Polar climate

Last updated
Areas of polar climate according to the Koppen climate classification:
.mw-parser-output .legend{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .legend-color{display:inline-block;min-width:1.25em;height:1.25em;line-height:1.25;margin:1px 0;text-align:center;border:1px solid black;background-color:transparent;color:black}.mw-parser-output .legend-text{}
Tundra climate (ET)
Ice cap climate (EF) Koppen-Geiger Map E present.svg
Areas of polar climate according to the Köppen climate classification:
   Tundra climate (ET)
   Ice cap climate (EF)
Solar radiation has a lower intensity in polar regions because the angle at which it hits the earth is not as direct as at the equator. Another effect is that sunlight has to go through more atmosphere to reach the ground. Oblique rays 04 Pengo.svg
Solar radiation has a lower intensity in polar regions because the angle at which it hits the earth is not as direct as at the equator. Another effect is that sunlight has to go through more atmosphere to reach the ground.

The polar climate regions are characterized by a lack of warm summers but with varying winters. Every month a polar climate has an average temperature of less than 10 °C (50 °F). Regions with a polar climate cover more than 20% of the Earth's area. Most of these regions are far from the equator and near the poles, and in this case, winter days are extremely short and summer days are extremely long (could last for the entirety of each season or longer). A polar climate consists of cool summers and very cold winters (or, in the case of ice cap climates, no real summer at all), which results in treeless tundra, glaciers, or a permanent or semi-permanent layer of ice. It is identified with the letter E in the Köppen climate classification.



There are two types of polar climate: ET, or tundra climate; and EF, or ice cap climate. A tundra climate is characterized by having at least one month whose average temperature is above 0 °C (32 °F), while an ice cap climate has no months averaging above 0 °C (32 °F). [2] In a tundra climate, even coniferous trees cannot grow, but other specialized plants can grow. In an ice cap climate, no plants can grow, and ice gradually accumulates until it flows or slides elsewhere. Many high altitude locations on Earth have a climate where no month has an average temperature of 10 °C (50 °F) or higher, but as this is due to elevation, this climate is referred to as Alpine climate. Alpine climate can mimic either tundra or ice cap climate.


A snowy landscape of Inari located in Lapland (Finland) Laponie007.jpg
A snowy landscape of Inari located in Lapland (Finland)
A polar bear with cub Ursus maritimus mother with cub.jpg
A polar bear with cub

On Earth, the only continent where the ice cap polar climate is predominant is Antarctica. All but a few isolated coastal areas on the island of Greenland also have the ice cap climate. Summits of many high mountains also have ice cap climate due to their high elevation. Coastal regions of Greenland that do not have permanent ice sheets have the less extreme tundra climates. The northernmost part of the Eurasian land mass, from the extreme northeastern coast of Scandinavia and eastwards to the Bering Strait, large areas of northern Siberia and northern Iceland have tundra climate as well. Large areas in northern Canada and northern Alaska have tundra climate, changing to ice cap climate in the most northern parts of Canada. Southernmost Argentina (Tierra del Fuego where it abuts the Drake Passage) and such subantarctic islands such as the South Shetland Islands and the Falkland Islands have tundra climates of slight temperature range in which no month is as warm as 10 °C (50 °F). These subantarctic lowlands are found closer to the equator than the coastal tundras of the Arctic basin. Summits of many mountains of Earth also have polar climates, due to their higher elevations.


A map of the Arctic. The red line indicates the 10degC isotherm in July and the white area shows the average minimum extent of sea ice in summer as of 1975. Arctic big.svg
A map of the Arctic. The red line indicates the 10°C isotherm in July and the white area shows the average minimum extent of sea ice in summer as of 1975.

Some parts of the Arctic are covered by ice (sea ice, glacial ice, or snow) year-round, especially at the most poleward parts; and nearly all parts of the Arctic experience long periods with some form of ice or snow on the surface. Average January temperatures range from about −40 to 0 °C (−40 to 32 °F), and winter temperatures can drop below −50 °C (−58 °F) over large parts of the Arctic. Average July temperatures range from about −10 to 10 °C (14 to 50 °F), with some land areas occasionally exceeding 30 °C (86 °F) in summer.

The Arctic consists of ocean that is almost surrounded by landmasses like Russia and Canada. As such, the climate of much of the Arctic is moderated by the ocean water, which can never have a temperature below −2 °C (28 °F). In winter, this relatively warm water, even though covered by the polar ice pack, keeps the North Pole from being the coldest place in the Northern Hemisphere, and it is also part of the reason that Antarctica is so much colder than the Arctic. In summer, the presence of the nearby water keeps coastal areas from warming as much as they might otherwise, just as it does in temperate regions with maritime climates.


The climate of Antarctica is the coldest on Earth. Antarctica has the lowest naturally occurring temperature ever recorded: −89.2 °C (−128.6 °F) at Vostok Station. [4] It is also extremely dry (technically a desert, or so called polar desert), averaging 166 millimetres (6.5 in) of precipitation per year, as weather fronts rarely penetrate far into the continent.


Summits of most mountains also have polar climates, despite being in lower latitudes, due to their high elevations. All mountains of the Rocky Mountains, Alps, and the Caucasus have tundra climate. Some mountains of the Andes, the Saint Elias Mountains, and most mountains of the Himalayas, the Karakoram, the Hindu Kush Range, Pamir Mountains, the Tian Shan Mountains, and the Alaska Range, have ice cap climate. Only the summit of Mount Rainier has an ice cap climate in the Cascade Range.

Quantifying polar climate

There have been several attempts at quantifying what constitutes a polar climate.

Climatologist Wladimir Köppen demonstrated a relationship between the Arctic and Antarctic tree lines and the 10 °C (50 °F) summer isotherm; i.e., places where the average temperature in the warmest calendar month of the year is below the fixed threshold of 10 °C (50 °F) cannot support forests. See Köppen climate classification for more information.

Otto Nordenskjöld theorized that winter conditions also play a role: His formula is W = 9 − 0.1 C, where W is the average temperature in the warmest month and C the average of the coldest month, both in degrees Celsius. For example, if a particular location had an average temperature of −20 °C (−4 °F) in its coldest month, the warmest month would need to average 11 °C (52 °F) or higher for trees to be able to survive there as 9 − 0.1(−20) = 11. Nordenskiöld's line tends to run to the north of Köppen's near the west coasts of the Northern Hemisphere continents, south of it in the interior sections, and at about the same latitude along the east coasts of both Asia and North America. In the Southern Hemisphere, all of Tierra del Fuego lies outside the polar region in Nordenskiöld's system, but part of the island (including Ushuaia, Argentina) is reckoned as being within the Antarctic under Köppen's.

In 1947, Holdridge improved on these schemes, by defining biotemperature: the mean annual temperature, where all temperatures below 0 °C or 32 °F (and above 30 °C or 86 °F) are treated as 0 °C (because it makes no difference to plant life, being dormant). If the mean biotemperature is between 1.5 and 3 °C (34.7 and 37.4 °F), [5] Holdridge quantifies the climate as subpolar (or alpine, if the low temperature is caused by elevation).

See also

Related Research Articles

<span class="mw-page-title-main">Tundra</span> Biome where plant growth is hindered by frigid temperatures

In physical geography, tundra is a type of biome where tree growth is hindered by frigid temperatures and short growing seasons. The term is a Russian word adapted from Sámi languages. There are three regions and associated types of tundra: Arctic tundra, alpine tundra, and Antarctic tundra.

<span class="mw-page-title-main">Subarctic climate</span> Climate characterised by long, usually very cold winters, and short, cool summers

The subarctic climate is a continental climate with long, cold winters, and short, warm to cool summers. It is found on large landmasses, often away from the moderating effects of an ocean, generally at latitudes from 50°N to 70°N, poleward of the humid continental climates. Subarctic or boreal climates are the source regions for the cold air that affects temperate latitudes to the south in winter. These climates represent Köppen climate classification Dfc, Dwc, Dsc, Dfd, Dwd and Dsd.

<span class="mw-page-title-main">Temperate climate</span> Main climate class

In geography, the temperate climates of Earth occur in the middle latitudes, which span between the tropics and the polar regions of Earth. These zones generally have wider temperature ranges throughout the year and more distinct seasonal changes compared to tropical climates, where such variations are often small and usually only have precipitation differences.

<span class="mw-page-title-main">Alpine tundra</span> Biome found at high altitudes

Alpine tundra is a type of natural region or biome that does not contain trees because it is at high elevation, with an associated harsh climate. As the latitude of a location approaches the poles, the threshold elevation for alpine tundra gets lower until it reaches sea level, and alpine tundra merges with polar tundra.

<span class="mw-page-title-main">Mediterranean climate</span> Type of climate

A Mediterranean climate, also called a dry summer climate, described by Köppen as Cs, is a temperate climate type that occurs in the lower mid-latitudes. Such climates typically have dry summers and wet winters, with summer conditions ranging from warm to hot and winter conditions typically being mild to cool. These weather conditions are typically experienced in the majority of Mediterranean-climate regions and countries, but remain highly dependent on proximity to the ocean, altitude and geographical location.

<span class="mw-page-title-main">Köppen climate classification</span> Climate classification system

The Köppen climate classification is one of the most widely used climate classification systems. It was first published by German-Russian climatologist Wladimir Köppen (1846–1940) in 1884, with several later modifications by Köppen, notably in 1918 and 1936. Later, German climatologist Rudolf Geiger (1894–1981) introduced some changes to the classification system in 1954 and 1961, which is thus sometimes called the Köppen–Geiger climate classification.

<span class="mw-page-title-main">Alpine climate</span> Typical weather for regions above the tree line

Alpine climate is the typical climate for elevations above the tree line, where trees fail to grow due to cold. This climate is also referred to as a mountain climate or highland climate.

<span class="mw-page-title-main">Oceanic climate</span> Climate classification

An oceanic climate, also known as a marine climate, is the temperate climate sub-type in Köppen classification represented as Cfb, typical of west coasts in higher middle latitudes of continents, generally featuring cool summers and mild winters, with a relatively narrow annual temperature range and few extremes of temperature. Oceanic climates can be found in both hemispheres generally between 40 and 60 degrees latitude, with subpolar versions extending to 70 degrees latitude in some coastal areas. Other varieties of climates usually classified together with these include subtropical highland climates, represented as Cwb or Cfb, and subpolar oceanic or cold subtropical highland climates, represented as Cfc or Cwc. Subtropical highland climates occur in some mountainous parts of the subtropics or tropics, some of which have monsoon influence, while their cold variants and subpolar oceanic climates occur near polar or tundra regions.

Seasonal lag is the phenomenon whereby the date of maximum average air temperature at a geographical location on a planet is delayed until some time after the date of maximum insolation. This also applies to the minimum temperature being delayed until some time after the date of minimum insolation. Cultural seasons are often aligned with annual temperature cycles, especially in the agrarian context. Peak agricultural growth often depends on both insolation levels and soil/air temperature. Rainfall patterns are also tied to temperature cycles, with warmer air able to hold more water vapor than cold air.

<span class="mw-page-title-main">Polar desert</span> Region of the Earth

Polar deserts are the regions of Earth that fall under an ice cap climate. Despite rainfall totals low enough to normally classify as a desert, polar deserts are distinguished from true deserts by low annual temperatures and evapotranspiration. Most polar deserts are covered in ice sheets, ice fields, or ice caps, and they are also called white deserts.

Polar ecology is the relationship between plants and animals in a polar environment. Polar environments are in the Arctic and Antarctic regions. Arctic regions are in the Northern Hemisphere, and it contains land and the islands that surrounds it. Antarctica is in the Southern Hemisphere and it also contains the land mass, surrounding islands and the ocean. Polar regions also contain the subantarctic and subarctic zone which separate the polar regions from the temperate regions. Antarctica and the Arctic lie in the polar circles. The polar circles are imaginary lines shown on maps to be the areas that receives less sunlight due to less radiation. These areas either receive sunlight or shade 24 hours a day because of the earth's tilt. Plants and animals in the polar regions are able to withstand living in harsh weather conditions but are facing environmental threats that limit their survival.

<span class="mw-page-title-main">Climate classification</span> Systems that categorize the worlds climates

Climate classifications are systems that categorize the world's climates. A climate classification may correlate closely with a biome classification, as climate is a major influence on life in a region. One of the most used is the Köppen climate classification scheme first developed in 1884.

<span class="mw-page-title-main">Arctic vegetation</span> Plants adapted to the short, cold growing seasons of the Arctic regions

About 1,702 species of plants live on the Arctic tundra, including flowering plants, short shrubs, herbs, grasses, and mosses. These plants are adapted to short, cold growing seasons. They have the ability to withstand extremely cold temperatures in the winter, and grow and reproduce in summer conditions that are quite limiting.

<span class="mw-page-title-main">Climate of the Arctic</span> Climate types in the Arctic region

The climate of the Arctic is characterized by long, cold winters and short, cool summers. There is a large amount of variability in climate across the Arctic, but all regions experience extremes of solar radiation in both summer and winter. Some parts of the Arctic are covered by ice year-round, and nearly all parts of the Arctic experience long periods with some form of ice on the surface.

<span class="mw-page-title-main">Climate of the United States</span> Varies due to changes in latitude, and a range of geographic features

The climate of the United States varies due to changes in latitude, and a range of geographic features, including mountains and deserts. Generally, on the mainland, the climate of the U.S. becomes warmer the further south one travels, and drier the further west, until one reaches the West Coast.

<span class="mw-page-title-main">Climate of Norway</span> Overview of the Climate of Norway

The climate of Norway is more temperate than could be expected for such high latitudes. This is mainly due to the North Atlantic Current with its extension, the Norwegian Current, raising the air temperature; the prevailing southwesterlies bringing mild air onshore; and the general southwest–northeast orientation of the coast, which allows the westerlies to penetrate into the Arctic. The January average in Brønnøysund is 15.8C (28.6F) higher than the January average in Nome, Alaska, even though both towns are situated on the west coast of the continents at 65°N. In July the difference is reduced to 3.2C (5.8F). The January average of Yakutsk, in Siberia but slightly further south, is 42.3C (76.1F) lower than in Brønnøysund.

<span class="mw-page-title-main">North American Arctic</span>

The North American Arctic is composed of the northern polar regions of Alaska (USA), Northern Canada and Greenland. Major bodies of water include the Arctic Ocean, Hudson Bay, the Gulf of Alaska and North Atlantic Ocean. The North American Arctic lies above the Arctic Circle. It is part of the Arctic, which is the northernmost region on Earth. The western limit is the Seward Peninsula and the Bering Strait. The southern limit is the Arctic Circle latitude of 66° 33’N, which is the approximate limit of the midnight sun and the polar night.

<span class="mw-page-title-main">Ice cap climate</span> Polar climate where no mean monthly temperature exceeds 0 °C (32 °F)

An ice cap climate is a polar climate where no mean monthly temperature exceeds 0 °C (32 °F). The climate generally covers areas at high altitudes and polar regions, such as Antarctica and some of the northernmost islands of Canada and Russia. Most of Greenland is under the influence of an ice cap climate, although the coasts are prone to more influence from the sea, providing more tundra climates. Some regions on the islands of Norway's Svalbard Archipelago facilitate an ice cap climate. Areas with ice cap climates are normally covered by a permanent layer of ice and have no vegetation. There is limited animal life in most ice cap climates, which are usually found near the oceanic margins. Although ice cap climates are inhospitable to human life and no civilian communities lie in such climates, there are some research stations scattered in Antarctica and interior Greenland.

<span class="mw-page-title-main">Trewartha climate classification</span> Categorical system for longer-range recurrent weather patterns of Earth, orig. 1966

The Trewartha climate classification (TCC) or the Köppen–Trewartha climate classification (KTC) is a climate classification system first published by American geographer Glenn Thomas Trewartha in 1966. It is a modified version of the Köppen–Geiger system, created to answer some of its deficiencies. The Trewartha system attempts to redefine the middle latitudes to be closer to vegetation zoning and genetic climate systems.

<span class="mw-page-title-main">Middle Arctic tundra</span> Tundra ecoregion of Canada

The Canadian Middle Arctic Tundra ecoregion covers a broad stretch of northern Canada - the southern islands of the Arctic Archipelago, plus the northern mainland of Nunavut and, across Hudson Bay to the east, a portion of northern Quebec. This is the coldest and driest ecoregion in Canada, and can be referred to as a 'polar desert'. It is an important region for breeding and migratory birds, and supports 80% of the world's muskox.


  1. Yung, Chung-hoi. "Why is the equator very hot and the poles very cold?". Hong Kong Observatory. Archived from the original on 2018-06-14. Retrieved 2010-12-02.
  2. McKnight, Tom L; Hess, Darrel (2000). "Climate Zones and Types: The Köppen System" . Physical Geography: A Landscape Appreciation. Upper Saddle River, NJ: Prentice Hall. pp.  235–7. ISBN   978-0-13-020263-5.
  3. PD-icon.svg This article incorporates public domain material from The World Factbook (PDF). CIA.
  4. Gavin Hudson (2008-12-14). "The Coldest Inhabited Places on Earth". Eco Worldly. Archived from the original on 2008-12-18. Retrieved 2009-02-08.
  5. Jones, Allan. "Biodiversity lectures and practicals". University of Dundee. Archived from the original on 2007-09-29.