Paul Mackenzie

Last updated

Paul B. Mackenzie (born 1950) is a theoretical physicist at the Fermi National Accelerator Laboratory. He did graduate work in physics at Cornell University where he was a student of G. Peter Lepage. He is an expert on Lattice Gauge Theory. He is the chair of the Executive Committee of USQCD, the US collaboration for developing the necessary supercomputing hardware and software for quantum chromodynamics formulated on a lattice.

Contents

Selected publications

Mackenzie's has published 71 scientific papers listed in the INSPIRE-HEP Literature Database. [1] The most widely cited of them, "Viability of lattice perturbation theory" in Physical Review D 48 (5), pp. 2250–2264 (1993) has been cited 589 times by March 2009. The second most widely cited, "On the elimination of scale ambiguities in perturbative quantum chromodynamics " Physical Review D 28 (1), pp. 228–235 (1983) has been cited 406 times. Both papers are with Lepage, and the second also with Stan Brodsky.

Related Research Articles

<span class="mw-page-title-main">Particle physics</span> Study of subatomic particles and forces

Particle physics or high-energy physics is the study of fundamental particles and forces that constitute matter and radiation. The field also studies combinations of elementary particles up to the scale of protons and neutrons, while the study of combination of protons and neutrons is called nuclear physics.

<span class="mw-page-title-main">Quark</span> Elementary particle, main constituent of matter

A quark is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei. All commonly observable matter is composed of up quarks, down quarks and electrons. Owing to a phenomenon known as color confinement, quarks are never found in isolation; they can be found only within hadrons, which include baryons and mesons, or in quark–gluon plasmas. For this reason, much of what is known about quarks has been drawn from observations of hadrons.

<span class="mw-page-title-main">Quantum chromodynamics</span> Theory of the strong nuclear interactions

In theoretical physics, quantum chromodynamics (QCD) is the theory of the strong interaction between quarks mediated by gluons. Quarks are fundamental particles that make up composite hadrons such as the proton, neutron and pion. QCD is a type of quantum field theory called a non-abelian gauge theory, with symmetry group SU(3). The QCD analog of electric charge is a property called color. Gluons are the force carriers of the theory, just as photons are for the electromagnetic force in quantum electrodynamics. The theory is an important part of the Standard Model of particle physics. A large body of experimental evidence for QCD has been gathered over the years.

<span class="mw-page-title-main">Leonard Susskind</span> American theoretical physicist (born 1940)

Leonard Susskind is an American theoretical physicist, Professor of theoretical physics in Stanford University and founding director of the Stanford Institute for Theoretical Physics. His research interests are string theory, quantum field theory, quantum statistical mechanics and quantum cosmology. He is a member of the US National Academy of Sciences, and the American Academy of Arts and Sciences, an associate member of the faculty of Canada's Perimeter Institute for Theoretical Physics, and a distinguished professor of the Korea Institute for Advanced Study.

<span class="mw-page-title-main">Lattice gauge theory</span> Theory of quantum gauge fields on a lattice

In physics, lattice gauge theory is the study of gauge theories on a spacetime that has been discretized into a lattice.

<span class="mw-page-title-main">Glueball</span> Hypothetical particle composed of gluons

In particle physics, a glueball is a hypothetical composite particle. It consists solely of gluon particles, without valence quarks. Such a state is possible because gluons carry color charge and experience the strong interaction between themselves. Glueballs are extremely difficult to identify in particle accelerators, because they mix with ordinary meson states. In pure gauge theory, glueballs are the only states of the spectrum and some of them are stable.

<span class="mw-page-title-main">Lattice QCD</span> Quantum chromodynamics on a lattice

Lattice QCD is a well-established non-perturbative approach to solving the quantum chromodynamics (QCD) theory of quarks and gluons. It is a lattice gauge theory formulated on a grid or lattice of points in space and time. When the size of the lattice is taken infinitely large and its sites infinitesimally close to each other, the continuum QCD is recovered.

The J. J. Sakurai Prize for Theoretical Particle Physics, is presented by the American Physical Society at its annual April Meeting, and honors outstanding achievement in particle physics theory. The prize consists of a monetary award (US$10,000), a certificate citing the contributions recognized by the award, and a travel allowance for the recipient to attend the presentation. The award is endowed by the family and friends of particle physicist J. J. Sakurai. The prize has been awarded annually since 1985.

<span class="mw-page-title-main">C. R. Hagen</span>

Carl Richard Hagen is a professor of particle physics at the University of Rochester. He is most noted for his contributions to the Standard Model and Symmetry breaking as well as the 1964 co-discovery of the Higgs mechanism and Higgs boson with Gerald Guralnik and Tom Kibble (GHK). As part of Physical Review Letters 50th anniversary celebration, the journal recognized this discovery as one of the milestone papers in PRL history. While widely considered to have authored the most complete of the early papers on the Higgs theory, GHK were controversially not included in the 2013 Nobel Prize in Physics.

<span class="mw-page-title-main">R. Keith Ellis</span> British theoretical physicist

Richard Keith Ellis, is a British theoretical physicist, working at the University of Durham, and a leading authority on perturbative quantum chromodynamics and collider phenomenology.

<span class="mw-page-title-main">Francisco José Ynduráin</span> Spanish physicist (1940–2008)

Francisco José Ynduráin Muñoz was a Spanish theoretical physicist. He founded the particle physics research group that became the Department of Theoretical Physics at the Autonomous University of Madrid, where he was a Professor. He was described by his colleagues as "a scientist that always searched for excellence in research".

Steven Scott Gubser was a professor of physics at Princeton University. His research focused on theoretical particle physics, especially string theory, and the AdS/CFT correspondence. He was a widely cited scholar in these and other related areas.

<span class="mw-page-title-main">Light front holography</span> Technique used to determine mass of hadrons

In strong interaction physics, light front holography or light front holographic QCD is an approximate version of the theory of quantum chromodynamics (QCD) which results from mapping the gauge theory of QCD to a higher-dimensional anti-de Sitter space (AdS) inspired by the AdS/CFT correspondence proposed for string theory. This procedure makes it possible to find analytic solutions in situations where strong coupling occurs, improving predictions of the masses of hadrons and their internal structure revealed by high-energy accelerator experiments. The most widely used approach to finding approximate solutions to the QCD equations, lattice QCD, has had many successful applications; however, it is a numerical approach formulated in Euclidean space rather than physical Minkowski space-time.

Christine Tullis Hunter Davies is a professor of physics at the University of Glasgow.

Stanley J. Brodsky is an American theoretical physicist and emeritus professor in the SLAC Theory Group at the SLAC National Accelerator Laboratory at Stanford University.

John Benjamin Kogut is an American theoretical physicist, specializing in high energy physics.

Muon <i>g</i>-2 Particle physics experiment

Muon g − 2 is a particle physics experiment at Fermilab to measure the anomalous magnetic dipole moment of a muon to a precision of 0.14 ppm, which is a sensitive test of the Standard Model. It might also provide evidence of the existence of new particles.

<span class="mw-page-title-main">G. Peter Lepage</span> Canadian American theoretical physicist

G. Peter Lepage is a Canadian American theoretical physicist and an academic administrator. He was the Harold Tanner Dean of the College of Arts and Sciences at Cornell University from 2003 to 2013.

Aida Xenia El-Khadra is a particle physicist who is a Professor of High Energy Physics at the University of Illinois at Urbana–Champaign. She is the co-chair of the Muon g-2 Theory Initiative, which reported hints at new physics in the Standard Model in 2021. She is a Fellow of the American Physical Society and the Alfred P. Sloan Foundation.

Zoltan Fodor is a Hungarian-German theoretical particle physicist, best known for his works in lattice QCD by numerically solving the theory of the strong interactions.

References

  1. "Home". inspirehep.net.