutch physicist who shared the 1902 Nobel Prize in Physics with Pieter Zeeman for the discovery and theoretical explanation of the Zeeman effect. He also derived the transformation equations underpinning Albert Einstein's theory of special relativity.

Henry Cavendish British natural philosopher, scientist, and an important experimental and theoretical chemist and physicist

Henry Cavendish FRS was an English natural philosopher, scientist, and an important experimental and theoretical chemist and physicist. He is noted for his discovery of hydrogen, which he termed "inflammable air". He described the density of inflammable air, which formed water on combustion, in a 1766 paper, On Factitious Airs. Antoine Lavoisier later reproduced Cavendish's experiment and gave the element its name.

Friedrich Ernst Dorn German physicist

Friedrich Ernst Dorn was a German physicist who was the first to discover that a radioactive substance, later named radon, is emitted from radium.

Max von Laue German physicist

Max Theodor Felix von Laue was a German physicist who won the Nobel Prize in Physics in 1914 for his discovery of the diffraction of X-rays by crystals. In addition to his scientific endeavors with contributions in optics, crystallography, quantum theory, superconductivity, and the theory of relativity, he had a number of administrative positions which advanced and guided German scientific research and development during four decades. A strong objector to National Socialism, he was instrumental in re-establishing and organizing German science after World War II.

Johannes Stark German physicist

Johannes Stark was a German physicist who was awarded the Nobel Prize in Physics in 1919 "for his discovery of the Doppler effect in canal rays and the splitting of spectral lines in electric fields". This phenomenon is known as the Stark effect.

Paul Peter Ewald German physicist

Paul Peter Ewald, FRS was a German crystallographer and physicist, a pioneer of X-ray diffraction methods.

Vladimir Fock Russian physicist

Vladimir Aleksandrovich Fock was a Soviet physicist, who did foundational work on quantum mechanics and quantum electrodynamics.

Carl Neumann Prussian mathematician

Carl Gottfried Neumann was a German mathematician.

Gustav Mie German physicist

Gustav Adolf Feodor Wilhelm Ludwig Mie was a German physicist.

The history of special relativity consists of many theoretical results and empirical findings obtained by Albert A. Michelson, Hendrik Lorentz, Henri Poincaré and others. It culminated in the theory of special relativity proposed by Albert Einstein and subsequent work of Max Planck, Hermann Minkowski and others.

Rudolf Seeliger was a German physicist who specialized in electric discharges in gases and plasma physics.

Gregor Wentzel was a German physicist known for development of quantum mechanics. Wentzel, Hendrik Kramers, and Léon Brillouin developed the Wentzel–Kramers–Brillouin approximation in 1926. In his early years, he contributed to X-ray spectroscopy, but then broadened out to make contributions to quantum mechanics, quantum electrodynamics, and meson theory.

Edwin Crawford Kemble was an American physicist who made contributions to the theory of quantum mechanics and molecular structure and spectroscopy. During World War II, he was a consultant to the Navy on acoustic detection of submarines and to the Army on Operation Alsos.

Emil Georg Cohn, was a German physicist.

Optical Waves in Layered Media is written as a textbook by Pochi Yeh for current optics courses in electrical engineering or applied physics. The book focuses on physics theory more than practical application. It is clearly written and includes comprehensive mathematical theoretical representations of the topics covered. General topical coverage is divided into five parts beginning with electromagnetic theory. It then covers isotropic layered thin films, anisotropic and inhomogeneous media including crystals and birefringence, and guided waves using layered media. Currently, with more than 2,750 citations, this book is highly cited. The book was first published by John Wiley & Sons in 1988 and has been reprinted several times, with the last reprint in 2005.

Russell Keith McCormmach is an American historian of physics.