Last updated

Oil painting depicting Claude Bernard, the father of modern physiology, with his pupils Claude Bernard and his pupils. Oil painting after Leon-Augus Wellcome V0017769.jpg
Oil painting depicting Claude Bernard, the father of modern physiology, with his pupils

Physiology ( /ˌfɪziˈɒləi/ ; from Ancient Greek φύσις (phúsis) 'nature, origin',and -λογία ( -logía ) 'study of') [1] is the scientific study of functions and mechanisms in a living system. [2] [3] As a subdiscipline of biology, physiology focuses on how organisms, organ systems, individual organs, cells, and biomolecules carry out chemical and physical functions in a living system. [4] According to the classes of organisms, the field can be divided into medical physiology, animal physiology, plant physiology, cell physiology, and comparative physiology. [4]


Central to physiological functioning are biophysical and biochemical processes, homeostatic control mechanisms, and communication between cells. [5] Physiological state is the condition of normal function. In contrast, pathological state refers to abnormal conditions, including human diseases.

The Nobel Prize in Physiology or Medicine is awarded by the Royal Swedish Academy of Sciences for exceptional scientific achievements in physiology related to the field of medicine.


Because physiology focuses on the functions and mechanisms of living organisms at all levels, from the molecular and cellular level to the level of whole organisms and populations, its foundations span a range of key disciplines:


There are many ways to categorize the subdisciplines of physiology: [6]

Subdisciplines by level of organisation

Cell physiology

Although there are differences between animal, plant, and microbial cells, the basic physiological functions of cells can be divided into the processes of cell division, cell signaling, cell growth, and cell metabolism.[ citation needed ]

Subdisciplines by taxa

Plant physiology

Plant physiology is a subdiscipline of botany concerned with the functioning of plants. Closely related fields include plant morphology, plant ecology, phytochemistry, cell biology, genetics, biophysics, and molecular biology. Fundamental processes of plant physiology include photosynthesis, respiration, plant nutrition, tropisms, nastic movements, photoperiodism, photomorphogenesis, circadian rhythms, seed germination, dormancy, and stomata function and transpiration. Absorption of water by roots, production of food in the leaves, and growth of shoots towards light are examples of plant physiology. [7]

Animal physiology

Human physiology

Human physiology is the study of how the human body's systems and functions work together to maintain a stable internal environment. It includes the study of the nervous, endocrine, cardiovascular, respiratory, digestive, and urinary systems, as well as cellular and exercise physiology. Understanding human physiology is essential for diagnosing and treating health conditions and promoting overall wellbeing.

It seeks to understand the mechanisms that work to keep the human body alive and functioning, [4] through scientific enquiry into the nature of mechanical, physical, and biochemical functions of humans, their organs, and the cells of which they are composed. The principal level of focus of physiology is at the level of organs and systems within systems. The endocrine and nervous systems play major roles in the reception and transmission of signals that integrate function in animals. Homeostasis is a major aspect with regard to such interactions within plants as well as animals. The biological basis of the study of physiology, integration refers to the overlap of many functions of the systems of the human body, as well as its accompanied form. It is achieved through communication that occurs in a variety of ways, both electrical and chemical. [8]

Changes in physiology can impact the mental functions of individuals. Examples of this would be the effects of certain medications or toxic levels of substances. [9] Change in behavior as a result of these substances is often used to assess the health of individuals. [10] [11]

Much of the foundation of knowledge in human physiology was provided by animal experimentation. Due to the frequent connection between form and function, physiology and anatomy are intrinsically linked and are studied in tandem as part of a medical curriculum. [12]

Subdisciplines by research objective

Comparative physiology

Involving evolutionary physiology and environmental physiology, comparative physiology considers the diversity of functional characteristics across organisms. [13]


The classical era

The study of human physiology as a medical field originates in classical Greece, at the time of Hippocrates (late 5th century BC). [14] Outside of Western tradition, early forms of physiology or anatomy can be reconstructed as having been present at around the same time in China, [15] India [16] and elsewhere. Hippocrates incorporated the theory of humorism, which consisted of four basic substances: earth, water, air and fire. Each substance is known for having a corresponding humor: black bile, phlegm, blood, and yellow bile, respectively. Hippocrates also noted some emotional connections to the four humors, on which Galen would later expand. The critical thinking of Aristotle and his emphasis on the relationship between structure and function marked the beginning of physiology in Ancient Greece. Like Hippocrates, Aristotle took to the humoral theory of disease, which also consisted of four primary qualities in life: hot, cold, wet and dry. [17] Galen (c.130–200 AD) was the first to use experiments to probe the functions of the body. Unlike Hippocrates, Galen argued that humoral imbalances can be located in specific organs, including the entire body. [18] His modification of this theory better equipped doctors to make more precise diagnoses. Galen also played off of Hippocrates' idea that emotions were also tied to the humors, and added the notion of temperaments: sanguine corresponds with blood; phlegmatic is tied to phlegm; yellow bile is connected to choleric; and black bile corresponds with melancholy. Galen also saw the human body consisting of three connected systems: the brain and nerves, which are responsible for thoughts and sensations; the heart and arteries, which give life; and the liver and veins, which can be attributed to nutrition and growth. [18] Galen was also the founder of experimental physiology. [19] And for the next 1,400 years, Galenic physiology was a powerful and influential tool in medicine. [18]

Early modern period

Jean Fernel (1497–1558), a French physician, introduced the term "physiology". [20] Galen, Ibn al-Nafis, Michael Servetus, Realdo Colombo, Amato Lusitano and William Harvey, are credited as making important discoveries in the circulation of the blood. [21] Santorio Santorio in 1610s was the first to use a device to measure the pulse rate (the pulsilogium), and a thermoscope to measure temperature. [22]

In 1791 Luigi Galvani described the role of electricity in nerves of dissected frogs. In 1811, César Julien Jean Legallois studied respiration in animal dissection and lesions and found the center of respiration in the medulla oblongata. In the same year, Charles Bell finished work on what would later become known as the Bell–Magendie law, which compared functional differences between dorsal and ventral roots of the spinal cord. In 1824, François Magendie described the sensory roots and produced the first evidence of the cerebellum's role in equilibration to complete the Bell–Magendie law.

In the 1820s, the French physiologist Henri Milne-Edwards introduced the notion of physiological division of labor, which allowed to "compare and study living things as if they were machines created by the industry of man." Inspired in the work of Adam Smith, Milne-Edwards wrote that the "body of all living beings, whether animal or plant, resembles a factory ... where the organs, comparable to workers, work incessantly to produce the phenomena that constitute the life of the individual." In more differentiated organisms, the functional labor could be apportioned between different instruments or systems (called by him as appareils). [23]

In 1858, Joseph Lister studied the cause of blood coagulation and inflammation that resulted after previous injuries and surgical wounds. He later discovered and implemented antiseptics in the operating room, and as a result, decreased death rate from surgery by a substantial amount. [24]

The Physiological Society was founded in London in 1876 as a dining club. [25] The American Physiological Society (APS) is a nonprofit organization that was founded in 1887. The Society is, "devoted to fostering education, scientific research, and dissemination of information in the physiological sciences." [26]

In 1891, Ivan Pavlov performed research on "conditional responses" that involved dogs' saliva production in response to a bell and visual stimuli. [24]

In the 19th century, physiological knowledge began to accumulate at a rapid rate, in particular with the 1838 appearance of the Cell theory of Matthias Schleiden and Theodor Schwann. [27] It radically stated that organisms are made up of units called cells. Claude Bernard's (1813–1878) further discoveries ultimately led to his concept of milieu interieur (internal environment), [28] [29] which would later be taken up and championed as "homeostasis" by American physiologist Walter B. Cannon in 1929. By homeostasis, Cannon meant "the maintenance of steady states in the body and the physiological processes through which they are regulated." [30] In other words, the body's ability to regulate its internal environment. William Beaumont was the first American to utilize the practical application of physiology.

Nineteenth-century physiologists such as Michael Foster, Max Verworn, and Alfred Binet, based on Haeckel's ideas, elaborated what came to be called "general physiology", a unified science of life based on the cell actions, [23] later renamed in the 20th century as cell biology. [31]

Late modern period

In the 20th century, biologists became interested in how organisms other than human beings function, eventually spawning the fields of comparative physiology and ecophysiology. [32] Major figures in these fields include Knut Schmidt-Nielsen and George Bartholomew. Most recently, evolutionary physiology has become a distinct subdiscipline. [33]

In 1920, August Krogh won the Nobel Prize for discovering how, in capillaries, blood flow is regulated. [24]

In 1954, Andrew Huxley and Hugh Huxley, alongside their research team, discovered the sliding filaments in skeletal muscle, known today as the sliding filament theory. [24]

Recently, there have been intense debates about the vitality of physiology as a discipline (Is it dead or alive?). [34] [35] If physiology is perhaps less visible nowadays than during the golden age of the 19th century, [36] it is in large part because the field has given birth to some of the most active domains of today's biological sciences, such as neuroscience, endocrinology, and immunology. [37] Furthermore, physiology is still often seen as an integrative discipline, which can put together into a coherent framework data coming from various different domains. [35] [38] [39]

Notable physiologists

Women in physiology

Initially, women were largely excluded from official involvement in any physiological society. The American Physiological Society, for example, was founded in 1887 and included only men in its ranks. [40] In 1902, the American Physiological Society elected Ida Hyde as the first female member of the society. [41] Hyde, a representative of the American Association of University Women and a global advocate for gender equality in education, [42] attempted to promote gender equality in every aspect of science and medicine.

Soon thereafter, in 1913, J.S. Haldane proposed that women be allowed to formally join The Physiological Society, which had been founded in 1876. [43] On 3 July 1915, six women were officially admitted: Florence Buchanan, Winifred Cullis, Ruth C. Skelton, Sarah C. M. Sowton, Constance Leetham Terry, and Enid M. Tribe. [44] The centenary of the election of women was celebrated in 2015 with the publication of the book "Women Physiologists: Centenary Celebrations And Beyond For The Physiological Society." ( ISBN   978-0-9933410-0-7)

Prominent women physiologists include:

See also

Related Research Articles

<span class="mw-page-title-main">Anatomy</span> Study of the structure of organisms and their parts

Anatomy is the branch of biology concerned with the study of the structure of organisms and their parts. Anatomy is a branch of natural science that deals with the structural organization of living things. It is an old science, having its beginnings in prehistoric times. Anatomy is inherently tied to developmental biology, embryology, comparative anatomy, evolutionary biology, and phylogeny, as these are the processes by which anatomy is generated, both over immediate and long-term timescales. Anatomy and physiology, which study the structure and function of organisms and their parts respectively, make a natural pair of related disciplines, and are often studied together. Human anatomy is one of the essential basic sciences that are applied in medicine, and is often studied alongside physiology.

<span class="mw-page-title-main">Outline of biology</span> Outline of subdisciplines within biology

Biology – The natural science that studies life. Areas of focus include structure, function, growth, origin, evolution, distribution, and taxonomy.

<span class="mw-page-title-main">Neuroscience</span> Scientific study of the nervous system

Neuroscience is the scientific study of the nervous system, its functions and disorders. It is a multidisciplinary science that combines physiology, anatomy, molecular biology, developmental biology, cytology, psychology, physics, computer science, chemistry, medicine, statistics, and mathematical modeling to understand the fundamental and emergent properties of neurons, glia and neural circuits. The understanding of the biological basis of learning, memory, behavior, perception, and consciousness has been described by Eric Kandel as the "epic challenge" of the biological sciences.

Zoology is the scientific study of animals. Its studies include the structure, embryology, classification, habits, and distribution of all animals, both living and extinct, and how they interact with their ecosystems. Zoology is one of the primary branches of biology. The term is derived from Ancient Greek ζῷον, zōion ('animal'), and λόγος, logos.

<span class="mw-page-title-main">History of anatomy</span>

The history of anatomy extends from the earliest examinations of sacrificial victims to the sophisticated analyses of the body performed by modern anatomists and scientists. Written descriptions of human organs and parts can be traced back thousands of years to ancient Egyptian papyri, where attention to the body was necessitated by their highly elaborate burial practices.

<span class="mw-page-title-main">Human body</span> Entire structure of a human being

The human body is the entire structure of a human being. It is composed of many different types of cells that together create tissues and subsequently organs and then organ systems. They ensure homeostasis and the viability of the human body.

<span class="mw-page-title-main">Biomechanics</span> Study of the mechanics of biological systems

Biomechanics is the study of the structure, function and motion of the mechanical aspects of biological systems, at any level from whole organisms to organs, cells and cell organelles, using the methods of mechanics. Biomechanics is a branch of biophysics.

The history of zoology before Charles Darwin's 1859 theory of evolution traces the organized study of the animal kingdom from ancient to modern times. Although the concept of zoology as a single coherent field arose much later, systematic study of zoology is seen in the works of Aristotle and Galen in the ancient Greco-Roman world. This work was developed in the Middle Ages by Islamic medicine and scholarship, and in turn their work was extended by European scholars such as Albertus Magnus.

<span class="mw-page-title-main">Carl Ferdinand Cori</span> Czech Nobel prize laureate and scientist

Carl Ferdinand Cori, ForMemRS was a Czech-American biochemist and pharmacologist. He, together with his wife Gerty Cori and Argentine physiologist Bernardo Houssay, received a Nobel Prize in 1947 for their discovery of how the glucose derivative glycogen is broken down and resynthesized in the body for use as a store and source of energy. In 2004, both Coris were designated a National Historic Chemical Landmark in recognition of their work that elucidated carbohydrate metabolism.

<span class="mw-page-title-main">Christian de Duve</span> Belgian biochemist and cytologist (1917–2013)

Christian René Marie Joseph, Viscount de Duve was a Nobel Prize-winning Belgian cytologist and biochemist. He made serendipitous discoveries of two cell organelles, peroxisome and lysosome, for which he shared the Nobel Prize in Physiology or Medicine in 1974 with Albert Claude and George E. Palade. In addition to peroxisome and lysosome, he invented scientific names such as autophagy, endocytosis, and exocytosis in a single occasion.

<span class="mw-page-title-main">Neuroscientist</span> Individual who studies neuroscience

A neuroscientist is a scientist who has specialised knowledge in neuroscience, a branch of biology that deals with the physiology, biochemistry, psychology, anatomy and molecular biology of neurons, neural circuits, and glial cells and especially their behavioral, biological, and psychological aspect in health and disease.

<span class="mw-page-title-main">Biologist</span> A scientist studying living organisms

A biologist is a scientist who conducts research in biology. Biologists are interested in studying life on Earth, whether it is an individual cell, a multicellular organism, or a community of interacting populations. They usually specialize in a particular branch of biology and have a specific research focus.

A biological system is a complex network which connects several biologically relevant entities. Biological organization spans several scales and are determined based different structures depending on what the system is. Examples of biological systems at the macro scale are populations of organisms. On the organ and tissue scale in mammals and other animals, examples include the circulatory system, the respiratory system, and the nervous system. On the micro to the nanoscopic scale, examples of biological systems are cells, organelles, macromolecular complexes and regulatory pathways. A biological system is not to be confused with a living system, such as a living organism.

Comparative physiology is a subdiscipline of physiology that studies and exploits the diversity of functional characteristics of various kinds of organisms. It is closely related to evolutionary physiology and environmental physiology. Many universities offer undergraduate courses that cover comparative aspects of animal physiology. According to Clifford Ladd Prosser, "Comparative Physiology is not so much a defined discipline as a viewpoint, a philosophy."

<span class="mw-page-title-main">History of biochemistry</span>

The history of biochemistry can be said to have started with the ancient Greeks who were interested in the composition and processes of life, although biochemistry as a specific scientific discipline has its beginning around the early 19th century. Some argued that the beginning of biochemistry may have been the discovery of the first enzyme, diastase, in 1833 by Anselme Payen, while others considered Eduard Buchner's first demonstration of a complex biochemical process alcoholic fermentation in cell-free extracts to be the birth of biochemistry. Some might also point to the influential work of Justus von Liebig from 1842, Animal chemistry, or, Organic chemistry in its applications to physiology and pathology, which presented a chemical theory of metabolism, or even earlier to the 18th century studies on fermentation and respiration by Antoine Lavoisier.

<span class="mw-page-title-main">Iatrophysics</span> Medical application of physics

Iatrophysics or iatromechanics is the medical application of physics. It provides an explanation for medical practices with mechanical principles. It was a school of medicine in the seventeenth century which attempted to explain physiological phenomena in mechanical terms. Believers of iatromechanics thought that physiological phenomena of the human body followed the laws of physics. It was related to iatrochemistry in studying the human body in a systematic manner based on observations from the natural world though it had more emphasis on mathematical models rather than chemical processes.

The following outline is provided as an overview of and topical guide to medicine:

<span class="mw-page-title-main">Ewald Weibel</span> Swiss anatomist and physiologist (1929–2019)

Ewald Rudolf Weibel HonFRMS was a Swiss anatomist and physiologist and former director of the Institute of Anatomy at the University of Bern. He was one of the first scientists to describe the endothelial organelles Weibel–Palade bodies, which are named after him and his Romanian-American colleague George Emil Palade. He was known for his work on the anatomy of gas exchange in lungs on multiple spatial scales using stereology.

The following outline is provided as an overview of and topical guide to physiology:


  1. Harper, Douglas. "physiology". Online Etymology Dictionary .
  2. "What is physiology?". University of Cambridge, Faculty of Biology. 16 February 2016. Retrieved 2018-07-07.
  3. Prosser, C. Ladd (1991). Comparative Animal Physiology, Environmental and Metabolic Animal Physiology (4th ed.). Hoboken, NJ: Wiley-Liss. pp. 1–12. ISBN   978-0-471-85767-9.
  4. 1 2 3 Guyton, Arthur; Hall, John (2011). Guyton and Hall Textbook of Medical Physiology (12th ed.). Philadelphia: Saunders/Elsevier. p. 3. ISBN   978-1-4160-4574-8.
  5. Widmaier, Eric P.; Raff, Hershel; Strang, Kevin T. (2016). Vander's Human Physiology Mechanisms of Body Function. New York, NY: McGraw-Hill Education. pp. 14–15. ISBN   978-1-259-29409-9.
  6. Moyes, C.D., Schulte, P.M. Principles of Animal Physiology, second edition. Pearson/Benjamin Cummings. Boston, MA, 2008.
  7. "Plant physiology". Basic Biology. 2019. Retrieved 16 January 2019.
  8. Pereda, AE (April 2014). "Electrical synapses and their functional interactions with chemical synapses". Nature Reviews. Neuroscience. 15 (4): 250–63. doi:10.1038/nrn3708. PMC   4091911 . PMID   24619342.
  9. "Mental disorders". World Health Organization. WHO. Retrieved 15 April 2017.
  10. "Eszopiclone" (PDF). F.A. Davis. 2017. Archived from the original (PDF) on November 24, 2017. Retrieved April 15, 2017.
  11. "Zolpidem" (PDF). F.A. Davis. Archived from the original (PDF) on December 22, 2017. Retrieved April 15, 2017.
  12. Bergman, Esther M; de Bruin, Anique BH; Herrler, Andreas; Verheijen, Inge WH; Scherpbier, Albert JJA; van der Vleuten, Cees PM (19 November 2013). "Students' perceptions of anatomy across the undergraduate problem-based learning medical curriculum: a phenomenographical study". BMC Medical Education. 13: 152. doi: 10.1186/1472-6920-13-152 . PMC   4225514 . PMID   24252155. Together with physiology and biochemistry, anatomy is one of the basic sciences that are to be taught in the medical curriculum.
  13. Garland, T. Jr.; P. A. Carter (1994). "Evolutionary physiology" (PDF). Annual Review of Physiology. 56: 579–621. doi:10.1146/ PMID   8010752. Archived from the original (PDF) on 2021-04-12. Retrieved 2008-04-11.
  14. "Physiology". Science Clarified. Advameg, Inc. Retrieved 2010-08-29.
  15. Helaine Selin, Medicine Across Cultures: History and Practice of Medicine in Non-Western Cultures (2003), p. 53.
  16. Burma, D. P.; Chakravorty, Maharani. From Physiology and Chemistry to Biochemistry. Pearson Education. p. 8.
  17. "Early Medicine and Physiology".
  18. 1 2 3 "Galen of Pergamum". Encyclopædia Britannica. 6 March 2024.
  19. Fell, C.; Pearson, F. (November 2007). "Historical Perspectives of Thoracic Anatomy". Thoracic Surgery Clinics. 17 (4): 443–8. doi:10.1016/j.thorsurg.2006.12.001. PMID   18271159.
  20. Applebaum, Wilbur (2000). Encyclopedia of the Scientific Revolution: From Copernicus to Newton. Routledge. p. 344.
  21. Rampling, M. W. (2016). "The history of the theory of the circulation of the blood". Clinical Hemorheology and Microcirculation. 64 (4): 541–549. doi:10.3233/CH-168031. ISSN   1875-8622. PMID   27791994. S2CID   3304540.
  22. "Santorio Santorio (1561-1636): Medicina statica". Vaulted Treasures. University of Virginia, Claude Moore Health Sciences Library.
  23. 1 2 Brain, Robert Michael (2015-05-01). The Pulse of Modernism: Physiological Aesthetics in Fin-de-Siècle Europe. University of Washington Press. ISBN   978-0-295-80578-8.
  24. 1 2 3 4 "Milestones in Physiology (1822-2013)" (PDF). Physiology Info. 1 October 2013. Archived from the original (PDF) on Sep 18, 2015. Retrieved 2015-07-25.
  25. "The Society's history". Physiological Society. Archived from the original on 2017-02-14. Retrieved 2017-02-21.
  26. "American Physiological Society > About". Archived from the original on 2018-10-21. Retrieved 2017-02-21.
  27. "Introduction to physiology: History, biological systems, and branches". 2017-10-13. Retrieved 2020-10-01.
  28. Bernard, Claude (1865). An Introduction to the Study of Ex- perimental Medicine. New York: Dover Publications (published 1957).
  29. Bernard, Claude (1878). Lectures on the Phenomena of Life Common to Animals and Plants. Springfield: Thomas (published 1974).
  30. Brown Theodore M.; Fee Elizabeth (October 2002). "Walter Bradford Cannon: Pioneer Physiologist of Human Emotions". American Journal of Public Health. 92 (10): 1594–1595. doi:10.2105/ajph.92.10.1594. PMC   1447286 .
  31. Heilbron, John L. (2003-03-27). The Oxford Companion to the History of Modern Science. Oxford University Press. p. 649. ISBN   978-0-19-974376-6.
  32. Feder, ME; Bennett, AF; WW, Burggren; Huey, RB (1987). New directions in ecological physiology. New York: Cambridge University Press. ISBN   978-0-521-34938-3.
  33. Garland, Theodore Jr.; Carter, P. A. (1994). "Evolutionary physiology" (PDF). Annual Review of Physiology. 56 (1): 579–621. doi:10.1146/ PMID   8010752. Archived from the original (PDF) on 2021-04-12. Retrieved 2008-04-11.
  34. Pinter, G. G.; Pinter, V. (1993). "Is Physiology a Dying Discipline?". Physiology. 8 (2): 94–95. doi:10.1152/physiologyonline.1993.8.2.94.
  35. 1 2 Lemoine, Maël; Pradeu, Thomas (2018-07-01). "Dissecting the Meanings of "Physiology" to Assess the Vitality of the Discipline" (PDF). Physiology. 33 (4): 236–245. doi: 10.1152/physiol.00015.2018 . ISSN   1548-9221. PMID   29873600.
  36. Kremer, Richard L. (2009). "Physiology". In Bowler & Pickstone (ed.). The Cambridge History of the Modern Biological and Earth Science. Cambridge: Cambridge University Press. pp. 342–366. doi:10.1017/CHOL9780521572019.019. ISBN   9781139056007.
  37. Noble, Denis (2013). "More on Physiology Without Borders". Physiology. 28 (1): 2–3. doi:10.1152/physiol.00044.2012. ISSN   1548-9213. PMID   23280350. S2CID   22271159.
  38. Neill, Jimmy D.; Benos, Dale J. (1993). "Relationship of Molecular Biology to Integrative Physiology". Physiology. 8 (5): 233–235. doi:10.1152/physiologyonline.1993.8.5.233.
  39. Noble, Denis (2002-03-01). "Modeling the Heart--from Genes to Cells to the Whole Organ". Science. 295 (5560): 1678–1682. Bibcode:2002Sci...295.1678N. doi:10.1126/science.1069881. ISSN   0036-8075. PMID   11872832. S2CID   6756983.
  40. "American Physiological Society > Founders". The American Physiological Society. Archived from the original on 2017-01-07. Retrieved 2017-02-08.
  41. Tucker, GS (December 1981). "Ida Henrietta Hyde: the first woman member of the society" (PDF). The Physiologist. 24 (6): 1–9. PMID   7043502. Archived from the original (PDF) on 2017-01-22. Retrieved 2017-04-27. Open Access logo PLoS transparent.svg
  42. Butin, Jan (31 December 1999). "Ida Henrietta Hyde". Jewish Women: A Comprehensive Historical Encyclopedia. Jewish Women's Archive.
  43. "Women in Physiology". Physiological Society. Archived from the original on 2018-11-06. Retrieved 2018-01-11.
  44. "Women in Physiology". Archived from the original on 2018-11-06. Retrieved 2015-05-15.
  45. "Bodil M. Schmidt-Nielsen Distinguished Mentor and Scientist Award". Retrieved 2020-10-01.
  46. "Carl Cori and Gerty Cori". Encyclopædia Britannica. 23 February 2024.
  47. "Cori cycle".
  48. "Facts on the Nobel Prizes in Physiology and Medicine". Nobel Media AB. Retrieved 2016-09-23.
  49. "Gertrude B. Elion". Encyclopædia Britannica. 29 February 2024.
  50. "The Nobel Prize in Physiology or Medicine 2004".
  51. "Francoise Barre-Sinoussi - biography - French virologist". Encyclopædia Britannica. 26 July 2023.
  52. "Elizabeth H. Blackburn". Encyclopædia Britannica.
  53. "Carol W. Greider | Biography, Nobel Prize, & Facts | Britannica". Encyclopædia Britannica . Retrieved 2023-02-08.


Human physiology

Animal physiology

Plant physiology

Fungal physiology

Protistan physiology

Algal physiology

Bacterial physiology