Plumage

Last updated

Close-up view of the plumage on a house sparrow Plumage house sparrow.jpg
Close-up view of the plumage on a house sparrow
The differences in plumage of a blue grosbeak, from top to bottom, between a breeding male (alternate plumage), a non-breeding male (basic plumage), a female, and the related indigo bunting Guiraca caeruleaAAP086CB.jpg
The differences in plumage of a blue grosbeak, from top to bottom, between a breeding male (alternate plumage), a non-breeding male (basic plumage), a female, and the related indigo bunting

Plumage (from Latin pluma  'feather') is a layer of feathers that covers a bird and the pattern, colour, and arrangement of those feathers. The pattern and colours of plumage differ between species and subspecies and may vary with age classes. Within species, there can be different colour morphs. The placement of feathers on a bird is not haphazard but rather emerges in organized, overlapping rows and groups, and these feather tracts are known by standardized names. [1] [2]

Contents

Most birds moult twice a year, resulting in a breeding or nuptial plumage and a basic plumage. Many ducks and some other species such as the red junglefowl have males wearing a bright nuptial plumage while breeding and a drab eclipse plumage for some months afterward. The painted bunting's juveniles have two inserted moults in their first autumn, each yielding plumage like an adult female. The first starts a few days after fledging replacing the juvenile plumage with an auxiliary formative plumage; the second a month or so later giving the formative plumage. [3]

Abnormal plumages include a variety of conditions. Albinism, total loss of colour, is rare, but partial loss of colours is more common. Some species are colour polymorphic, having two or more colour variants. A few species have special types of polymorphism, as in the male ruff which has an assortment of different colours around the head and neck in the breeding season only.

Hen feathering is an inherited plumage character in domestic fowl controlled by a single gene. Plumology (or plumage science) is the name for the science that is associated with the study of feathers. [4] [5] [6]

Humphrey–Parkes (H–P) moult and plumage terminology

Almost all species of birds moult at least annually, usually after the breeding season, known as the pre-basic moult. This resulting covering of feathers, which will last either until the next breeding season or until the next annual moult, is known as the basic plumage. Many species undertake another moult prior to the breeding season known as the pre-alternate moult, the resulting breeding plumage being known as the alternate plumage or nuptial plumage. The alternate plumage is often brighter than the basic plumage, for the purposes of sexual display, but may also be cryptic to hide incubating birds that might be vulnerable on the nest. [7]

The Humphrey–Parkes terminology requires some attention to detail to name moults and plumages correctly. [8]

Eclipse plumage

Mandarin duck (male) in eclipse plumage Mandarinducksum.JPG
Mandarin duck (male) in eclipse plumage

Many male ducks have bright, colourful plumage, exhibiting strong sexual dimorphism. However, they moult into a dull plumage after breeding in mid-summer. This drab, female-like appearance is called eclipse plumage. When they shed feathers to go into eclipse, the ducks become flightless for a short period of time. Some duck species remain in eclipse for one to three months in the late summer and early fall, while others retain the cryptic plumage until the next spring when they undergo another moult to return to their breeding plumage.

Although mainly found in the Anatidae, a few other species, including related red junglefowl, most fairywrens [a] and some sunbirds also have an eclipse plumage. In the superb and splendid fairywrens, very old males (over about four years) may moult from one nuptial plumage to another [9] whereas in the red-backed and white-winged fairywrens, males do not acquire nuptial plumage until four years of age [10] – well after they become sexually mature and indeed longer than the vast majority of individuals live. [11]

In contrast to the ducks, males of hummingbirds and most lek-mating passerines – like the Guianan cock-of-the-rock or birds of paradise – retain their exuberant plumage and sexual dimorphism at all times, moulting as ordinary birds do once annually.

Abnormal plumages

Axanthic budgerigar Blue male budgie.jpg
Axanthic budgerigar
An albino African penguin Snowdrop.penguin.600pix.jpg
An albino African penguin

There are hereditary as well as non-hereditary variations in plumage that are rare and termed as abnormal or aberrant plumages. Melanism refers to an excess of black or dark colours. Erythromelanism or erythrism is the result of excessive reddish brown erythromelanin deposition in feathers that normally lack melanin. Melanin of different forms combine with xanthophylls to produce colour mixtures and when this combination is imbalanced it produces colour shifts that are termed as schizochroisms (including xanthochromism – overabundance of yellow – and axanthism – lack of yellow – which are commonly bred in cagebirds such as budgerigars). A reduction in eumelanin leads to non-eumelanin schizochroism with an overall fawn plumage while a lack of phaeomelanin results in grey coloured non-phaeomelanin schizochroism. Carotenism refers to abnormal distribution of carotenoid pigments.

The term "dilution" is used for situations where the colour is of a lower intensity overall; it is caused by decreased deposition of pigment in the developing feather, and can thus not occur in structural coloration (i.e., "dilute blue" does not exist); pale structural colors are instead achieved by shifting the peak wavelength at which light is refracted. [12] Dilution regularly occurs in normal plumage (grey, buff, pink and cream colours are usually produced by this process), but may in addition occur as an aberration (e.g., all normally black plumage becoming grey). [13]

In some birds – many true owls (Strigidae), some nightjars (Caprimulgidae) and a few cuckoos ( Cuculus and relatives) being widely known examples – there is colour polymorphism. This means that two or more colour variants are numerous within their populations during all or at least most seasons and plumages; in the above-mentioned examples a brown (phaeomelanin) and grey (eumelanin) morph exist, termed "hepatic form" particularly in the cuckoos. Other cases of natural polymorphism are of various kinds; many are melanic/nonmelanic (some paradise-flycatchers, Terpsiphone, for example), but more unusual types of polymorphism exist – the face colour of the Gouldian finch (Erythrura [14] [15] gouldiae) or the courtship types of male ruffs (Philomachus pugnax). [16]

Albinism

Albinism in birds is rare, occurring to any extent in perhaps one in 1800 individuals. It involves loss of colour in all parts including the iris of the eyes, bills, skin, legs, and feet. It is usually the result of a genetic mutation causing the absence of tyrosinase, an enzyme essential for melanin synthesis. Leucism (which includes what used to be termed as "partial albinism") refers to loss of pigments in some or all parts of feathers. A bird that is albino (from the Latin albus, "white") has white feathers in place of coloured ones on some portion of its body. A bird that is naturally white, such as a swan, goose, or egret, is not an albino, nor is a bird that has seasonally alternating white plumage. [17]

Four degrees of albinism have been described. The most common form is termed partial albinism, in which local areas of the bird's body, such as certain feathers, are lacking the pigment melanin. The white areas may be symmetrical, with both sides of the bird showing a similar pattern. In imperfect albinism, the pigment is partially inhibited in the skin, eyes, or feathers, but is not absent from any of them. Incomplete albinism is the complete absence of pigment from the skin, eyes, or feathers, but not all three. [17]

A young completely albino crow in Malacca, Malaysia Albino crow and its mother.JPG
A young completely albino crow in Malacca, Malaysia

A completely albino bird is the most rare. The eyes in this case are pink or red, because blood shows through in the absence of pigment in the irises. The beak, legs, and feet are very pale or white. Albino adults are rare in the wild because their eyesight is poor resulting in greater risk of predation. [18] They are likely easier targets for predators because their colour distinguishes them from their environment. Falconers have observed that their trained birds are likely to attack a white pigeon in a flock because it is conspicuous. A complete albino often has weak eyesight and brittle wing and tail feathers, which may reduce its ability to fly. In flocks, albinos are often harassed by their own species. Such observations have been made among red-winged blackbirds, barn swallows, and African penguins. In a nesting colony of the latter, three unusual juveniles—one black-headed, one white-headed, and one full albino—were shunned and abused by companions. [17]

Albinism has been reported in all orders and in 54 families of North American birds. The American robin and house sparrow led bird species in the incidence of albinism. Albinistic white appears to replace brown pigments more often than red or yellow ones; records suggest a greater incidence in crows, ravens, and hawks than in goldfinches or orioles. [17]

Several kinds of albinism in chickens has been described: A complete albinism controlled by an autosomal recessive gene [19] and two different kinds of partial albinism. One of the partial albinisms is sex-linked [20] and the other is autosomal recessive. [21] A fourth kind of albinism severely reduce pigmentation in the eyes, but only dilutes the pigment in the plumage. [22]

Abnormally white feathers are not always due to albinism. Injury or disease may change their color, including dietary deficiencies or circulatory problems during feather development. Aging may also turn a bird's feathers white. [17]

Hen feathering in cocks

Hen feathering in cocks is a genetically conditioned character in domestic fowl (Gallus gallus domesticus). Males with this condition develop a female-type plumage, although otherwise look and respond like virile males. In some breeds, one can see males that have a plumage completely similar in all aspects to that of females. The trait is controlled by a simple autosomic dominant gene, whose expression is limited to the male sex. [23] [24] [25] The condition is due to an enhanced activity of the aromatase complex of enzymes responsible for estrogen synthesis. So estrogen formation in the skin is as much as several hundred-fold higher than that of normal chickens. [26]

Pigmentation conditions

See also

Notes

a Males of the white-shouldered and emperor fairywrens of New Guinea do not enter an eclipse plumage.

Related Research Articles

<span class="mw-page-title-main">Albinism in humans</span> Condition characterized by partial or complete absence of pigment in the skin, hair and eyes

Albinism is a congenital condition characterized in humans by the partial or complete absence of pigment in the skin, hair and eyes. Albinism is associated with a number of vision defects, such as photophobia, nystagmus, and amblyopia. Lack of skin pigmentation makes for more susceptibility to sunburn and skin cancers. In rare cases such as Chédiak–Higashi syndrome, albinism may be associated with deficiencies in the transportation of melanin granules. This also affects essential granules present in immune cells, leading to increased susceptibility to infection.

<span class="mw-page-title-main">Melanin</span> Group of natural pigments found in most organisms

Melanin consist of oligomers or polymers arranged in a disordered manner which among other functions provide the pigments of many organisms. Melanin pigments are produced in a specialized group of cells known as melanocytes. They have been described as "among the last remaining biological frontiers with the unknown".

<span class="mw-page-title-main">Eurasian teal</span> Species of bird (duck)

The Eurasian teal, common teal, or Eurasian green-winged teal is a common and widespread duck that breeds in temperate Eurosiberia and migrates south in winter. The Eurasian teal is often called simply the teal due to being the only one of these small dabbling ducks in much of its range. The bird gives its name to the blue-green colour teal.

<span class="mw-page-title-main">Superb fairywren</span> Species of bird

The superb fairywren is a passerine bird in the Australasian wren family, Maluridae, and is common and familiar across south-eastern Australia. It is a sedentary and territorial species, also exhibiting a high degree of sexual dimorphism; the male in breeding plumage has a striking bright blue forehead, ear coverts, mantle, and tail, with a black mask and black or dark blue throat. Non-breeding males, females and juveniles are predominantly grey-brown in colour; this gave the early impression that males were polygamous, as all dull-coloured birds were taken for females. Six subspecies groups are recognized: three larger and darker forms from Tasmania, Flinders and King Island respectively, and three smaller and paler forms from mainland Australia and Kangaroo Island.

<span class="mw-page-title-main">Variegated fairywren</span> Species of bird

The variegated fairywren is a fairywren that lives in eastern Australia. As a species that exhibits sexual dimorphism, the brightly coloured breeding male has chestnut shoulders and azure crown and ear coverts, while non-breeding males, females and juveniles have predominantly grey-brown plumage, although females of two subspecies have mainly blue-grey plumage.

<span class="mw-page-title-main">Budgerigar colour genetics</span>

The science of budgerigar color genetics deals with the heredity of mutations which cause color variation in the feathers of the species known scientifically as Melopsittacus undulatus. Birds of this species are commonly known by the terms 'budgerigar', or informally just 'budgie'.

Gamebird hybrids are the result of crossing species of game birds, including ducks, with each other and with domestic poultry. These hybrid species may sometimes occur naturally in the wild or more commonly through the deliberate or inadvertent intervention of humans.

<span class="mw-page-title-main">Splendid fairywren</span> Species of bird

The splendid fairywren is a passerine bird in the Australasian wren family, Maluridae. It is also known simply as the splendid wren or more colloquially in Western Australia as the blue wren. The splendid fairywren is found across much of the Australian continent from central-western New South Wales and southwestern Queensland over to coastal Western Australia. It inhabits predominantly arid and semi-arid regions. Exhibiting a high degree of sexual dimorphism, the male in breeding plumage is a small, long-tailed bird of predominantly bright blue and black colouration. Non-breeding males, females and juveniles are predominantly grey-brown in colour; this gave the early impression that males were polygamous as all dull-coloured birds were taken for females. It comprises several similar all-blue and black subspecies that were originally considered separate species.

<span class="mw-page-title-main">Red-winged fairywren</span> Passerine bird in the Australasian wren family

The red-winged fairywren is a species of passerine bird in the Australasian wren family, Maluridae. It is non-migratory and endemic to the southwestern corner of Western Australia. Exhibiting a high degree of sexual dimorphism, the male adopts a brilliantly coloured breeding plumage, with an iridescent silvery-blue crown, ear coverts and upper back, red shoulders, contrasting with a black throat, grey-brown tail and wings and pale underparts. Non-breeding males, females and juveniles have predominantly grey-brown plumage, though males may bear isolated blue and black feathers. No separate subspecies are recognised. Similar in appearance and closely related to the variegated fairywren and the blue-breasted fairywren, it is regarded as a separate species as no intermediate forms have been recorded where their ranges overlap. Though the red-winged fairywren is locally common, there is evidence of a decline in numbers.

<span class="mw-page-title-main">White-winged fairywren</span> Australian species of bird

The white-winged fairywren is a species of passerine bird in the Australasian wren family, Maluridae. It lives in the drier parts of Central Australia; from central Queensland and South Australia across to Western Australia. Like other fairywrens, this species displays marked sexual dimorphism and one or more males of a social group grow brightly coloured plumage during the breeding season. The female is sandy-brown with light-blue tail feathers; it is smaller than the male, which, in breeding plumage, has a bright-blue body, black bill, and white wings. Younger sexually mature males are almost indistinguishable from females and are often the breeding males. In spring and summer, a troop of white-winged fairywrens has a brightly coloured older male accompanied by small, inconspicuous brown birds, many of which are also male. Three subspecies are recognised. Apart from the mainland subspecies, one is found on Dirk Hartog Island, and another on Barrow Island off the coast of Western Australia. Males from these islands have black rather than blue breeding plumage.

<span class="mw-page-title-main">Red-backed fairywren</span> Passerine bird in the Australasian wren family

The red-backed fairywren is a species of passerine bird in the Australasian wren family, Maluridae. It is endemic to Australia and can be found near rivers and coastal areas along the northern and eastern coastlines from the Kimberley in the northwest to the Hunter Region in New South Wales. The male adopts a striking breeding plumage, with a black head, upperparts and tail, and a brightly coloured red back and brown wings. The female has brownish upperparts and paler underparts. The male in eclipse plumage and the juvenile resemble the female. Some males remain in non-breeding plumage while breeding. Two subspecies are recognised; the nominate M. m.melanocephalus of eastern Australia has a longer tail and orange back, and the short-tailed M. m. cruentatus from northern Australia has a redder back.

<span class="mw-page-title-main">Labrador Retriever coat colour genetics</span> Genetics behind Labrador Retriever coat colour

The genetic basis of coat colour in the Labrador Retriever has been found to depend on several distinct genes. The interplay among these genes is used as an example of epistasis.

<span class="mw-page-title-main">Cockatiel colour genetics</span>

The science of cockatiel colour genetics deals with the heredity of colour variation in the feathers of cockatiels, Nymphicus hollandicus. Colour mutations are a natural but very rare phenomenon that occur in either captivity or the wild. About fifteen primary colour mutations have been established in the species which enable the production of many different combinations. Note that this article is heavily based on the captive or companion cockatiel rather than the wild cockatiel species.

<span class="mw-page-title-main">Amelanism</span> Pigmentation abnormality

Amelanism is a pigmentation abnormality characterized by the lack of pigments called melanins, commonly associated with a genetic loss of tyrosinase function. Amelanism can affect fish, amphibians, reptiles, birds, and mammals including humans. The appearance of an amelanistic animal depends on the remaining non-melanin pigments. The opposite of amelanism is melanism, a higher percentage of melanin.

<span class="mw-page-title-main">Lavender (chicken plumage)</span>

Lavender or self-blue refers to a plumage color pattern in the chicken characterized by a uniform, pale bluish grey color across all feathers. The distinctive color is caused by the action of an autosomal recessive gene, commonly designated as "lav", which reduces the expression of eumelanin and phaeomelanin so that black areas of the plumage appear pale grey instead, and red areas appear a pale buff.

<span class="mw-page-title-main">Solid black (chicken plumage)</span>

Solid black plumage color refers to a plumage pattern in chickens characterized by a uniform, black color across all feathers. There are chicken breeds where the typical plumage color is black, such as Australorp, Sumatra, White-Faced Black Spanish, Jersey Giant and others. And there are many other breeds having different color varieties, which also have an extended black variety, such as Leghorn, Minorca, Wyandotte, Orpington, Langshan and others.

<span class="mw-page-title-main">Solid white (chicken plumage)</span> Breed of chicken

In poultry standards, solid white is coloration of plumage in chickens characterized by a uniform pure white color across all feathers, which is not generally associated with depigmentation in any other part of the body.

<span class="mw-page-title-main">Albinism</span> Disorder causing lack of pigmentation

Albinism is the congenital absence of melanin in an animal or plant resulting in white hair, feathers, scales and skin and reddish pink or blue eyes. Individuals with the condition are referred to as albinos.

<span class="mw-page-title-main">Dog coat genetics</span> Genetics behind dog coat

Dogs have a wide range of coat colors, patterns, textures and lengths. Dog coat color is governed by how genes are passed from dogs to their puppies and how those genes are expressed in each dog. Dogs have about 19,000 genes in their genome but only a handful affect the physical variations in their coats. Most genes come in pairs, one being from the dog's mother and one being from its father. Genes of interest have more than one expression of an allele. Usually only one, or a small number of alleles exist for each gene. In any one gene locus a dog will either be homozygous where the gene is made of two identical alleles or heterozygous where the gene is made of two different alleles.

<span class="mw-page-title-main">Purple-backed fairywren</span> Species of bird

The purple-backed fairywren is a fairywren that is native to Australia. Described by Alfred John North in 1901, it has four recognised subspecies. In a species that exhibits sexual dimorphism, the brightly coloured breeding male has chestnut shoulders and azure crown and ear coverts, while non-breeding males, females and juveniles have predominantly grey-brown plumage, although females of two subspecies have mainly blue-grey plumage. Distributed over much of the Australian continent, the purple-backed fairywren is found in scrubland with plenty of vegetation providing dense cover.

References

  1. Vinicombe, Keith; Harris, Alan; Tucker, Laurel (2014). The Helm guide to bird identification: an in-depth look at confusion species. London: Christopher Helm. p. 14. ISBN   9781408130353.
  2. Foster, Dr. Rory; Smith, Dr. Marty. "Bird Feather Types, Anatomy, Growth, Color, and Molting". Veterinary & Aquatic Services Department. peteducation.com. Archived from the original on 9 February 2017. Retrieved 10 April 2017.
  3. "Painted Bunting – Introduction – Birds of North America Online". bna.birds.cornell.edu. Archived from the original on 5 August 2016.
  4. "Galapagos plumology" (PDF). darwinfoundation.org. Charles Darwin Collections Database by the Charles Darwin Foundation. Archived from the original on 17 March 2016. Retrieved 24 April 2015.
  5. Eichhorn, hrsg. von Manfred (2005). Langenscheidt Fachwörterbuch Biologie Englisch : englisch – deutsch, deutsch – englisch (1. Aufl. ed.). Berlin [u.a.]: Langenscheidt. p. 537. ISBN   3861172283 . Retrieved 24 April 2015.[ permanent dead link ]
  6. Li, Quanguo (9 March 2012), "Reconstruction of Microraptor and the Evolution of Iridescent Plumage", Science, 335 (6073): 1215–1219, Bibcode:2012Sci...335.1215L, doi:10.1126/science.1213780, PMID   22403389, S2CID   206537426
  7. Humphrey, P.S. & K.C. Parkes (1959). "An approach to the study of molts and plumages" (PDF). Auk. 76 (1): 1–31. doi:10.2307/4081839. JSTOR   4081839. Archived (PDF) from the original on 5 March 2016.
  8. Sievert Rohwer, Christopher W. Thompson and Bruce E. Young (1991). "Clarifying the Humphrey-Parkes Molt and Plumage Terminology" (PDF). Condor. 94 (1): 297–300. doi:10.2307/1368824. JSTOR   1368824. Archived (PDF) from the original on 2 June 2014.
  9. Rowley, Ian and Russell, Eleanor; Fairy-Wrens and Grasswrens; pp. 145, 149 ISBN   0198546904
  10. Rowley and Russell; Fairy-Wrens and Grasswrens, pp. 176–177, 181
  11. See Australian Bird and Bat Banding Studies Archived 12 March 2014 at the Wayback Machine
  12. Majaron, Hana (December 2013). "Structural coloration" (PDF). mafija.fmf.uni-lj.si.
  13. Buckley, P.A. 1982. Avian Genetics. In: Petrak, M. (ed.). Diseases of cage and aviary birds, 2nd ed. pp. 21–110. Lea and Febiger, Philadelphia.
  14. BirdLife International (2016). "Chloebia gouldiae". IUCN Red List of Threatened Species . 2016: e.T22719744A94642482. doi: 10.2305/IUCN.UK.2016-3.RLTS.T22719744A94642482.en . Retrieved 11 November 2021.
  15. "Erythrura gouldiae – Gouldian Finch". Australian Government – Department of the Environment and Energy.
  16. Lindsay L. Farrell, Clemens Küpper, Terry Burke, and David B. Lank (December 2014). "Major Breeding Plumage Color Differences of Male Ruffs (Philomachuspugnax) Are Not Associated With Coding Sequence Variation in the MC1R Gene" (PDF). White Rose Research Online.{{cite web}}: CS1 maint: multiple names: authors list (link)
  17. 1 2 3 4 5 "Albinism". Terres, John. K. The Audubon Society Encyclopedia of North American Birds, New York: Alfred A. Knopf, 1980. ISBN   0-394-46651-9.
  18. Grouw, Hein van (2006). "Not every white bird is an albino: sense and nonsense about colour aberrations in birds" (PDF). Dutch Birding. 28: 79–89. Archived (PDF) from the original on 8 August 2017.
  19. Warren D.C. (1933). "Inheritance of albinism in the domestic fowl". Journal of Heredity. 24: 379–383.
  20. ^ Mueller, C.D. and Hutt, F.B. 1941 Genetics of the fowl. 12. Sex-linked imperfect albinism, Journal of Heredity. 32, 71–80.
  21. Brumbaugh J.A.; Bargar T.W.; Oetting W.S. (1983). "A "new" allele at the C pigment locus in the fowl". Journal of Heredity. 74 (5): 331–336. doi:10.1093/oxfordjournals.jhered.a109804.
  22. Warren D.C. (1940). "Inheritance of pinkeye in the fowl". Journal of Heredity. 31 (6): 291–292. doi:10.1093/oxfordjournals.jhered.a104904.
  23. Morgan, T. H (1920). "The genetic factor for hen-feathering in the Sebright Bantam". Biol. Bull. 39 (4): 257–259. doi:10.2307/1536491. JSTOR   1536491.
  24. George F.W., Matsumine H., McPhaul, M.J., Somes, R.G. Jr., Wilson, J.D. (1990). "Inheritance of the henny feathering trait in the golden Campine chicken: evidence for allelism with the gene that causes henny feathering in the Sebright bantam". J Hered. 81 (2): 107–110. doi: 10.1093/oxfordjournals.jhered.a110938 . PMID   2338489.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  25. Somes, R.G. Jr., George, F.W., Baron, J., Noble, J.F., Wilson, J.D. (1984). "Inheritance of the henny-feathering trait of the Sebright bantam chicken". J. Hered. 75 (2): 99–102. doi:10.1093/oxfordjournals.jhered.a109902. PMID   6715868.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  26. Leshin, M., Baron, J., George, F.W. and Wilson, J.D (1981). "Increased estrogen formation and aromatase activity in fibroblasts cultured from the skin of chickens with the Henny feathering trait" (PDF). J. Biol. Chem. 256 (9): 4341–4. doi: 10.1016/S0021-9258(19)69439-1 . PMID   7217085. Archived (PDF) from the original on 13 May 2015.{{cite journal}}: CS1 maint: multiple names: authors list (link)