Phosphor bronze

Last updated
Phosphor bronze propeller salvaged from 1940s American warship. 1940s warship propeller.jpg
Phosphor bronze propeller salvaged from 1940s American warship.

Phosphor bronze is a member of the family of copper alloys. It is composed of copper that is alloyed with 0.5–11% of tin and 0.01–0.35% phosphorus, and may contain other elements to confer specific properties (e.g. lead at 0.5–3.0% to form free-machining phosphor bronze). Alloyed tin increases the corrosion resistance and strength of copper, while phosphorus increases its wear resistance and stiffness. [1]

Contents

These alloys are notable for their toughness, strength, low coefficient of friction, and fine grain. The phosphorus reduces the viscosity of the molten alloy, which makes it easier and cleaner to cast and reduces grain boundaries between crystallites. It was originally formulated by the Belgian Georges Montefiore-Levi. [2]

Industrial uses

Phosphor bronze is used for springs, bolts, bushings and bearings, electrical switches with moving or sliding parts, dental bridges, the reed component of organ pipes and various other products or assemblies where resistance to fatigue, wear, and corrosion are required [3] (e.g., ship's propellers in a marine environment). [4]

Phosphor bronze comes in a wide array of standard alloys, including nonferrous spring alloys, free-machining phosphor bronze and bearing bronze. The combination of good physical properties, fair electrical conductivity, and moderate cost make phosphor bronze, available in standard round, square, flat, and special format wire desirable for many springs, electrical contacts, and a wide variety of wire forms where the desired properties do not require the use of more expensive beryllium copper. [4]

Phosphor bronze (94.8% copper, 5% tin, 0.2% phosphorus) is also used in cryogenics. In this application, its combination of fair electrical conductivity and low thermal conductivity allows the making of electrical connections to devices at ultra low temperatures without adding excessive heat. [5]

Spent nuclear fuel overpack

The CuOFP capsule used as overpack for spent nuclear fuel disposal in the KBS-3 concept (Finnish version). Loppusijoituskapseli.jpg
The CuOFP capsule used as overpack for spent nuclear fuel disposal in the KBS-3 concept (Finnish version).

Oxygen-free copper can be alloyed with phosphorus (CuOFP alloy) to better withstand oxidizing conditions. This alloy has application as thick corrosion-resistant overpack for spent nuclear fuel disposal in deep crystalline rocks. [6]

UNIVAC computer

Magnetic tape was first used to record computer data in 1951 on the Eckert-Mauchly UNIVAC I. The UNISERVO drive recording medium was a thin metal strip of 0.5-inch (12.7 mm) wide nickel-plated phosphor bronze. Recording density was 128 characters per inch (198 micrometre/character) on eight tracks at a linear speed of 100 in/s (2.54 m/s), yielding a data rate of 12,800 characters per second. Of the eight tracks, six were data, one was a parity track, and one was a clock, or timing track. Making allowance for the empty space between tape blocks, the actual transfer rate was around 7,200 characters per second. A small reel of mylar tape provided separation from the metal tape and the read/write head.

Musical instruments

Phosphor bronze tenor and soprano saxophones TenorSopranoSax.JPG
Phosphor bronze tenor and soprano saxophones
Acoustic guitar string wrapped with phosphor bronze Phosphorbronzeguitarstring.jpg
Acoustic guitar string wrapped with phosphor bronze

Phosphor bronze is preferred over brass for cymbals because of its greater resilience, leading to broader tonal spectrum and greater sustain.

Phosphor bronze is one of several high copper content alloys used as a substitute for the more common "yellow" or "cartridge" types of brass to construct the bodies and bells of metal wind instruments. Examples of instruments constructed using high copper alloys occur among members of the brass instrument family (trumpets, flugelhorns, and trombones) and one member of the reed instrument family, saxophones. In addition to the distinctive appearance provided by the reddish-orange hue of high copper alloys, they are purported by some instrument designers, sellers, and players to provide a broader harmonic response spectrum for a given instrument design. The Yanagisawa 902/992 model saxophones (pictured) have bodies of phosphor bronze, in contrast to the brass 901/991 models.

Some instrument strings for acoustic guitars, mandolins and violins are wrapped with phosphor bronze. Some harmonica reeds are made of phosphor bronze, such as those by Suzuki Musical Instrument Corporation and Bushman Harmonicas. [7]

The reed component of reed-type organ pipes is usually made of phosphor bronze owing to its high wear and low deformability under conditions of constant vibration when producing sound. [8]

Some snare drums are constructed with phosphor bronze.

Variants

Further increasing the phosphorus content leads to formation of a very hard compound Cu3P (copper phosphide), resulting in a brittle form of phosphor bronze, which has a narrow range of applications.

Around 2001, the Olin Corporation developed another alloy for use in electrical and electronic connectors which they referred to as "phosphor bronze". [9] Its composition was as follows:

When assessed in strictly metallurgical terms it is not a phosphor bronze, but a form of iron-modified tin brass.

Related Research Articles

Alloy Mixture or metallic solid solution composed of two or more elements

An alloy is an admixture of metals, or a metal combined with one or more other elements. For example, combining the metallic elements gold and copper produces red gold, gold and silver becomes white gold, and silver combined with copper produces sterling silver. Combining iron with non-metallic carbon or silicon produces alloys called steel or silicon steel. The resulting mixture forms a substance with properties that often differ from those of the pure metals, such as increased strength or hardness. Unlike other substances that may contain metallic bases but do not behave as metals, such as aluminium oxide (sapphire), beryllium aluminium silicate (emerald) or sodium chloride (salt), an alloy will retain all the properties of a metal in the resulting material, such as electrical conductivity, ductility, opacity, and luster. Alloys are used in a wide variety of applications, from the steel alloys, used in everything from buildings to automobiles to surgical tools, to exotic titanium alloys used in the aerospace industry, to beryllium-copper alloys for non-sparking tools. In some cases, a combination of metals may reduce the overall cost of the material while preserving important properties. In other cases, the combination of metals imparts synergistic properties to the constituent metal elements such as corrosion resistance or mechanical strength. Examples of alloys are steel, solder, brass, pewter, duralumin, bronze, and amalgams.

Brass Alloy of copper and zinc

Brass is an alloy of copper and zinc, in proportions which can be varied to achieve varying mechanical, electrical, and chemical properties. It is a substitutional alloy: atoms of the two constituents may replace each other within the same crystal structure.

Bronze metal alloy consisting of copper and tin

Bronze is an alloy consisting primarily of copper, commonly with about 12–12.5% tin and often with the addition of other metals and sometimes non-metals or metalloids such as arsenic, phosphorus or silicon. These additions produce a range of alloys that may be harder than copper alone, or have other useful properties, such as strength, ductility, or machinability.

Metal Type of material

A metal is a material that, when freshly prepared, polished, or fractured, shows a lustrous appearance, and conducts electricity and heat relatively well. Metals are typically malleable or ductile. A metal may be a chemical element such as iron; an alloy such as stainless steel; or a molecular compound such as polymeric sulfur nitride.

Electroplating Creation of protective or decorative metallic coating on other metal with electric current

Electroplating is a general name for processes that create a metal coating on a solid substrate through the reduction of cations of that metal by means of a direct electric current. The part to be coated acts as the cathode of an electrolytic cell; the electrolyte is a solution of a salt of the metal to be coated; and the anode is usually either a block of that metal, or of some inert conductive material. The current is provided by an external power supply.

Beryllium copper (BeCu), also known as copper beryllium (CuBe), beryllium bronze and spring copper, is a copper alloy with 0.5–3% beryllium and sometimes other elements. Beryllium copper combines high strength with non-magnetic and non-sparking qualities. It has excellent metalworking, forming and machining properties. It has many specialized applications in tools for hazardous environments, musical instruments, precision measurement devices, bullets, and aerospace. Beryllium alloys present a toxic inhalation hazard during manufacture.

Cupronickel or copper-nickel (CuNi) is an alloy of copper that contains nickel and strengthening elements, such as iron and manganese. The copper content typically varies from 60 to 90 percent.

Brazing High-temperature soldering; metal-joining technique by high-temperature molten metal filling

Brazing is a metal-joining process in which two or more metal items are joined together by melting and flowing a filler metal into the joint, with the filler metal having a lower melting point than the adjoining metal.

Plating is a surface covering in which a metal is deposited on a conductive surface. Plating has been done for hundreds of years; it is also critical for modern technology. Plating is used to decorate objects, for corrosion inhibition, to improve solderability, to harden, to improve wearability, to reduce friction, to improve paint adhesion, to alter conductivity, to improve IR reflectivity, for radiation shielding, and for other purposes. Jewelry typically uses plating to give a silver or gold finish.

Gold plating

Gold plating is a method of depositing a thin layer of gold onto the surface of another metal, most often copper or silver, by chemical or electrochemical plating. This article covers plating methods used in the modern electronics industry; for more traditional methods, often used for much larger objects, see gilding.

The galvanic series determines the nobility of metals and semi-metals. When two metals are submerged in an electrolyte, while also electrically connected by some external conductor, the less noble (base) will experience galvanic corrosion. The rate of corrosion is determined by the electrolyte, the difference in nobility, and the relative areas of the anode and cathode exposed to the electrolyte. The difference can be measured as a difference in voltage potential: the less noble metal is the one with a lower electrode potential than the nobler one, and will function as the anode within the electrolyte device functioning as described above. Galvanic reaction is the principle upon which batteries are based.

Gunmetal

Gun metal, also known as red brass in the United States, is a type of bronze; an alloy of copper, tin and zinc. Proportions vary but 88% copper, 8–10% tin, and 2–4% zinc is an approximation. Originally used chiefly for making guns, it has largely been replaced by steel. Gunmetal, which casts and machines well and is resistant to corrosion from steam and salt water, is used to make steam and hydraulic castings, valves, gears, statues and various small objects, such as buttons. It has a tensile strength of 221 to 310 MPa, a specific gravity of 8.7, a Brinell hardness of 65 to 74, and a melting point of around 1,000 degrees Celsius.

In metallurgy, non-ferrous metals are metals or alloys that do not contain iron in appreciable amounts.

Oxygen-free copper

Oxygen-free copper (OFC) or oxygen-free high thermal conductivity (OFHC) copper is a group of wrought high-conductivity copper alloys that have been electrolytically refined to reduce the level of oxygen to 0.001% or below.

Japanese Industrial Standards

Japanese Industrial Standards (JIS) are the standards used for industrial activities in Japan, coordinated by the Japanese Industrial Standards Committee (JISC) and published by the Japanese Standards Association (JSA). The JISC is composed of many nationwide committees and plays a vital role in standardizing activities across Japan.

Materials for use in vacuum

Materials for use in vacuum are materials that show very low rates of outgassing in vacuum and, where applicable, are tolerant to bake-out temperatures. The requirements grow increasingly stringent with the desired degree of vacuum to be achieved in the vacuum chamber. The materials can produce gas by several mechanisms. Molecules of gases and water can be adsorbed on the material surface. Materials may sublimate in vacuum. Or the gases can be released from porous materials or from cracks and crevices. Traces of lubricants, residues from machining, can be present on the surfaces. A specific risk is outgassing of solvents absorbed in plastics after cleaning.

Copper conductor Electrical wire or other conductor made of copper

Copper has been used in electrical wiring since the invention of the electromagnet and the telegraph in the 1820s. The invention of the telephone in 1876 created further demand for copper wire as an electrical conductor.

Copper in architecture

Copper has earned a respected place in the related fields of architecture, building construction, and interior design. From cathedrals to castles and from homes to offices, copper is used for a variety of architectural elements, including roofs, flashings, gutters, downspouts, domes, spires, vaults, wall cladding, and building expansion joints.

References

  1. Phosphor Bronze; Copper Development Association
  2. "Jews in Belgium". Archived from the original on 6 February 2008.
  3. Cavallo, Christian. "All About Phosphor Bronze". Thomas Network. Retrieved 12 March 2020.
  4. 1 2 "Phosphor Bronze and Beryllium Copper". Little Falls Alloys. Retrieved 12 March 2020.
  5. "LakeShore". Archived from the original on 2011-05-03. Retrieved 2011-12-23.
  6. McEwan, Tim; Savage, David (1996). The Scientific and Regulatory Basis for Geological Disposal of Nuclear Waste. New York: J. Wiley & Sons. pp. See "Overpack" in index. Retrieved 1 February 2016.
  7. https://bushmanmusic.com/
  8. http://hardmanwurlitzer.com/pipes/
  9. "Innovations: Phosphor Bronze: Teaching an Old Dog New Tricks". Copper.org. Retrieved 2010-03-20.