Pro-motivational agent

Last updated

A pro-motivational agent is a drug which increases motivation. [1] [2] They can be used in the treatment of motivational deficits, for instance in depression, schizophrenia, and attention deficit hyperactivity disorder (ADHD), [3] [1] as well as in the treatment of disorders of diminished motivation (DDMs), including apathy, abulia, and akinetic mutism, for instance due to stroke, traumatic brain injury, or neurodegenerative diseases. [4] [5] They are also used non-medically by healthy people to increase motivation and productivity, for instance in educational contexts. [6] [2] [7] [8]

Contents

There are limited clinical data on medications in treating motivational deficits and disorders. [9] [10] In any case, drugs used for pro-motivational purposes are generally dopaminergic agents, for instance dopamine reuptake inhibitors (DRIs) like methylphenidate and modafinil, dopamine releasing agents (DRAs) like amphetamine, and other dopaminergic medications. [1] [2] [11] Adenosine receptor antagonists, like caffeine and istradefylline, can also produce pro-motivational effects. [11] [12] [13] [14] Acetylcholinesterase inhibitors, like donepezil, have been used as well. [15] [16] [4] [9]

Some drugs do not appear to have pro-motivational effects and can actually produce anti-motivational effects. [1] [11] [17] Examples of these drugs include selective serotonin reuptake inhibitors (SSRIs), [17] [18] [19] selective norepinephrine reuptake inhibitors (NRIs), [17] and antipsychotics (which are dopamine receptor antagonists or partial agonists). [20] [21] [22] Cannabinoids have also been associated with motivational deficits. [23] [24] [25] [1] [26]

List of pro-motivational agents

Dopaminergic agents

Dopaminergic agents that have been found to produce pro-motivational effects in animals and/or humans include the following: [1] [11]

A limitation of bupropion as a dopaminergic agent is that it achieves very limited clinical occupancy of the dopamine transporter (DAT). [37] [38] [39] [40]

Dopamine D2-like receptor agonists, including pramipexole, ropinirole, rotigotine, piribedil, bromocriptine, cabergoline, and pergolide, have also been used to treat disorders of diminished motivation in humans. [16] [4] [5] [10] [41] However, the quality of evidence on these agents for this use is very limited. [10] D2-like receptor agonists are known to have sedative-like and non-rewarding effects in humans. [42] [43] [44] In any case, dopamine D2-like receptor antagonists, like haloperidol and other antipsychotics, are known to produce anti-motivational effects in animals [1] [11] [10] [2] and humans. [20] [21] [45] [46] [47] [48]

Other dopaminergic drugs that have been used or suggested in the treatment of disorders of diminished motivation include rasagiline (a selective monoamine oxidase B (MAO-B) inhibitor; but see more below), tolcapone (a centrally-acting catechol-O-methyltransferase (COMT) inhibitor), and amantadine (an indirectly acting dopaminergic agent that acts via unknown mechanisms). [10] [16] [49] [15] [50] Amantadine is widely used to treat multiple sclerosis-related fatigue, among other fatigue- and motivation-related disorders, and is recommended by the United Kingdom National Institute for Health and Care Excellence (NICE) guidelines for this use. [50] [51] [52] [53] [54]

Adenosinergic agents

Adenosine receptor antagonists, including caffeine, istradefylline (KW-6002), Lu AA47070, MSX-3, MSX-4, preladenant (SCH-420814), and theophylline, have shown pro-motivational effects in animals and humans. [11] [12] [13] [55] [14] [56] Caffeine and theophylline act as non-selective antagonists of the adenosine receptors (including A1, A2A, A2B, and A3). [11] [57] [58] [59] Conversely, agents like istradefylline and preladenant are selective adenosine A2A receptor antagonists. [11] Adenosine A2A receptor antagonists, including the non-selective antagonists like caffeine, show pro-motivational effects in animals, whereas selective adenosine A1 receptor antagonists, like DPCPX and CPX, do not. [11] [60] Adenosine A2A receptor antagonists appear to exert their pro-motivational effects in the nucleus accumbens core and can reverse the anti-motivational effects of dopamine D2 receptor antagonists like haloperidol in animals. [11] [12] [13] [61] [62] Istradefylline is approved in the treatment of Parkinson's disease and has been found to improve symptoms of apathy, anhedonia, and depression in people with the condition. [14] [56]

Cholinergic agents

Acetylcholinesterase inhibitors, like donepezil, rivastigmine, and galantamine, have been used in the treatment of disorders of diminished motivation. [15] [16] [4] [9] These drugs inhibit acetylcholinesterase, which metabolizes the neurotransmitter acetylcholine, thereby increasing acetylcholine levels in the brain. [63] They are approved and used in the treatment of Alzheimer's disease and provide modest cognitive improvements in people with the disease. [63] [64] [65] Although acetylcholinesterase inhibitors have been used to treat disorders of diminished motivation, the muscarinic acetylcholine receptor agonist pilocarpine has actually shown anti-motivational effects in animals that can be reversed by the muscarinic acetylcholine receptor antagonist scopolamine. [61] In addition, scopolamine has been found to reverse the anti-motivational effects of the dopamine D2 receptor antagonist haloperidol in animals. [61] In any case, in spite of the preceding findings, acetylcholinesterase inhibitors have been found to be clinically effective, albeit modestly, for apathy in dementia and Parkinson's disease. [66] [67] [68]

Ineffective agents

Norepinephrine reuptake inhibitors (NRIs) like atomoxetine and selective serotonin reuptake inhibitors (SSRIs) like escitalopram have been used and recommended in the treatment of disorders of diminished motivation. [5] [15] [69] However, NRIs like desipramine and atomoxetine, SSRIs like fluoxetine and citalopram, and MAO-A-inhibiting monoamine oxidase inhibitors (MAOIs) like moclobemide and pargyline have all not shown pro-motivational effects in animals. [1] [11] [27] [70] [36] In fact, these drugs can produce further motivational deficits in animals. [17] [70] [71] [36] Serotonergic antidepressants like SSRIs and serotonin–norepinephrine reuptake inhibitors (SNRIs) have also been implicated in inducing apathy and emotional blunting in humans. [18] [19] [72]

In contrast to selegiline, selective MAO-B inhibitors without concomitant catecholaminergic activity enhancer (CAE) actions, like rasagiline, SU-11739, and lazabemide, are poorly effective in reversing behavioral deficits induced by the dopamine depleting agent tetrabenazine in animals. [73] [74]

Antipsychotics, which classically act as dopamine receptor antagonists (mostly of the D2-like receptors), are well-known as having anti-motivational effects. [1] [11] [20] [21] [45] [46] [48] In fact, these effects may play a key role in their effectiveness against the positive and psychotic symptoms of schizophrenia by blunting the emotions underlying delusions. [20] [21] [45] [46] [48] A novel class of antipsychotics, sometimes referred to as third-generation antipsychotics, act as dopamine receptor partial agonists instead of as pure antagonists and have mixed agonistic and antagonistic effects. [75] [76] These drugs include aripiprazole, brexpiprazole, and cariprazine. [76] Aripiprazole, a dopamine D2, D3, and D4 receptor partial agonist, has been suggested, at low doses, as a possible treatment for disorders of diminished motivation. [49] However, cariprazine, a D2 and D3 receptor partial agonist, has shown anti-motivational effects in animals. [22] Dopamine receptor partial agonists may differ in their intrinsic activities at the dopamine receptors and in their profiles of effects. [77]

Some atypical DRIs, like JJC8-091, in contrast to other DRIs, are not effective in producing pro-motivational effects in animals. [78]

Related Research Articles

<span class="mw-page-title-main">Adenosine receptor</span> Class of four receptor proteins to the molecule adenosine

The adenosine receptors (or P1 receptors) are a class of purinergic G protein-coupled receptors with adenosine as the endogenous ligand. There are four known types of adenosine receptors in humans: A1, A2A, A2B and A3; each is encoded by a different gene.

<span class="mw-page-title-main">Amantadine</span> Medication used to treat dyskinesia

Amantadine, sold under the brand name Gocovri among others, is a medication used to treat dyskinesia associated with parkinsonism and influenza caused by type A influenzavirus, though its use for the latter is no longer recommended because of widespread drug resistance. It is also used for a variety of other uses. The drug is taken by mouth.

<span class="mw-page-title-main">Tetrabenazine</span> Medication for hyperkinetic movement disorders

Tetrabenazine is a drug for the symptomatic treatment of hyperkinetic movement disorders. It is sold under the brand names Nitoman and Xenazine among others. On August 15, 2008, the U.S. Food and Drug Administration approved the use of tetrabenazine to treat chorea associated with Huntington's disease. Although other drugs had been used "off label," tetrabenazine was the first approved treatment for Huntington's disease in the U.S. The compound has been known since the 1950s.

<span class="mw-page-title-main">Dopaminergic</span> Substance related to dopamine functions

Dopaminergic means "related to dopamine", a common neurotransmitter. Dopaminergic substances or actions increase dopamine-related activity in the brain.

<span class="mw-page-title-main">Nomifensine</span> Group of stereoisomers

Nomifensine, sold under the brand names Merital and Alival, is a norepinephrine–dopamine reuptake inhibitor (NDRI), i.e. a drug that increases the amount of synaptic norepinephrine and dopamine available to receptors by blocking the dopamine and norepinephrine reuptake transporters. This is a mechanism of action shared by some recreational drugs like cocaine and the medication tametraline (see DRI). Research showed that the (S)-isomer is responsible for activity.

Dopamine receptor D<sub>2</sub> Main receptor for most antipsychotic drugs

Dopamine receptor D2, also known as D2R, is a protein that, in humans, is encoded by the DRD2 gene. After work from Paul Greengard's lab had suggested that dopamine receptors were the site of action of antipsychotic drugs, several groups, including those of Solomon H. Snyder and Philip Seeman used a radiolabeled antipsychotic drug to identify what is now known as the dopamine D2 receptor. The dopamine D2 receptor is the main receptor for most antipsychotic drugs. The structure of DRD2 in complex with the atypical antipsychotic risperidone has been determined.

Adenosine A<sub>2A</sub> receptor Cell surface receptor found in humans

The adenosine A2A receptor, also known as ADORA2A, is an adenosine receptor, and also denotes the human gene encoding it.

<span class="mw-page-title-main">SCH-58261</span> Chemical compound

SCH-58261 is a drug which acts as a potent and selective antagonist for the adenosine receptor A2A, with more than 50x selectivity for A2A over other adenosine receptors. It has been used to investigate the mechanism of action of caffeine, which is a mixed A1 / A2A antagonist, and has shown that the A2A receptor is primarily responsible for the stimulant and ergogenic effects of caffeine, but blockade of both A1 and A2A receptors is required to accurately replicate caffeine's effects in animals. SCH-58261 has also shown antidepressant, nootropic and neuroprotective effects in a variety of animal models, and has been investigated as a possible treatment for Parkinson's disease.

<span class="mw-page-title-main">Istradefylline</span> Chemical compound

Istradefylline, sold under the brand name Nourianz, is a medication used as an add-on treatment to levodopa/carbidopa in adults with Parkinson's disease (PD) experiencing "off" episodes. Istradefylline reduces "off" periods resulting from long-term treatment with the antiparkinson drug levodopa. An "off" episode is a time when a patient's medications are not working well, causing an increase in PD symptoms, such as tremor and difficulty walking.

<span class="mw-page-title-main">Preladenant</span> Chemical compound

Preladenant is a drug that was developed by Schering-Plough which acted as a potent and selective antagonist of the adenosine A2A receptor. It was being researched as a potential treatment for Parkinson's disease. Positive results were reported in Phase II clinical trials in humans, but it did not prove itself to be more effective than a placebo during Phase III trials, and so was discontinued in May 2013.

<span class="mw-page-title-main">Cariprazine</span> Atypical antipsychotic medicine

Cariprazine, sold under the brand name Vraylar among others, is an atypical antipsychotic developed by Gedeon Richter, which is used in the treatment of schizophrenia, bipolar mania, bipolar depression, and major depressive disorder. It acts primarily as a D3 and D2 receptor partial agonist, with a preference for the D3 receptor. Cariprazine is also a partial agonist at the serotonin 5-HT1A receptor and acts as an antagonist at 5-HT2B and 5-HT2A receptors, with high selectivity for the D3 receptor. It is taken by mouth.

Adenosine A2A receptor antagonists are a class of drugs that blocks adenosine at the adenosine A2A receptor. Notable adenosine A2A receptor antagonists include caffeine, theophylline and istradefylline.

<span class="mw-page-title-main">Monoamine-depleting agent</span> Drug class

Monoamine-depleting agents are a group of drugs which reversibly deplete one or more of the monoamine neurotransmitters, serotonin, dopamine, and norepinephrine. One mechanism by which these agents act is by inhibiting reuptake by the vesicular monoamine transporters, VMAT1 and VMAT2. Examples of monoamine-depleting agents include deutetrabenazine, oxypertine, reserpine, tetrabenazine, and valbenazine. Tetrabenazine selectively depletes dopamine at low doses and is used as an animal model of amotivation.

Disorders of diminished motivation (DDM) are a group of disorders involving diminished motivation and associated emotions. Many different terms have been used to refer to diminished motivation. Often however, a spectrum is defined encompassing apathy, abulia, and akinetic mutism, with apathy the least severe and akinetic mutism the most extreme.

<span class="mw-page-title-main">PRX-14040</span> Dopamine reuptake inhibitor

PRX-14040 is a selective dopamine reuptake inhibitor that was developed by Prexa Pharmaceuticals. It has 28-fold selectivity for the dopamine transporter over the norepinephrine transporter. Similarly to various other dopamine reuptake inhibitors, the drug has been found to reverse motivational deficits induced by the dopamine depleting agent tetrabenazine in animals.

<span class="mw-page-title-main">MRZ-9547</span> Dopamine reuptake inhibitor that was under development for fatigue in Parkinsons disease

MRZ-9547, also known as (R)-phenylpiracetam, (R)-phenotropil, or (R)-fonturacetam, is a selective dopamine reuptake inhibitor (IC50Tooltip half-maximal inhibitory concentration = 14.5 μM) that was developed by Merz Pharma. It is the (R)-enantiomer of the racetam and nootropic phenylpiracetam (phenotropil; fonturacetam).

CT-005404, or CT-5404, is an atypical dopamine reuptake inhibitor (DRI) that was derived from modafinil. It shows pro-motivational effects in animals and reverses motivational deficits induced by tetrabenazine and interleukin-1β. CT-005404 is described as being orally active in animals and having a long duration of action. It is under development by Chronos Therapeutics for treatment of motivational disorders. The drug was first described by 2018.

<span class="mw-page-title-main">CE-158</span> Chemical compound

CE-158 is an atypical dopamine reuptake inhibitor (DRI) that was derived from modafinil. It is often but not always referred to as the enantiopure enantiomer (S,S)-CE-158 instead.

<span class="mw-page-title-main">Lu AA47070</span> An adenosine A2A receptor antagonist for Parkinsons disease that was abandoned

Lu AA47070 is a selective adenosine A2A receptor antagonist that was under development for the treatment of Parkinson's disease but was never marketed. It has been found to reverse some of the effects of dopamine D2 receptor antagonists like pimozide and haloperidol, for instance tremulous jaw movements, catalepsy, locomotor suppression, and other anti-motivational effects, in animals. The drug is a prodrug of Lu AA41063. It was discontinued in phase 1 clinical trials because it lacked the intended pharmacological properties in humans. Lu AA47070 was first described by 2008.

<span class="mw-page-title-main">MSX-3</span> Selective adenosine A2A receptor antagonist used in scientific research

MSX-3 is a selective adenosine A2A receptor antagonist used in scientific research. Similarly to MSX-4, it is a water-soluble ester prodrug of MSX-2.

References

  1. 1 2 3 4 5 6 7 8 9 10 11 Salamone JD, Correa M (January 2024). "The Neurobiology of Activational Aspects of Motivation: Exertion of Effort, Effort-Based Decision Making, and the Role of Dopamine". Annu Rev Psychol. 75: 1–32. doi:10.1146/annurev-psych-020223-012208. hdl: 10234/207207 . PMID   37788571.
  2. 1 2 3 4 Hailwood JM (27 September 2018). Novel Approaches Towards Pharmacological Enhancement of Motivation (Thesis). University of Cambridge. doi:10.17863/CAM.40216.
  3. Salamone JD, Yohn SE, López-Cruz L, San Miguel N, Correa M (May 2016). "Activational and effort-related aspects of motivation: neural mechanisms and implications for psychopathology". Brain. 139 (Pt 5): 1325–1347. doi:10.1093/brain/aww050. PMC   5839596 . PMID   27189581.
  4. 1 2 3 4 Spiegel DR, Warren A, Takakura W, Servidio L, Leu N (January 2018). "Disorders of diminished motivation: What they are, and how to treat them" (PDF). Current Psychiatry. 17 (1): 10–18, 20.
  5. 1 2 3 Arnts H, van Erp WS, Lavrijsen JC, van Gaal S, Groenewegen HJ, van den Munckhof P (May 2020). "On the pathophysiology and treatment of akinetic mutism". Neuroscience and Biobehavioral Reviews. 112: 270–278. doi: 10.1016/j.neubiorev.2020.02.006 . hdl: 2066/225901 . PMID   32044373.
  6. Kjærsgaard T (2 January 2015). "Enhancing Motivation by Use of Prescription Stimulants: The Ethics of Motivation Enhancement". AJOB Neuroscience. 6 (1): 4–10. doi:10.1080/21507740.2014.990543. ISSN   2150-7740.
  7. Sharif S, Guirguis A, Fergus S, Schifano F (March 2021). "The Use and Impact of Cognitive Enhancers among University Students: A Systematic Review". Brain Sci. 11 (3): 355. doi: 10.3390/brainsci11030355 . PMC   8000838 . PMID   33802176.
  8. Brühl AB, d'Angelo C, Sahakian BJ (2019). "Neuroethical issues in cognitive enhancement: Modafinil as the example of a workplace drug?". Brain Neurosci Adv. 3: 2398212818816018. doi:10.1177/2398212818816018. PMC   7058249 . PMID   32166175.
  9. 1 2 3 Starkstein SE, Pahissa J (2018). "Disorders of Diminished Motivation". In Silver JM, McAllister TW, Arciniegas DB (eds.). Textbook of Traumatic Brain Injury (3 ed.). American Psychiatric Association Publishing. pp. 381–393. ISBN   978-1-61537-112-9 . Retrieved 17 September 2024.
  10. 1 2 3 4 5 Chong TT, Husain M (2016). "The role of dopamine in the pathophysiology and treatment of apathy". Motivation: Theory, Neurobiology and Applications. Progress in Brain Research. Vol. 229. pp. 389–426. doi:10.1016/bs.pbr.2016.05.007. ISBN   978-0-444-63701-7. PMID   27926449.
  11. 1 2 3 4 5 6 7 8 9 10 11 12 13 Salamone JD, Correa M, Ferrigno S, Yang JH, Rotolo RA, Presby RE (October 2018). "The Psychopharmacology of Effort-Related Decision Making: Dopamine, Adenosine, and Insights into the Neurochemistry of Motivation". Pharmacol Rev. 70 (4): 747–762. doi:10.1124/pr.117.015107. PMC   6169368 . PMID   30209181.
  12. 1 2 3 Treadway MT, Salamone JD (2022). "Vigor, Effort-Related Aspects of Motivation and Anhedonia". Curr Top Behav Neurosci. Current Topics in Behavioral Neurosciences. 58: 325–353. doi:10.1007/7854_2022_355. ISBN   978-3-031-09682-2. PMID   35505057. Adenosine A2A receptor antagonists have been studied for their potential antiparkinsonian effects (Ferré 1997; Morelli and Pinna 2002; Correa et al. 2004), and istradefylline (Nourianz) has been approved for use in several countries. Particularly relevant for the present review, drugs that act on adenosine A2A receptors induce substantial effects on instrumental behavior and effort-related choice. [...] Caffeine, theophylline, and several adenosine A2A receptor antagonists (MSX-3, MSX-4, Lu AA47070, istradefylline) can reverse the low-effort bias induced by systemically administered DA D2 antagonists (Farrar et al. 2007; Worden et al. 2009; Mott et al. 2009; Collins et al. 2012; Nunes et al. 2010; Santerre et al. 2012; Randall et al. 2012; Pardo et al. 2020), and MSX-3 and preladenant reverse the effects of TBZ (Nunes et al. 2013; Randall et al. 2014; Yohn et al. 2015a; Salamone et al. 2018). [...] Furthermore, A2A receptor knockout mice are resistant to the effort-related effects of haloperidol (Pardo et al. 2012). [...] Along with adenosine A2A antagonists such as istradefylline and preladenant (Nunes et al. 2013; Randall et al. 2014; Yohn et al. 2015a; Salamone et al. 2018), and D1 agonists (Yohn et al. 2015b), atypical DAT inhibitors offer promise as potential treatments for effort-related motivational symptoms.
  13. 1 2 3 Ferré S, Díaz-Ríos M, Salamone JD, Prediger RD (December 2018). "New Developments on the Adenosine Mechanisms of the Central Effects of Caffeine and Their Implications for Neuropsychiatric Disorders". J Caffeine Adenosine Res. 8 (4): 121–131. doi:10.1089/caff.2018.0017. PMC   6306650 . PMID   30596206.
  14. 1 2 3 López-Cruz L, Salamone JD, Correa M (2018). "Caffeine and Selective Adenosine Receptor Antagonists as New Therapeutic Tools for the Motivational Symptoms of Depression". Front Pharmacol. 9: 526. doi: 10.3389/fphar.2018.00526 . PMC   5992708 . PMID   29910727.
  15. 1 2 3 4 5 Krishnamoorthy A, Craufurd D (October 2011). "Treatment of Apathy in Huntington's Disease and Other Movement Disorders". Curr Treat Options Neurol. 13 (5): 508–519. doi:10.1007/s11940-011-0140-y. PMID   21800056.
  16. 1 2 3 4 Marin RS, Wilkosz PA (2005). "Disorders of diminished motivation". The Journal of Head Trauma Rehabilitation. 20 (4): 377–388. doi:10.1097/00001199-200507000-00009. PMID   16030444.
  17. 1 2 3 4 Salamone JD, Pardo M, Yohn SE, López-Cruz L, SanMiguel N, Correa M (2016). "Mesolimbic Dopamine and the Regulation of Motivated Behavior". Curr Top Behav Neurosci. Current Topics in Behavioral Neurosciences. 27: 231–257. doi:10.1007/7854_2015_383. ISBN   978-3-319-26933-7. PMID   26323245.
  18. 1 2 Jawad MY, Fatima M, Hassan U, Zaheer Z, Ayyan M, Ehsan M, Khan MH, Qadeer A, Gull AR, Asif MT, Shad MU (July 2023). "Can antidepressant use be associated with emotional blunting in a subset of patients with depression? A scoping review of available literature". Human Psychopharmacology. 38 (4): e2871. doi:10.1002/hup.2871. PMID   37184083.
  19. 1 2 Masdrakis VG, Markianos M, Baldwin DS (August 2023). "Apathy associated with antidepressant drugs: a systematic review". Acta Neuropsychiatrica. 35 (4): 189–204. doi:10.1017/neu.2023.6. PMID   36644883.
  20. 1 2 3 4 Thompson J, Stansfeld JL, Cooper RE, Morant N, Crellin NE, Moncrieff J (February 2020). "Experiences of taking neuroleptic medication and impacts on symptoms, sense of self and agency: a systematic review and thematic synthesis of qualitative data". Soc Psychiatry Psychiatr Epidemiol. 55 (2): 151–164. doi: 10.1007/s00127-019-01819-2 . PMID   31875238.
  21. 1 2 3 4 Belmaker, Robert Haim; Lichtenberg, Pesach (2023). "Antipsychotic Drugs: Do They Define Schizophrenia or Do They Blunt All Emotions?". Psychopharmacology Reconsidered: A Concise Guide Exploring the Limits of Diagnosis and Treatment. Cham: Springer International Publishing. pp. 63–84. doi:10.1007/978-3-031-40371-2_6. ISBN   978-3-031-40370-5.
  22. 1 2 Ecevitoglu A, Edelstein GA, Presby RE, Rotolo RA, Yang JH, Quiles T, Okifo K, Conrad RT, Kovach A, Correa M, Salamone JD (August 2023). "Effects of the atypical antipsychotic and D3/D2 dopamine partial agonist cariprazine on effort-based choice behavior: implications for modeling avolition". Psychopharmacology (Berl). 240 (8): 1747–1757. doi:10.1007/s00213-023-06405-8. PMID   37358806.
  23. Skumlien M, Langley C, Lawn W, Voon V, Curran HV, Roiser JP, Sahakian BJ (November 2021). "The acute and non-acute effects of cannabis on reward processing: A systematic review". Neuroscience and Biobehavioral Reviews. 130: 512–528. doi:10.1016/j.neubiorev.2021.09.008. PMID   34509513.
  24. Pacheco-Colón I, Limia JM, Gonzalez R (August 2018). "Nonacute effects of cannabis use on motivation and reward sensitivity in humans: A systematic review". Psychology of Addictive Behaviors. 32 (5): 497–507. doi:10.1037/adb0000380. PMC   6062456 . PMID   29963875.
  25. Skumlien M, Langley C, Sahakian BJ (19 December 2023). "Is Cannabis Use Associated with Motivation? A Review of Recent Acute and Non-Acute Studies". Current Behavioral Neuroscience Reports. 11: 33–43. doi: 10.1007/s40473-023-00268-1 . ISSN   2196-2979.
  26. Silveira MM, Adams WK, Morena M, Hill MN, Winstanley CA (March 2017). "Δ9-Tetrahydrocannabinol decreases willingness to exert cognitive effort in male rats". J Psychiatry Neurosci. 42 (2): 131–138. doi:10.1503/jpn.150363. PMC   5373702 . PMID   28245177.
  27. 1 2 Goldhamer A (2023). "The Role of Dopamine in Effort- Based Decisions: Insights from Bupropion, Nomifensine, and Atomoxetine". CT Digital Archive. Retrieved 16 September 2024.
  28. Yohn SE, Lopez-Cruz L, Hutson PH, Correa M, Salamone JD (March 2016). "Effects of lisdexamfetamine and s-citalopram, alone and in combination, on effort-related choice behavior in the rat". Psychopharmacology (Berl). 233 (6): 949–960. doi:10.1007/s00213-015-4176-7. PMID   26694811.
  29. 1 2 Webber HE, Lopez-Gamundi P, Stamatovich SN, de Wit H, Wardle MC (January 2021). "Using pharmacological manipulations to study the role of dopamine in human reward functioning: A review of studies in healthy adults". Neurosci Biobehav Rev. 120: 123–158. doi:10.1016/j.neubiorev.2020.11.004. PMC   7855845 . PMID   33202256. Similarly, augmenting DA using a D1 agonist (PF-06412562; 6mg, 15mg, 30mg) increased willingness to exert physical effort for reward (Soutschek et al., 2020).
  30. Soutschek A, Gvozdanovic G, Kozak R, Duvvuri S, de Martinis N, Harel B, Gray DL, Fehr E, Jetter A, Tobler PN (April 2020). "Dopaminergic D1 Receptor Stimulation Affects Effort and Risk Preferences". Biol Psychiatry. 87 (7): 678–685. doi:10.1016/j.biopsych.2019.09.002. PMID   31668477.
  31. Yohn SE, Santerre JL, Nunes EJ, Kozak R, Podurgiel SJ, Correa M, Salamone JD (August 2015). "The role of dopamine D1 receptor transmission in effort-related choice behavior: Effects of D1 agonists". Pharmacol Biochem Behav. 135: 217–226. doi:10.1016/j.pbb.2015.05.003. PMID   26022661.
  32. Zénon A, Devesse S, Olivier E (September 2016). "Dopamine Manipulation Affects Response Vigor Independently of Opportunity Cost". J Neurosci. 36 (37): 9516–9525. doi:10.1523/JNEUROSCI.4467-15.2016. PMC   6601940 . PMID   27629704.
  33. Knoll J (2001). "Antiaging compounds: (-)deprenyl (selegeline) and (-)1-(benzofuran-2-yl)-2-propylaminopentane, [(-)BPAP], a selective highly potent enhancer of the impulse propagation mediated release of catecholamine and serotonin in the brain". CNS Drug Reviews. 7 (3): 317–345. doi:10.1111/j.1527-3458.2001.tb00202.x. PMC   6494119 . PMID   11607046.
  34. Knoll J (August 2003). "Enhancer regulation/endogenous and synthetic enhancer compounds: a neurochemical concept of the innate and acquired drives". Neurochemical Research. 28 (8): 1275–1297. doi:10.1023/a:1024224311289. PMID   12834268.
  35. Randall PA, Lee CA, Nunes EJ, Yohn SE, Nowak V, Khan B, Shah P, Pandit S, Vemuri VK, Makriyannis A, Baqi Y, Müller CE, Correa M, Salamone JD (2014). "The VMAT-2 inhibitor tetrabenazine affects effort-related decision making in a progressive ratio/chow feeding choice task: reversal with antidepressant drugs". PLOS ONE. 9 (6): e99320. Bibcode:2014PLoSO...999320R. doi: 10.1371/journal.pone.0099320 . PMC   4061002 . PMID   24937131.
  36. 1 2 3 Contreras-Mora H, Rowland MA, Yohn SE, Correa M, Salamone JD (March 2018). "Partial reversal of the effort-related motivational effects of tetrabenazine with the MAO-B inhibitor deprenyl (selegiline): Implications for treating motivational dysfunctions". Pharmacol Biochem Behav. 166: 13–20. doi:10.1016/j.pbb.2018.01.001. PMID   29309800.
  37. Hart XM, Spangemacher M, Defert J, Uchida H, Gründer G (April 2024). "Update Lessons from PET Imaging Part II: A Systematic Critical Review on Therapeutic Plasma Concentrations of Antidepressants". Ther Drug Monit. 46 (2): 155–169. doi:10.1097/FTD.0000000000001142. PMID   38287888.
  38. Eap CB, Gründer G, Baumann P, Ansermot N, Conca A, Corruble E, Crettol S, Dahl ML, de Leon J, Greiner C, Howes O, Kim E, Lanzenberger R, Meyer JH, Moessner R, Mulder H, Müller DJ, Reis M, Riederer P, Ruhe HG, Spigset O, Spina E, Stegman B, Steimer W, Stingl J, Suzen S, Uchida H, Unterecker S, Vandenberghe F, Hiemke C (October 2021). "Tools for optimising pharmacotherapy in psychiatry (therapeutic drug monitoring, molecular brain imaging and pharmacogenetic tests): focus on antidepressants" (PDF). The World Journal of Biological Psychiatry. 22 (8): 561–628. doi:10.1080/15622975.2021.1878427. PMID   33977870. S2CID   234472488. Archived (PDF) from the original on 5 May 2022. Retrieved 10 April 2022.
  39. Carroll FI, Blough BE, Mascarella SW, Navarro HA, Lukas RJ, Damaj MI (2014). "Bupropion and bupropion analogs as treatments for CNS disorders". Emerging Targets & Therapeutics in the Treatment of Psychostimulant Abuse. Advances in Pharmacology. Vol. 69. Academic Press. pp. 177–216. doi:10.1016/B978-0-12-420118-7.00005-6. ISBN   978-0-12-420118-7. PMID   24484978.
  40. Verbeeck W, Bekkering GE, Van den Noortgate W, Kramers C (October 2017). "Bupropion for attention deficit hyperactivity disorder (ADHD) in adults". The Cochrane Database of Systematic Reviews. 2017 (10): CD009504. doi:10.1002/14651858.CD009504.pub2. PMC   6485546 . PMID   28965364.
  41. Salamone JD, Koychev I, Correa M, McGuire P (August 2015). "Neurobiological basis of motivational deficits in psychopathology". Eur Neuropsychopharmacol. 25 (8): 1225–1238. doi:10.1016/j.euroneuro.2014.08.014. PMID   25435083.
  42. Rothman RB (1994). "A Review of the Effects of Dopaminergic Agents in Humans: Implications for Medication Development". In Erinoff L, Brown RM (eds.). Neurobiological Models for Evaluating Mechanisms Underlying Cocaine Addiction (NIDA Research Monograph 145) (PDF). U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health, National Institute on Drug Abuse. pp. 67–87. Retrieved 4 August 2024.
  43. Rothman RB, Glowa JR (1995). "A review of the effects of dopaminergic agents on humans, animals, and drug-seeking behavior, and its implications for medication development. Focus on GBR 12909". Mol Neurobiol. 11 (1–3): 1–19. doi:10.1007/BF02740680. PMID   8561954.
  44. Singer C (January 2002). "Adverse effects in the treatment of Parkinson's disease". Expert Rev Neurother. 2 (1): 105–118. doi:10.1586/14737175.2.1.105. PMID   19811020.
  45. 1 2 3 Moncrieff, Joanna (2007). "What Do Neuroleptics Really Do? A Drug-Centred Account". The Myth of the Chemical Cure: A Critique of Psychiatric Drug Treatment. Palgrave Macmillan London. pp. 100–117. doi:10.1007/978-0-230-58944-5_7 (inactive 2024-09-17). ISBN   978-0-230-57431-1.{{cite book}}: CS1 maint: DOI inactive as of September 2024 (link)
  46. 1 2 3 Moncrieff, Joanna (2013). "The Patient's Dilemma: Other Evidence on the Effects of Antipsychotics". The Bitterest Pills. London: Palgrave Macmillan UK. pp. 113–131. doi:10.1057/9781137277442_7. ISBN   978-1-137-27743-5.
  47. Moncrieff J, Cohen D, Mason JP (August 2009). "The subjective experience of taking antipsychotic medication: a content analysis of Internet data". Acta Psychiatr Scand. 120 (2): 102–111. doi:10.1111/j.1600-0447.2009.01356.x. PMID   19222405.
  48. 1 2 3 Healy D (October 1989). "Neuroleptics and psychic indifference: a review". J R Soc Med. 82 (10): 615–619. doi:10.1177/014107688908201018. PMC   1292340 . PMID   2572700.
  49. 1 2 Costello H, Husain M, Roiser JP (January 2024). "Apathy and Motivation: Biological Basis and Drug Treatment". Annu Rev Pharmacol Toxicol. 64: 313–338. doi:10.1146/annurev-pharmtox-022423-014645. PMID   37585659.
  50. 1 2 Danysz W, Dekundy A, Scheschonka A, Riederer P (February 2021). "Amantadine: reappraisal of the timeless diamond-target updates and novel therapeutic potentials". J Neural Transm (Vienna). 128 (2): 127–169. doi:10.1007/s00702-021-02306-2. PMC   7901515 . PMID   33624170.
  51. "Recommendations | Multiple sclerosis in adults: management | Guidance | NICE". www.nice.org.uk. June 22, 2022. Archived from the original on January 7, 2023. Retrieved January 7, 2023.
  52. Zimek D, Miklusova M, Mares J (2023). "Overview of the Current Pathophysiology of Fatigue in Multiple Sclerosis, Its Diagnosis and Treatment Options - Review Article". Neuropsychiatr Dis Treat. 19: 2485–2497. doi: 10.2147/NDT.S429862 . PMC   10674653 . PMID   38029042. Currently, different pharmacological agents are used for the treatment for fatigue in patients with MS, including amantadine, modafinil and pemoline.99,100 Of these, the most commonly used is amantadine. Its main mechanism of action is not yet fully understood, although its effects on fatigue seem to be related to its dopaminergic effects, supporting the dopamine imbalance theory for MS-related fatigue.101 In general, all trials that compared amantadine with placebo showed a significant effect of amantadine on fatigue. However, the results of these trials need to be interpreted with caution because of the low number of participants included in the trials and the short duration of the interventions.8 The daily dose of amantadine used in all published studies was 200 mg, which is the standard amount administered today. Amantadine is the only oral treatment that is currently recommended by the National Institute for Health and Care Excellence (NICE) for the treatment of MS-related fatigue.102
  53. Yang TT, Wang L, Deng XY, Yu G (September 2017). "Pharmacological treatments for fatigue in patients with multiple sclerosis: A systematic review and meta-analysis". J Neurol Sci. 380: 256–261. doi:10.1016/j.jns.2017.07.042. PMID   28870581.
  54. Dobryakova E, Genova HM, DeLuca J, Wylie GR (2015). "The dopamine imbalance hypothesis of fatigue in multiple sclerosis and other neurological disorders". Front Neurol. 6: 52. doi: 10.3389/fneur.2015.00052 . PMC   4357260 . PMID   25814977.
  55. Jenner P, Mori A, Kanda T (November 2020). "Can adenosine A2A receptor antagonists be used to treat cognitive impairment, depression or excessive sleepiness in Parkinson's disease?". Parkinsonism Relat Disord. 80 Suppl 1: S28–S36. doi: 10.1016/j.parkreldis.2020.09.022 . PMID   33349577.
  56. 1 2 Turner V, Husain M (2022). "Anhedonia in Neurodegenerative Diseases". Curr Top Behav Neurosci. Current Topics in Behavioral Neurosciences. 58: 255–277. doi:10.1007/7854_2022_352. ISBN   978-3-031-09682-2. PMID   35435648. Recently, PD patients have been treated with istradefylline, an adenosine A2A receptor antagonist used for treatment of motor symptoms. The drug was given to 14 PD patients for 12 weeks, measuring anhedonia, apathy and depression using the SHAPS, Apathy Scale and BDI. On istradefylline, SHAPS, Apathy Scale and BDI scores significantly reduced from baseline scores at 4-, 8- and 12-weeks, with mean SHAPS scores at week 12 about 50% reduced from baseline scores, indicating that istradefylline reduces anhedonia (Nagayama et al. 2019). As apathy and depression rates dropped as well as anhedonia, this trial also provided evidence for the overlapping relationship between the three symptoms. [...] Taken together, there is some evidence that dopamine agonists such as pramipexole and piribedil, or the adenosine A2A receptor antagonist istradefylline can improve anhedonia and apathy in PD.
  57. Ribeiro JA, Sebastião AM (2010). "Caffeine and adenosine". J Alzheimers Dis. 20 Suppl 1: S3–15. doi:10.3233/JAD-2010-1379. hdl: 10451/6361 . PMID   20164566.
  58. Jamwal S, Mittal A, Kumar P, Alhayani DM, Al-Aboudi A (2019). "Therapeutic Potential of Agonists and Antagonists of A1, A2a, A2b and A3 Adenosine Receptors". Curr Pharm Des. 25 (26): 2892–2905. doi:10.2174/1381612825666190716112319. PMID   31333104.
  59. Froestl W, Muhs A, Pfeifer A (2012). "Cognitive enhancers (nootropics). Part 1: drugs interacting with receptors" (PDF). Journal of Alzheimer's Disease. 32 (4): 793–887. doi:10.3233/JAD-2012-121186. PMID   22886028. S2CID   10511507. Archived from the original (PDF) on 15 November 2020.
  60. Nunes EJ, Randall PA, Santerre JL, Given AB, Sager TN, Correa M, Salamone JD (September 2010). "Differential effects of selective adenosine antagonists on the effort-related impairments induced by dopamine D1 and D2 antagonism". Neuroscience. 170 (1): 268–280. doi:10.1016/j.neuroscience.2010.05.068. PMC   3268040 . PMID   20600675.
  61. 1 2 3 Nunes EJ, Randall PA, Podurgiel S, Correa M, Salamone JD (November 2013). "Nucleus accumbens neurotransmission and effort-related choice behavior in food motivation: effects of drugs acting on dopamine, adenosine, and muscarinic acetylcholine receptors". Neurosci Biobehav Rev. 37 (9 Pt A): 2015–2025. doi:10.1016/j.neubiorev.2013.04.002. PMID   23583616.
  62. Pardo M, Lopez-Cruz L, Valverde O, Ledent C, Baqi Y, Müller CE, Salamone JD, Correa M (April 2012). "Adenosine A2A receptor antagonism and genetic deletion attenuate the effects of dopamine D2 antagonism on effort-based decision making in mice". Neuropharmacology. 62 (5–6): 2068–2077. doi:10.1016/j.neuropharm.2011.12.033. PMID   22261384.
  63. 1 2 Vecchio I, Sorrentino L, Paoletti A, Marra R, Arbitrio M (2021). "The State of The Art on Acetylcholinesterase Inhibitors in the Treatment of Alzheimer's Disease". J Cent Nerv Syst Dis. 13: 11795735211029113. doi:10.1177/11795735211029113. PMC   8267037 . PMID   34285627.
  64. Krall WJ, Sramek JJ, Cutler NR (April 1999). "Cholinesterase inhibitors: a therapeutic strategy for Alzheimer disease". Ann Pharmacother. 33 (4): 441–450. doi:10.1345/aph.18211. PMID   10332536.
  65. Birks J (January 2006). "Cholinesterase inhibitors for Alzheimer's disease". Cochrane Database Syst Rev. 2006 (1): CD005593. doi:10.1002/14651858.CD005593. PMC   9006343 . PMID   16437532.
  66. Azhar L, Kusumo RW, Marotta G, Lanctôt KL, Herrmann N (February 2022). "Pharmacological Management of Apathy in Dementia". CNS Drugs. 36 (2): 143–165. doi:10.1007/s40263-021-00883-0. PMID   35006557.
  67. Rodda J, Morgan S, Walker Z (October 2009). "Are cholinesterase inhibitors effective in the management of the behavioral and psychological symptoms of dementia in Alzheimer's disease? A systematic review of randomized, placebo-controlled trials of donepezil, rivastigmine and galantamine". Int Psychogeriatr. 21 (5): 813–824. doi:10.1017/S1041610209990354 (inactive 2024-09-22). PMID   19538824.{{cite journal}}: CS1 maint: DOI inactive as of September 2024 (link)
  68. Reilly S, Dhaliwal S, Arshad U, Macerollo A, Husain N, Costa AD (February 2024). "The effects of rivastigmine on neuropsychiatric symptoms in the early stages of Parkinson's disease: A systematic review". Eur J Neurol. 31 (2): e16142. doi:10.1111/ene.16142. PMC   11236000 . PMID   37975761.
  69. Tay J, Morris RG, Markus HS (July 2021). "Apathy after stroke: Diagnosis, mechanisms, consequences, and treatment". Int J Stroke. 16 (5): 510–518. doi:10.1177/1747493021990906. PMC   8267086 . PMID   33527880.
  70. 1 2 Yohn SE, Collins SL, Contreras-Mora HM, Errante EL, Rowland MA, Correa M, Salamone JD (February 2016). "Not All Antidepressants Are Created Equal: Differential Effects of Monoamine Uptake Inhibitors on Effort-Related Choice Behavior". Neuropsychopharmacology. 41 (3): 686–694. doi:10.1038/npp.2015.188. PMC   4707815 . PMID   26105139.
  71. Yohn SE, Errante EE, Rosenbloom-Snow A, Somerville M, Rowland M, Tokarski K, Zafar N, Correa M, Salamone JD (October 2016). "Blockade of uptake for dopamine, but not norepinephrine or 5-HT, increases selection of high effort instrumental activity: Implications for treatment of effort-related motivational symptoms in psychopathology". Neuropharmacology. 109: 270–280. doi:10.1016/j.neuropharm.2016.06.018. PMID   27329556.
  72. Camino S, Strejilevich SA, Godoy A, Smith J, Szmulewicz A (July 2023). "Are all antidepressants the same? The consumer has a point". Psychological Medicine. 53 (9): 4004–4011. doi:10.1017/S0033291722000678. PMID   35346413.
  73. Harsing LG, Timar J, Miklya I (August 2023). "Striking Neurochemical and Behavioral Differences in the Mode of Action of Selegiline and Rasagiline". Int J Mol Sci. 24 (17): 13334. doi: 10.3390/ijms241713334 . PMC   10487936 . PMID   37686140.
  74. Miklya I (June 2014). "Essential difference between the pharmacological spectrum of (-)-deprenyl and rasagiline". Pharmacol Rep. 66 (3): 453–458. doi:10.1016/j.pharep.2013.11.003. PMID   24905523.
  75. Lieberman JA (2004). "Dopamine partial agonists: a new class of antipsychotic". CNS Drugs. 18 (4): 251–267. doi:10.2165/00023210-200418040-00005. PMID   15015905.
  76. 1 2 Taylor D, Chithiramohan R, Grewal J, Gupta A, Hansen L, Reynolds GP, Pappa S (September 2023). "Dopamine partial agonists: a discrete class of antipsychotics". Int J Psychiatry Clin Pract. 27 (3): 272–284. doi:10.1080/13651501.2022.2151473. PMID   36495086.
  77. Keks N, Hope J, Schwartz D, McLennan H, Copolov D, Meadows G (May 2020). "Comparative Tolerability of Dopamine D2/3 Receptor Partial Agonists for Schizophrenia". CNS Drugs. 34 (5): 473–507. doi:10.1007/s40263-020-00718-4. PMID   32246399.
  78. Ecevitoglu A, Meka N, Rotolo RA, Edelstein GA, Srinath S, Beard KR, Carratala-Ros C, Presby RE, Cao J, Okorom A, Newman AH, Correa M, Salamone JD (July 2024). "Potential therapeutics for effort-related motivational dysfunction: assessing novel atypical dopamine transport inhibitors". Neuropsychopharmacology. 49 (8): 1309–1317. doi:10.1038/s41386-024-01826-1. PMC  11224370. PMID   38429498.