Last updated
Subdivisions of the Quaternary System
Age  (Ma)
Quaternary Holocene Meghalayan 00.0042
Northgrippian 0.00420.0082
Greenlandian 0.00820.0117
Pleistocene 'Tarantian' 0.01170.126
'Chibanian' 0.1260.781
Calabrian 0.7811.80
Gelasian 1.802.58
Neogene Pliocene Piacenzian 2.583.60
Notes and references [1] [2] [3]
Subdivision of the Quaternary period according to the ICS, as of 2018. [1]

For the Holocene, dates are relative to the year 2000 (e.g. Greenlandian began 11,700 years before 2000). For the beginning of the Northgrippian a date of 8,236 years before 2000 has been set. [2] The Meghalayan has been set to begin 4,250 years before 2000, apparently from a calibrated radio-carbon date of 4,200 years BP i.e. before 1950. [3] [ clarification needed ]


'Chibanian' and 'Tarantian' are informal, unofficial names proposed to replace the also informal, unofficial 'Middle Pleistocene' and 'Upper Pleistocene' subseries/subepochs respectively.

In Europe and North America, the Holocene is subdivided into Preboreal, Boreal, Atlantic, Subboreal, and Subatlantic stages of the Blytt–Sernander time scale. There are many regional subdivisions for the Upper or Late Pleistocene; usually these represent locally recognized cold (glacial) and warm (interglacial) periods. The last glacial period ends with the cold Younger Dryas substage.

The Pleistocene ( /ˈpls.təˌsn,-t-/ PLYSE-tə-seen, -toh-, [4] often colloquially referred to as the Ice Age) is the geological epoch that lasted from about 2,580,000 to 11,700 years ago, spanning the world's most recent period of repeated glaciations. The end of the Pleistocene corresponds with the end of the last glacial period and also with the end of the Paleolithic age used in archaeology.

In geochronology, an epoch is a subdivision of the geologic timescale that is longer than an age but shorter than a period. The current epoch is the Holocene Epoch of the Quaternary Period. Rock layers deposited during an epoch are called a series. Series are subdivisions of the stratigraphic column that, like epochs, are subdivisions of the geologic timescale. Like other geochronological divisions, epochs are normally separated by significant changes in the rock layers to which they correspond.

Paleolithic Hominin events for the last 10 million years

The Paleolithic or Palaeolithic, also called the Old Stone Age, is a period in human prehistory distinguished by the original development of stone tools that covers c. 99% of human technological prehistory. It extends from the earliest known use of stone tools by hominins c. 3.3 million years ago, to the end of the Pleistocene c. 11,650 cal BP.

The Pleistocene is the first epoch of the Quaternary Period or sixth epoch of the Cenozoic Era. [5] In the ICS timescale, the Pleistocene is divided into four stages or ages, the Gelasian, Calabrian, Middle Pleistocene (unofficially the "Chibanian"), and Upper Pleistocene (unofficially the "Tarantian"). [6] [7] [note 1] In addition to this international subdivision, various regional subdivisions are often used.

Quaternary is the current and most recent of the three periods of the Cenozoic Era in the geologic time scale of the International Commission on Stratigraphy (ICS). It follows the Neogene Period and spans from 2.588 ± 0.005 million years ago to the present. The Quaternary Period is divided into two epochs: the Pleistocene and the Holocene. The informal term "Late Quaternary" refers to the past 0.5–1.0 million years.

Cenozoic Third and current era of the Phanerozoic Eon

The Cenozoic Era meaning "new life", is the current and most recent of the three Phanerozoic geological eras, following the Mesozoic Era and extending from 66 million years ago to the present day. It is generally believed to have started on the day of the Cretaceous–Paleogene extinction event when an asteroid hit the earth.

A geologic era is a subdivision of geologic time that divides an eon into smaller units of time. The Phanerozoic Eon is divided into three such time frames: the Paleozoic, Mesozoic, and Cenozoic that represent the major stages in the macroscopic fossil record. These eras are separated by catastrophic extinction boundaries, the P-T boundary between the Paleozoic and the Mesozoic and the K-Pg boundary between the Mesozoic and the Cenozoic. There is evidence that catastrophic meteorite impacts played a role in demarcating the differences between the eras.

Before a change finally confirmed in 2009 by the International Union of Geological Sciences, the time boundary between the Pleistocene and the preceding Pliocene was regarded as being at 1.806 million years Before Present (BP), as opposed to the currently accepted 2.58 million years BP: Publications from the preceding years may use either definition of the period.

International Union of Geological Sciences international non-governmental organization

The International Union of Geological Sciences (IUGS) is an international non-governmental organization devoted to international cooperation in the field of geology.

The Pliocene Epoch is the epoch in the geologic timescale that extends from 5.333 million to 2.58 million years BP. It is the second and youngest epoch of the Neogene Period in the Cenozoic Era. The Pliocene follows the Miocene Epoch and is followed by the Pleistocene Epoch. Prior to the 2009 revision of the geologic time scale, which placed the four most recent major glaciations entirely within the Pleistocene, the Pliocene also included the Gelasian stage, which lasted from 2.588 to 1.806 million years ago, and is now included in the Pleistocene.

Before Present (BP) years is a time scale used mainly in archaeology, geology and other scientific disciplines to specify when events occurred in the past. Because the "present" time changes, standard practice is to use 1 January 1950 as the commencement date (epoch) of the age scale, reflecting the origin of practical radiocarbon dating in the 1950s. The abbreviation "BP" has been interpreted retrospectively as "Before Physics"; that refers to the time before nuclear weapons testing artificially altered the proportion of the carbon isotopes in the atmosphere, making dating after that time likely to be unreliable.


Evolution of temperature in the Post-Glacial period at the very end of the Pleistocene, according to Greenland ice cores Evolution of temperature in the Post-Glacial period according to Greenland ice cores.jpg
Evolution of temperature in the Post-Glacial period at the very end of the Pleistocene, according to Greenland ice cores

Charles Lyell introduced the term "Pleistocene" in 1839 to describe strata in Sicily that had at least 70% of their molluscan fauna still living today. This distinguished it from the older Pliocene epoch, which Lyell had originally thought to be the youngest fossil rock layer. He constructed the name "Pleistocene" ("Most New" or "Newest") from the Greek πλεῖστος (pleīstos, "most") and καινός (kainós (latinized as cænus), "new"); [10] [11] [12] this contrasts with the immediately preceding Pliocene ("newer", from πλείων (pleíōn, "more") and kainós) and the immediately subsequent Holocene ("wholly new" or "entirely new", from ὅλος (hólos, "whole") and kainós) epoch, which extends to the present time.

Charles Lyell British lawyer and geologist

Sir Charles Lyell, 1st Baronet, was a Scottish geologist who demonstrated the power of known natural causes in explaining Earth's history. He is best known as the author of Principles of Geology (1830–33), which presented to a wide public audience the idea that Earth was shaped by the same natural processes still in operation today, operating at similar intensities. The philosopher William Whewell termed this gradualistic view "uniformitarianism" and contrasted it with catastrophism, which had been championed by Georges Cuvier and was better accepted in Europe. The combination of evidence and eloquence in Principles convinced a wide range of readers of the significance of "deep time" for understanding the Earth and environment.

Sicily Island in the Mediterranean and region of Italy

Sicily is the largest island in the Mediterranean Sea and one of the 20 regions of Italy. It is one of the five Italian autonomous regions, in Southern Italy along with surrounding minor islands, officially referred to as Regione Siciliana.

Greek language Language spoken in Greece, Cyprus and Southern Albania

Greek is an independent branch of the Indo-European family of languages, native to Greece, Cyprus and other parts of the Eastern Mediterranean and the Black Sea. It has the longest documented history of any living Indo-European language, spanning more than 3000 years of written records. Its writing system has been the Greek alphabet for the major part of its history; other systems, such as Linear B and the Cypriot syllabary, were used previously. The alphabet arose from the Phoenician script and was in turn the basis of the Latin, Cyrillic, Armenian, Coptic, Gothic, and many other writing systems.



The Pleistocene has been dated from 2.580 million (±0.005) to 11,700 years BP [13] with the end date expressed in radiocarbon years as 10,000 carbon-14 years BP. [14] It covers most of the latest period of repeated glaciation, up to and including the Younger Dryas cold spell. The end of the Younger Dryas has been dated to about 9640 BC (11,654 calendar years BP). The end of the Younger Dryas is the official start of the current Holocene Epoch. Although it is considered an epoch, the Holocene is not significantly different from previous interglacial intervals within the Pleistocene. [15]

Carbon-14 (14C), or radiocarbon, is a radioactive isotope of carbon with an atomic nucleus containing 6 protons and 8 neutrons. Its presence in organic materials is the basis of the radiocarbon dating method pioneered by Willard Libby and colleagues (1949) to date archaeological, geological and hydrogeological samples. Carbon-14 was discovered on February 27, 1940, by Martin Kamen and Sam Ruben at the University of California Radiation Laboratory in Berkeley, California. Its existence had been suggested by Franz Kurie in 1934.

The Younger Dryas was a return to glacial conditions after the Late Glacial Interstadial, which temporarily reversed the gradual climatic warming after the Last Glacial Maximum started receding around 20,000 BP. It is named after an indicator genus, the alpine-tundra wildflower Dryas octopetala, as its leaves are occasionally abundant in the late glacial, often minerogenic-rich, like the lake sediments of Scandinavian lakes.

Holocene The current geological epoch, covering the last 11,700 years

The Holocene is the current geological epoch. It began approximately 11,650 cal years before present, after the last glacial period, which concluded with the Holocene glacial retreat. The Holocene and the preceding Pleistocene together form the Quaternary period. The Holocene has been identified with the current warm period, known as MIS 1. It is considered by some to be an interglacial period within the Pleistocene Epoch.

It was not until after the development of radiocarbon dating, however, that Pleistocene archaeological excavations shifted to stratified caves and rock-shelters as opposed to open-air river-terrace sites. [16]

In 2009 the International Union of Geological Sciences (IUGS) confirmed a change in time period for the Pleistocene, changing the start date from 1.806 to 2.588 million years BP, and accepted the base of the Gelasian as the base of the Pleistocene, namely the base of the Monte San Nicola GSSP. [17] The start date has now been rounded down to 2.580 million years BP. [13] The IUGS has yet to approve a type section, Global Boundary Stratotype Section and Point (GSSP), for the upper Pleistocene/Holocene boundary (i.e. the upper boundary). The proposed section is the North Greenland Ice Core Project ice core 75° 06' N 42° 18' W. [18] The lower boundary of the Pleistocene Series is formally defined magnetostratigraphically as the base of the Matuyama (C2r) chronozone, isotopic stage 103. Above this point there are notable extinctions of the calcareous nanofossils: Discoaster pentaradiatus and Discoaster surculus. [19] [20]

The Pleistocene covers the recent period of repeated glaciations. The name Plio-Pleistocene has, in the past, been used to mean the last ice age. The revised definition of the Quaternary, by pushing back the start date of the Pleistocene to 2.58 Ma, results in the inclusion of all the recent repeated glaciations within the Pleistocene.


Pleistocene non-marine sediments are found primarily in fluvial deposits, lakebeds, slope and loess deposits as well as in the large amounts of material moved about by glaciers. Less common are cave deposits, travertines and volcanic deposits (lavas, ashes). Pleistocene marine deposits are found primarily in shallow marine basins mostly (but with important exceptions) in areas within a few tens of kilometers of the modern shoreline. In a few geologically active areas such as the Southern California coast, Pleistocene marine deposits may be found at elevations of several hundred meters.

Paleogeography and climate

The maximum extent of glacial ice in the north polar area during the Pleistocene period Pleistocene north ice map.jpg
The maximum extent of glacial ice in the north polar area during the Pleistocene period

The modern continents were essentially at their present positions during the Pleistocene, the plates upon which they sit probably having moved no more than 100 km relative to each other since the beginning of the period.

According to Mark Lynas (through collected data), the Pleistocene's overall climate could be characterized as a continuous El Niño with trade winds in the south Pacific weakening or heading east, warm air rising near Peru, warm water spreading from the west Pacific and the Indian Ocean to the east Pacific, and other El Niño markers. [21]

Glacial features

Pleistocene climate was marked by repeated glacial cycles in which continental glaciers pushed to the 40th parallel in some places. It is estimated that, at maximum glacial extent, 30% of the Earth's surface was covered by ice. In addition, a zone of permafrost stretched southward from the edge of the glacial sheet, a few hundred kilometres in North America, and several hundred in Eurasia. The mean annual temperature at the edge of the ice was −6 °C (21 °F); at the edge of the permafrost, 0 °C (32 °F).

Each glacial advance tied up huge volumes of water in continental ice sheets 1,500 to 3,000 metres (4,900–9,800 ft) thick, resulting in temporary sea-level drops of 100 metres (300 ft) or more over the entire surface of the Earth. During interglacial times, such as at present, drowned coastlines were common, mitigated by isostatic or other emergent motion of some regions.

The effects of glaciation were global. Antarctica was ice-bound throughout the Pleistocene as well as the preceding Pliocene. The Andes were covered in the south by the Patagonian ice cap. There were glaciers in New Zealand and Tasmania. The current decaying glaciers of Mount Kenya, Mount Kilimanjaro, and the Ruwenzori Range in east and central Africa were larger. Glaciers existed in the mountains of Ethiopia and to the west in the Atlas mountains.

In the northern hemisphere, many glaciers fused into one. The Cordilleran Ice Sheet covered the North American northwest; the east was covered by the Laurentide. The Fenno-Scandian ice sheet rested on northern Europe, including much of Great Britain; the Alpine ice sheet on the Alps. Scattered domes stretched across Siberia and the Arctic shelf. The northern seas were ice-covered.

South of the ice sheets large lakes accumulated because outlets were blocked and the cooler air slowed evaporation. When the Laurentide Ice Sheet retreated, north-central North America was totally covered by Lake Agassiz. Over a hundred basins, now dry or nearly so, were overflowing in the North American west. Lake Bonneville, for example, stood where Great Salt Lake now does. In Eurasia, large lakes developed as a result of the runoff from the glaciers. Rivers were larger, had a more copious flow, and were braided. African lakes were fuller, apparently from decreased evaporation. Deserts, on the other hand, were drier and more extensive. Rainfall was lower because of the decreases in oceanic and other evaporation.

It has been estimated that during the Pleistocene, the East Antarctic Ice Sheet thinned by at least 500 meters, and that thinning since the Last Glacial Maximum is less than 50 meters and probably started after ca 14 ka. [22]

Major events

Ice ages as reflected in atmospheric CO2, stored in bubbles from glacial ice of Antarctica Co2 glacial cycles 800k.png
Ice ages as reflected in atmospheric CO2, stored in bubbles from glacial ice of Antarctica

Over 11 major glacial events have been identified, as well as many minor glacial events. [23] A major glacial event is a general glacial excursion, termed a "glacial." Glacials are separated by "interglacials". During a glacial, the glacier experiences minor advances and retreats. The minor excursion is a "stadial"; times between stadials are "interstadials".

These events are defined differently in different regions of the glacial range, which have their own glacial history depending on latitude, terrain and climate. There is a general correspondence between glacials in different regions. Investigators often interchange the names if the glacial geology of a region is in the process of being defined. However, it is generally incorrect to apply the name of a glacial in one region to another.

For most of the 20th century only a few regions had been studied and the names were relatively few. Today the geologists of different nations are taking more of an interest in Pleistocene glaciology. As a consequence, the number of names is expanding rapidly and will continue to expand. Many of the advances and stadials remain unnamed. Also, the terrestrial evidence for some of them has been erased or obscured by larger ones, but evidence remains from the study of cyclical climate changes.

The glacials in the following tables show historical usages, are a simplification of a much more complex cycle of variation in climate and terrain, and are generally no longer used. These names have been abandoned in favor of numeric data because many of the correlations were found to be either inexact or incorrect and more than four major glacials have been recognized since the historical terminology was established. [23] [24] [25]

Historical names of the "four major" glacials in four regions.
RegionGlacial 1Glacial 2Glacial 3Glacial 4
Alps Günz Mindel Riss Würm
North Europe Eburonian Elsterian Saalian Weichselian
British Isles Beestonian Anglian Wolstonian Devensian
Midwest U.S. Nebraskan Kansan Illinoian Wisconsinan
Historical names of interglacials.
RegionInterglacial 1Interglacial 2Interglacial 3
Alps Günz-Mindel Mindel-Riss Riss-Würm
North EuropeWaalianHolsteinian Eemian
British Isles Cromerian Hoxnian Ipswichian
Midwest U.S. Aftonian Yarmouthian Sangamonian

Corresponding to the terms glacial and interglacial, the terms pluvial and interpluvial are in use (Latin: pluvia, rain). A pluvial is a warmer period of increased rainfall; an interpluvial, of decreased rainfall. Formerly a pluvial was thought to correspond to a glacial in regions not iced, and in some cases it does. Rainfall is cyclical also. Pluvials and interpluvials are widespread.

There is no systematic correspondence of pluvials to glacials, however. Moreover, regional pluvials do not correspond to each other globally. For example, some have used the term "Riss pluvial" in Egyptian contexts. Any coincidence is an accident of regional factors. Only a few of the names for pluvials in restricted regions have been stratigraphically defined.


The sum of transient factors acting at the Earth's surface is cyclical: climate, ocean currents and other movements, wind currents, temperature, etc. The waveform response comes from the underlying cyclical motions of the planet, which eventually drag all the transients into harmony with them. The repeated glaciations of the Pleistocene were caused by the same factors.

The Mid-Pleistocene Transition, approximately one million years ago, saw a change from low-amplitude glacial cycles with a dominant periodicity of 41,000 years to asymmetric high-amplitude cycles dominated by a periodicity of 100,000 years. [26]

Milankovitch cycles

Glaciation in the Pleistocene was a series of glacials and interglacials, stadials and interstadials, mirroring periodic changes in climate. The main factor at work in climate cycling is now believed to be Milankovitch cycles. These are periodic variations in regional and planetary solar radiation reaching the Earth caused by several repeating changes in the Earth's motion.

Milankovitch cycles cannot be the sole factor responsible for the variations in climate since they explain neither the long term cooling trend over the Plio-Pleistocene, nor the millennial variations in the Greenland Ice Cores. Milankovitch pacing seems to best explain glaciation events with periodicity of 100,000, 40,000, and 20,000 years. Such a pattern seems to fit the information on climate change found in oxygen isotope cores.

Oxygen isotope ratio cycles

In oxygen isotope ratio analysis, variations in the ratio of 18
to 16
(two isotopes of oxygen) by mass (measured by a mass spectrometer) present in the calcite of oceanic core samples is used as a diagnostic of ancient ocean temperature change and therefore of climate change. Cold oceans are richer in 18
, which is included in the tests of the microorganisms (foraminifera) contributing the calcite.

A more recent version of the sampling process makes use of modern glacial ice cores. Although less rich in 18
than sea water, the snow that fell on the glacier year by year nevertheless contained 18
and 16
in a ratio that depended on the mean annual temperature.

Temperature and climate change are cyclical when plotted on a graph of temperature versus time. Temperature coordinates are given in the form of a deviation from today's annual mean temperature, taken as zero. This sort of graph is based on another of isotope ratio versus time. Ratios are converted to a percentage difference from the ratio found in standard mean ocean water (SMOW).

The graph in either form appears as a waveform with overtones. One half of a period is a Marine isotopic stage (MIS). It indicates a glacial (below zero) or an interglacial (above zero). Overtones are stadials or interstadials.

According to this evidence, Earth experienced 102 MIS stages beginning at about 2.588 Ma BP in the Early Pleistocene Gelasian. Early Pleistocene stages were shallow and frequent. The latest were the most intense and most widely spaced.

By convention, stages are numbered from the Holocene, which is MIS1. Glacials receive an even number; interglacials, odd. The first major glacial was MIS2-4 at about 85–11 ka BP. The largest glacials were 2, 6, 12, and 16; the warmest interglacials, 1, 5, 9 and 11. For matching of MIS numbers to named stages, see under the articles for those names.


Pleistocene of Northern Spain, including woolly mammoth, cave lions eating a reindeer, tarpans, and woolly rhinoceros Ice age fauna of northern Spain - Mauricio Anton.jpg
Pleistocene of Northern Spain, including woolly mammoth, cave lions eating a reindeer, tarpans, and woolly rhinoceros
Pleistocene of South America, including Megatherium and two Glyptodon Pleistocene SA.jpg
Pleistocene of South America, including Megatherium and two Glyptodon

Both marine and continental faunas were essentially modern but with many more large land mammals such as Mammoths, Mastodons, Diprotodon , Smilodon , tiger, lion, Aurochs, short-faced bears, giant sloths, Gigantopithecus and others. Isolated places such as Australia, Madagascar, New Zealand and islands in the Pacific saw the evolution of large birds and even reptiles such as the Elephant bird, moa, Haast's eagle, Quinkana , Megalania and Meiolania .

The severe climatic changes during the Ice Age had major impacts on the fauna and flora. With each advance of the ice, large areas of the continents became totally depopulated, and plants and animals retreating southwards in front of the advancing glacier faced tremendous stress. The most severe stress resulted from drastic climatic changes, reduced living space, and curtailed food supply. A major extinction event of large mammals (megafauna), which included mammoths, mastodons, saber-toothed cats, glyptodons , the woolly rhinoceros, various giraffids, such as the Sivatherium; ground sloths, Irish elk, cave bears, Gomphothere, dire wolves, and short-faced bears, began late in the Pleistocene and continued into the Holocene. Neanderthals also became extinct during this period. At the end of the last ice age, cold-blooded animals, smaller mammals like wood mice, migratory birds, and swifter animals like whitetail deer had replaced the megafauna and migrated north.

The extinctions hardly affected Africa but were especially severe in North America where native horses and camels were wiped out.

Various schemes for subdividing the Pleistocene Pleistocene Chart.jpg
Various schemes for subdividing the Pleistocene

In July 2018, a team of Russian scientists in collaboration with Princeton University announced that they had brought two female nematodes frozen in permafrost, from around 42,000 years ago, back to life. The two nematodes, at the time, were the oldest confirmed living animals on the planet. [27]


The evolution of anatomically modern humans took place during the Pleistocene. [28] [29] In the beginning of the Pleistocene Paranthropus species were still present, as well as early human ancestors, but during the lower Palaeolithic they disappeared, and the only hominin species found in fossilic records is Homo erectus for much of the Pleistocene. Acheulean lithics appear along with Homo erectus, some 1.8 million years ago, replacing the more primitive Oldowan industry used by A. garhi and by the earliest species of Homo. The Middle Paleolithic saw more varied speciation within Homo, including the appearance of Homo sapiens about 200,000 years ago.

According to mitochondrial timing techniques, modern humans migrated from Africa after the Riss glaciation in the Middle Palaeolithic during the Eemian Stage, spreading all over the ice-free world during the late Pleistocene. [30] [31] [32] A 2005 study posits that humans in this migration interbred with archaic human forms already outside of Africa by the late Pleistocene, incorporating archaic human genetic material into the modern human gene pool. [33]

Hominin species during Pleistocene
Homo (genus)AustralopithecusAustralopithecus sedibaAustralopithecus africanusHomo floresiensisHomo neanderthalensisHomo sapiensHomo heidelbergensisHomo erectusHomo nalediHomo habilisHolocenePleistocenePliocenePleistocene

See also


  1. The Middle Pleistocene and Upper Pleistocene are actually subseries/subepochs rather than stages/ages but, in 2009, the IUGS decided to replace each of them with a stage/age. [8]

Related Research Articles

The Neogene is a geologic period and system that spans 20.45 million years from the end of the Paleogene Period 23.03 million years ago (Mya) to the beginning of the present Quaternary Period 2.58 Mya. The Neogene is sub-divided into two epochs, the earlier Miocene and the later Pliocene. Some geologists assert that the Neogene cannot be clearly delineated from the modern geological period, the Quaternary. The term "Neogene" was coined in 1853 by the Austrian palaeontologist Moritz Hörnes (1815–1868).

Tertiary is a widely used, but obsolete term for the geologic period from 66 million to 2.6 million years ago. The period began with the demise of the non-avian dinosaurs in the Cretaceous–Paleogene extinction event, at the start of the Cenozoic Era, and extended to the beginning of the Quaternary glaciation at the end of the Pliocene Epoch. The time span covered by the Tertiary has no exact equivalent in the current geologic time system, but it is essentially the merged Paleogene and Neogene periods, which are informally called the Lower Tertiary and the Upper Tertiary, respectively.

Last Glacial Period The most recent glacial period with major glaciations of the northern hemisphere (115 000 - 12 000 years ago)

The Last Glacial Period (LGP) occurred from the end of the Eemian to the end of the Younger Dryas, encompassing the period c. 115,000 – c. 11,700 years ago. This most recent glacial period is part of a larger pattern of glacial and interglacial periods known as the Quaternary glaciation extending from c. 2,588,000 years ago to present. The definition of the Quaternary as beginning 2.58 Ma is based on the formation of the Arctic ice cap. The Antarctic ice sheet began to form earlier, at about 34 Ma, in the mid-Cenozoic. The term Late Cenozoic Ice Age is used to include this early phase.

Timeline of glaciation Chronology of the major ice ages of the Earth

There have been five or six major ice ages in the history of Earth over the past 3 billion years. The Late Cenozoic Ice Age began 34 million years ago, its latest phase being the Quaternary glaciation, in progress since 2.58 million years ago.

Würm glaciation glacial period in the Alps

The Würm glaciation or Würm stage, in the literature usually just referred to as the Würm, often spelt "Wurm", was the last glacial period in the Alpine region. It is the youngest of the major glaciations of the region that extended beyond the Alps themselves. It is, like most of the other ice ages of the Pleistocene epoch, named after a river, the Würm in Bavaria, a tributary of the Amper. The Würm ice age can be dated to the time about 115,000 to 11,700 years ago, the sources differing depending on whether the long transition phases between the glacials and interglacials are allocated to one or other of these periods. The average annual temperatures during the Würm ice age in the Alpine Foreland were below −3 °C. This has been determined from changes in the vegetation as well as differences in the facies.

A glacial period is an interval of time within an ice age that is marked by colder temperatures and glacier advances. Interglacials, on the other hand, are periods of warmer climate between glacial periods. The last glacial period ended about 15,000 years ago. The Holocene epoch is the current interglacial. A time with no glaciers on Earth is considered a greenhouse climate state.

The Hoxnian Stage is a middle Pleistocene stage of the geological history of the British Isles. It precedes the Wolstonian Stage and follows the Anglian Stage. It is equivalent to Marine Isotope Stage 11. Marine Isotope Stage 11 started 424,000 years ago and ended 374,000 years ago. The Hoxnian divided into sub-stages Ho I to Ho IV.

The Illinoian Stage is the name used by Quaternary geologists in North America to designate the period c.191,000 to c.130,000 years ago, during the middle Pleistocene, when sediments comprising the Illinoian Glacial Lobe were deposited. It precedes the Sangamonian Stage and follows the Pre-Illinoian Stage in North America. The Illinoian Stage is defined as the period of geologic time during which the glacial tills and outwash, which comprise the bulk of the Glasford Formation, accumulated to create the Illinoian Glacial Lobe. It occurs at about the same time as the penultimate glacial period.

The Yarmouthian stage and the Yarmouth Interglacial were part of a now obsolete geologic timescale of the early Quaternary of North America.

The Flandrian interglacial or stage is the name given by geologists and archaeologists in the British Isles to the first, and so far only, stage of the Holocene epoch, covering the period from around 12,000 years ago, at the end of the last glacial period to the present day. As such, it is in practice identical in span to the Holocene. Present climatological theory forecasts that the present Flandrian climate should decline in temperature towards a global climate similar to that of the ice age. Less orbital eccentricity may have the effect of moderating this temperature downturn.

The Beestonian Stage is an early Pleistocene stage used in the British Isles. It is named after Beeston Cliffs near West Runton in Norfolk where deposits from this stage are preserved.

Marine isotope stage Alternating warm and cool periods in the Earths paleoclimate, deduced from oxygen isotope data

Marine isotope stages (MIS), marine oxygen-isotope stages, or oxygen isotope stages (OIS), are alternating warm and cool periods in the Earth's paleoclimate, deduced from oxygen isotope data reflecting changes in temperature derived from data from deep sea core samples. Working backwards from the present, which is MIS 1 in the scale, stages with even numbers have high levels of oxygen-18 and represent cold glacial periods, while the odd-numbered stages are troughs in the oxygen-18 figures, representing warm interglacial intervals. The data are derived from pollen and foraminifera (plankton) remains in drilled marine sediment cores, sapropels, and other data that reflect historic climate; these are called proxies.

The Gelasian is an age in the international geologic timescale or a stage in chronostratigraphy, being the earliest or lowest subdivision of the Quaternary period/system and Pleistocene epoch/series. It spans the time between 2.588 ± 0.005 Ma and 1.806 ± 0.005 Ma. It follows the Piacenzian stage and is followed by the Calabrian stage.

The Late Pleistocene is a geochronological age of the Pleistocene Epoch and is associated with Upper Pleistocene stage rocks. The beginning of the stage is defined by the base of the Eemian interglacial phase before the final glacial episode of the Pleistocene 126,000 ± 5,000 years ago. Its end is defined at the end of the Younger Dryas, some 11,700 years ago. The age represents the end of the Pleistocene epoch and is followed by the Holocene epoch.

Quaternary glaciation Series of alternating glacial and interglacial periods

The Quaternary glaciation, also known as the Pleistocene glaciation, is an alternating series of glacial and interglacial periods during the Quaternary period that began 2.58 Ma, and is ongoing. Although geologists describe the entire time period as an "ice age", in popular culture the term "ice age" is usually associated with just the most recent glacial period. Since earth still has ice sheets, geologists consider the Quaternary glaciation to be ongoing, with earth now experiencing an interglacial period.

The Pre-Illinoian Stage is used by Quaternary geologists for the early and middle Pleistocene glacial and interglacial periods of geologic time in North America from ~2.5–0.2 Ma.

The Sangamonian Stage is the term used in North America to designate the last interglacial period. In its most common usage, it is used for the period of time between 75,000 and 125,000 BP. This period of time is equivalent to all of Marine Isotope Stage 5 and the combined Eemian period and early part of the Weichselian glaciation in Europe. Less commonly, the Sangamonian Stage is restricted to the period between 122,000 and 132,000 BP, which is equivalent to Marine Oxygen Isotope Substage 5e and the Eemian period of Europe. It preceded the Wisconsinan (Wisconsin) Stage and followed the Illinoian Stage in North America.

Vashon Glaciation

The Vashon Glaciation, Vashon Stadial or Vashon Stade is a local term for the most recent period of very cold climate in which during its peak, glaciers covered the entire Puget Sound and Strait of Juan de Fuca as well as present day Seattle, Tacoma, Olympia and other surrounding areas in the western part of present-day Washington (state) of the United States of America. This occurred during a cold period around the world known as the last glacial period. This was the most recent cold period of the Pleistocene Ice Age. The Pleistocene Glaciation is the ice age that the planet is currently in and has been in for the last 2.58 million years. It is the time period in which the arctic ice sheets have existed. The Pleistocene Ice Age is part of an even longer ice age called the Late Cenozoic Ice Age, which began 33.9 million years ago and is ongoing. It is the time period in which the Antarctic ice cap has existed.


  1. 1 2 Cohen, K.M.; Finney, S.C.; Gibbard, P.L.; Fan, J.-X. "International Chronostratigraphic Chart". International Commission on Stratigraphy . Retrieved July 10, 2018.
  2. 1 2 "IUGS ratifies Holocene" . Retrieved 18 August 2018.
  3. 1 2 "ICS chart containing the Quaternary and Cambrian GSSPs and new stages (v 2018/07) is now released!" . Retrieved 9 August 2018.
  4. Jones, Daniel (2003) [1917], Peter Roach; James Hartman; Jane Setter (eds.), English Pronouncing Dictionary, Cambridge: Cambridge University Press, ISBN   3-12-539683-2
  5. "Gibbard, P. and van Kolfschoten, T. (2004) "The Pleistocene and Holocene Epochs" Chapter 22" (PDF). (3.1  MB)In Gradstein, F. M., Ogg, James G., and Smith, A. Gilbert (eds.), A Geologic Time Scale 2004 Cambridge University Press, Cambridge, ISBN   0-521-78142-6
  6. "International Chronostratigraphic Chart v2017/02". International Commission on Stratigraphy. 2017. Retrieved 17 March 2018.
  7. "Japan-based name 'Chibanian' set to represent geologic age of last magnetic shift". The Japan Times. 14 November 2017. Retrieved 17 March 2018.
  8. "Formal subdivision of the Pleistocene Series/Epoch". Subcommission on Quaternary Stratigraphy (International Commission on Stratigraphy). 4 January 2016. Retrieved 17 March 2018.
  9. Zalloua, Pierre A.; Matisoo-Smith, Elizabeth (6 January 2017). "Mapping Post-Glacial expansions: The Peopling of Southwest Asia". Scientific Reports. 7: 40338. doi:10.1038/srep40338. ISSN   2045-2322. PMC   5216412 .
  10. Lyell, Charles (1839). Nouveaux éléments de géologie (in French). Paris, France: Pitois-Levranet. p. 621. From p. 621: "Toutefois, en même temps … et de substituer à la dénomination de Nouveau Pliocène celle plus abrégée de Pleistocène, tirée du grec pleiston, plus, et kainos, récent." (However, at the same time that it became necessary to subdivide the two periods mentioned above, I found that the terms intended to designate these subdivisions were of an inconvenient length, and I have proposed to use in the future the word "Pliocene" for "old Pliocene", and to substitute for the name "new Pliocene" this shorter "Pleistocene", drawn from the Greek pleiston (most) and kainos (recent).)
  11. Wilmarth, Mary Grace (1925). Bulletin 769: The Geologic Time Classification of the United States Geological Survey Compared With Other Classifications, accompanied by the original definitions of era, period and epoch terms. Washington, D.C., U.S.A.: U.S. Government Printing Office. p. 47.
  12. "Pleistocene". Online Etymology Dictionary .
  13. 1 2 "Major Divisions". Subcommission on Quaternary Stratigraphy. International Commission on Stratigraphy. Retrieved 25 September 2019.
  14. For the top of the series, see: Lourens, L.; Hilgen, F.; Shackleton, N. J.; Laskar, J.; Wilson, D. (2004). "The Neogene Period". In Gradstein, F.; Ogg, J.; Smith, A. G. (eds.). A Geologic Time Scale 2004. Cambridge: Cambridge University Press. ISBN   0-521-78142-6.
  15. de Blij, Harm (2012). "Holocene Humanity". Why Geography Matters: More Than Ever (2nd edition). Oxford: Oxford University Press. ISBN   978-0-19-991374-9.
  16. Moore, Mark; Brumm (January 2007). "Stone artifacts and hominins in island Southeast Asia: New insights from Flores, eastern Indonesia". Journal of Human Evolution. 52: 88. doi:10.1016/j.jhevol.2006.08.002. PMID   17069874.
  17. Riccardi, Alberto C. (30 June 2009) "IUGS ratified ICS Recommendation on redefinition of Pleistocene and formal definition of base of Quaternary" International Union of Geological Sciences
  18. Svensson, A.; Nielsen, S. W.; Kipfstuhl, S.; Johnsen, S. J.; Steffensen, J. P.; Bigler, M.; Ruth, U.; Röthlisberger, R. (2005). "Visual stratigraphy of the North Greenland Ice Core Project (NorthGRIP) ice core during the last glacial period" (PDF). Journal of Geophysical Research. 110 (D2): D02108. Bibcode:2005JGRD..110.2108S. doi:10.1029/2004jd005134.
  19. Gradstein, Felix M.; Ogg, James G. and Smith, A. Gilbert (eds.) (2005) A Geologic Time Scale 2004 Cambridge University Press, Cambridge, UK, p. 28, ISBN   0-521-78142-6
  20. Rio, D.; Sprovieri, R.; Castradori, D.; Di Stefano, E. (1998). "The Gelasian Stage (Upper Pliocene): a new unit of the global standard chronostratigraphic scale" (PDF). Episodes. 21: 82–87.
  21. National Geographic Channel, Six Degrees Could Change The World, Mark Lynas interview. Retrieved February 14, 2008.
  22. Yusuke Suganuma, Hideki Miura, Albert Zondervan, Jun'ichi Okuno (August 2014). "East Antarctic deglaciation and the link to global cooling during the Quaternary: evidence from glacial geomorphology and 10Be surface exposure dating of the Sør Rondane Mountains, Dronning Maud Land". Quaternary Science Reviews. 97: 102–120. Bibcode:2014QSRv...97..102S. doi:10.1016/j.quascirev.2014.05.007.CS1 maint: uses authors parameter (link)
  23. 1 2 Richmond, G.M.; Fullerton, D.S. (1986). "Summation of Quaternary glaciations in the United States of America". Quaternary Science Reviews. 5: 183–196. Bibcode:1986QSRv....5..183R. doi:10.1016/0277-3791(86)90184-8.
  24. Roy, M., P.U. Clark, R.W. Barendregt, J.R., Glasmann, and R.J. Enkin, 2004, Glacial stratigraphy and paleomagnetism of late Cenozoic deposits of the north-central United States, PDF version, 1.2 MB. Geological Society of America Bulletin.116(1–2): pp. 30–41; doi : 10.1130/B25325.1
  25. Aber, J. S. (December 1991). "The Glaciation of Northeastern Kansas". Boreas. 20 (4): 297–314. doi:10.1111/j.1502-3885.1991.tb00282.x. (contains a summary of how and why the Nebraskan, Aftonian, Kansan, and Yarmouthian stages were abandoned by modern stratigraphers).
  26. "Mid-Pleistocene transition in glacial cycles explained by declining CO2 and regolith removal | Science Advances". Retrieved 2019-04-05.
  28. Rogers, A.R.; Jorde, L.B. (1995). "Genetic evidence on modern human origins". Human Biology. 67 (1): 1–36. JSTOR   41465052. PMID   7721272.
  29. Wall, J.D.; Przeworski, M. (2000). "When did the human population start increasing?". Genetics . 155: 1865–1874. PMC   1461207 . PMID   10924481.
  30. Cann, R.L.; Stoneking, M.; Wilson, A.C. (1 January 1987). "Mitochondrial DNA and human evolution". Nature. 325 (6099): 31–36. Bibcode:1987Natur.325...31C. doi:10.1038/325031a0. PMID   3025745.
  31. Stringer, C.B. (1992) "Evolution of early modern humans" In: Jones, Steve; Martin, R. and Pilbeam, David R. (eds.) (1992) The Cambridge encyclopedia of human evolution Cambridge University Press, Cambridge, ISBN   0-521-32370-3, pp. 241–251.
  32. Templeton, A. R. (7 March 2002). "Out of Africa again and again" (PDF). Nature . 416 (6876): 45–51. Bibcode:2002Natur.416...45T. doi:10.1038/416045a. PMID   11882887.
  33. Eswarana, Vinayak; Harpendingb, Henry; Rogers, Alan R (July 2005). "Genomics refutes an exclusively African origin of humans". Journal of Human Evolution. 49 (1): 1–18. doi:10.1016/j.jhevol.2005.02.006. PMID   15878780.