Primitive element (co-algebra)

Last updated

In algebra, a primitive element of a co-algebra C (over an element g) is an element x that satisfies

where is the co-multiplication and g is an element of C that maps to the multiplicative identity 1 of the base field under the co-unit (g is called group-like).

In mathematics, a ground field is a field K fixed at the beginning of the discussion.

If C is a bi-algebra, i.e., a co-algebra that is also an algebra (with certain compatibility conditions satisfied), then one usually takes g to be 1, the multiplicative identity of C. The bi-algebra C is said to be primitively generated if it is generated by primitive elements (as an algebra).

If C is a bi-algebra, then the set of primitive elements form a Lie algebra with the usual commutator bracket (graded commutator if C is graded).

Lie algebra A vector space with an alternating binary operation satisfying the Jacobi identity.

In mathematics, a Lie algebra is a vector space together with a non-associative, alternating bilinear map , called the Lie bracket, satisfying the Jacobi identity.

If A is a connected graded cocommutative Hopf algebra over a field of characteristic zero, then the Milnor–Moore theorem states the universal enveloping algebra of the graded Lie algebra of primitive elements of A is isomorphic to A. (This also holds under slightly weaker requirements.)

In algebra, the Milnor–Moore theorem, introduced in, states: given a connected graded cocommutative Hopf algebra A over a field of characteristic zero with , the natural Hopf algebra homomorphism

In mathematics, a universal enveloping algebra is the most general algebra that contains all representations of a Lie algebra.

Related Research Articles

In mathematics, an associative algebra is an algebraic structure with compatible operations of addition, multiplication, and a scalar multiplication by elements in some field. The addition and multiplication operations together give A the structure of a ring; the addition and scalar multiplication operations together give A the structure of a vector space over K. In this article we will also use the term K-algebra to mean an associative algebra over the field K. A standard first example of a K-algebra is a ring of square matrices over a field K, with the usual matrix multiplication.

In mathematics, especially functional analysis, a Banach algebra, named after Stefan Banach, is an associative algebra A over the real or complex numbers that at the same time is also a Banach space, i.e. a normed space and complete in the metric induced by the norm. The norm is required to satisfy

In mathematics, a finite field or Galois field is a field that contains a finite number of elements. As with any field, a finite field is a set on which the operations of multiplication, addition, subtraction and division are defined and satisfy certain basic rules. The most common examples of finite fields are given by the integers mod p when p is a prime number.


In mathematics, a Clifford algebra is an algebra generated by a vector space with a quadratic form, and is a unital associative algebra. As K-algebras, they generalize the real numbers, complex numbers, quaternions and several other hypercomplex number systems. The theory of Clifford algebras is intimately connected with the theory of quadratic forms and orthogonal transformations. Clifford algebras have important applications in a variety of fields including geometry, theoretical physics and digital image processing. They are named after the English mathematician William Kingdon Clifford.

Ring (mathematics) Algebraic structure with two binary operations

In mathematics, a ring is one of the fundamental algebraic structures used in abstract algebra. It consists of a set equipped with two binary operations that generalize the arithmetic operations of addition and multiplication. Through this generalization, theorems from arithmetic are extended to non-numerical objects such as polynomials, series, matrices and functions.

In mathematics, and more specifically in abstract algebra, an algebraic structure on a set A is a collection of finitary operations on A; the set A with this structure is also called an algebra.

In mathematics, an algebra over a field is a vector space equipped with a bilinear product. Thus, an algebra is an algebraic structure, which consists of a set, together with operations of multiplication, addition, and scalar multiplication by elements of the underlying field, and satisfies the axioms implied by "vector space" and "bilinear".

In the mathematical field of representation theory, a weight of an algebra A over a field F is an algebra homomorphism from A to F, or equivalently, a one-dimensional representation of A over F. It is the algebra analogue of a multiplicative character of a group. The importance of the concept, however, stems from its application to representations of Lie algebras and hence also to representations of algebraic and Lie groups. In this context, a weight of a representation is a generalization of the notion of an eigenvalue, and the corresponding eigenspace is called a weight space.

In mathematics the Jacobi identity is a property of a binary operation which describes how the order of evaluation affects the result of the operation. By contrast, for operations with the associative property, any order of evaluation gives the same result. The identity is named after the German mathematician Carl Gustav Jakob Jacobi. The cross product and the Lie bracket operation both satisfy the Jacobi identity.

In mathematics, a Lie superalgebra is a generalisation of a Lie algebra to include a Z2-grading. Lie superalgebras are important in theoretical physics where they are used to describe the mathematics of supersymmetry. In most of these theories, the even elements of the superalgebra correspond to bosons and odd elements to fermions.

In mathematics, a Hopf algebra, named after Heinz Hopf, is a structure that is simultaneously an algebra and a coalgebra, with these structures' compatibility making it a bialgebra, and that moreover is equipped with an antiautomorphism satisfying a certain property. The representation theory of a Hopf algebra is particularly nice, since the existence of compatible comultiplication, counit, and antipode allows for the construction of tensor products of representations, trivial representations, and dual representations.

Quantum group Algebraic construct of interest in theoretical physics

In mathematics and theoretical physics, the term quantum group denotes various kinds of noncommutative algebras with additional structure. In general, a quantum group is some kind of Hopf algebra. There is no single, all-encompassing definition, but instead a family of broadly similar objects.

In mathematics and theoretical physics, a superalgebra is a Z2-graded algebra. That is, it is an algebra over a commutative ring or field with a decomposition into "even" and "odd" pieces and a multiplication operator that respects the grading.

In mathematics, a compact quantum group is an abstract structure on a unital separable C*-algebra axiomatized from those that exist on the commutative C*-algebra of "continuous complex-valued functions" on a compact quantum group.

A non-associative algebra is an algebra over a field where the binary multiplication operation is not assumed to be associative. That is, an algebraic structure A is a non-associative algebra over a field K if it is a vector space over K and is equipped with a K-bilinear binary multiplication operation A × AA which may or may not be associative. Examples include Lie algebras, Jordan algebras, the octonions, and three-dimensional Euclidean space equipped with the cross product operation. Since it is not assumed that the multiplication is associative, using parentheses to indicate the order of multiplications is necessary. For example, the expressions (ab)(cd), d and a(b ) may all yield different answers.

In mathematics, a separable algebra is a kind of semisimple algebra. It is a generalization to associative algebras of the notion of a separable field extension.

A Lie conformal algebra is in some sense a generalization of a Lie algebra in that it too is a "Lie algebra," though in a different pseudo-tensor category. Lie conformal algebras are very closely related to vertex algebras and have many applications in other areas of algebra and integrable systems.

In mathematics, a braided vectorspace is a vector space together with an additional structure map symbolizing interchanging of two vector tensor copies:

Lie algebra extension

In the theory of Lie groups, Lie algebras and their representation theory, a Lie algebra extensione is an enlargement of a given Lie algebra g by another Lie algebra h. Extensions arise in several ways. There is the trivial extension obtained by taking a direct sum of two Lie algebras. Other types are the split extension and the central extension. Extensions may arise naturally, for instance, when forming a Lie algebra from projective group representations. Such a Lie algebra will contain central charges.

References