Pseudoholomorphic curve

Last updated

In mathematics, specifically in topology and geometry, a pseudoholomorphic curve (or J-holomorphic curve) is a smooth map from a Riemann surface into an almost complex manifold that satisfies the Cauchy–Riemann equation. Introduced in 1985 by Mikhail Gromov, pseudoholomorphic curves have since revolutionized the study of symplectic manifolds. In particular, they lead to the Gromov–Witten invariants and Floer homology, and play a prominent role in string theory.



Let be an almost complex manifold with almost complex structure . Let be a smooth Riemann surface (also called a complex curve) with complex structure . A pseudoholomorphic curve in is a map that satisfies the Cauchy–Riemann equation

Since , this condition is equivalent to

which simply means that the differential is complex-linear, that is, maps each tangent space

to itself. For technical reasons, it is often preferable to introduce some sort of inhomogeneous term and to study maps satisfying the perturbed Cauchy–Riemann equation

A pseudoholomorphic curve satisfying this equation can be called, more specifically, a -holomorphic curve. The perturbation is sometimes assumed to be generated by a Hamiltonian (particularly in Floer theory), but in general it need not be.

A pseudoholomorphic curve is, by its definition, always parametrized. In applications one is often truly interested in unparametrized curves, meaning embedded (or immersed) two-submanifolds of , so one mods out by reparametrizations of the domain that preserve the relevant structure. In the case of Gromov–Witten invariants, for example, we consider only closed domains of fixed genus and we introduce marked points (or punctures) on . As soon as the punctured Euler characteristic is negative, there are only finitely many holomorphic reparametrizations of that preserve the marked points. The domain curve is an element of the Deligne–Mumford moduli space of curves.

Analogy with the classical Cauchy–Riemann equations

The classical case occurs when and are both simply the complex number plane. In real coordinates


where . After multiplying these matrices in two different orders, one sees immediately that the equation

written above is equivalent to the classical Cauchy–Riemann equations

Applications in symplectic topology

Although they can be defined for any almost complex manifold, pseudoholomorphic curves are especially interesting when interacts with a symplectic form . An almost complex structure is said to be -tame if and only if

for all nonzero tangent vectors . Tameness implies that the formula

defines a Riemannian metric on . Gromov showed that, for a given , the space of -tame is nonempty and contractible. He used this theory to prove a non-squeezing theorem concerning symplectic embeddings of spheres into cylinders.

Gromov showed that certain moduli spaces of pseudoholomorphic curves (satisfying additional specified conditions) are compact, and described the way in which pseudoholomorphic curves can degenerate when only finite energy is assumed. (The finite energy condition holds most notably for curves with a fixed homology class in a symplectic manifold where J is -tame or -compatible). This Gromov compactness theorem, now greatly generalized using stable maps, makes possible the definition of Gromov–Witten invariants, which count pseudoholomorphic curves in symplectic manifolds.

Compact moduli spaces of pseudoholomorphic curves are also used to construct Floer homology, which Andreas Floer (and later authors, in greater generality) used to prove the famous conjecture of Vladimir Arnol'd concerning the number of fixed points of Hamiltonian flows.

Applications in physics

In type II string theory, one considers surfaces traced out by strings as they travel along paths in a Calabi–Yau 3-fold. Following the path integral formulation of quantum mechanics, one wishes to compute certain integrals over the space of all such surfaces. Because such a space is infinite-dimensional, these path integrals are not mathematically well-defined in general. However, under the A-twist one can deduce that the surfaces are parametrized by pseudoholomorphic curves, and so the path integrals reduce to integrals over moduli spaces of pseudoholomorphic curves (or rather stable maps), which are finite-dimensional. In closed type IIA string theory, for example, these integrals are precisely the Gromov–Witten invariants.

See also

Related Research Articles

Cauchy–Riemann equations Conditions required of holomorphic (complex differentiable) functions

In the field of complex analysis in mathematics, the Cauchy–Riemann equations, named after Augustin Cauchy and Bernhard Riemann, consist of a system of two partial differential equations which, together with certain continuity and differentiability criteria, form a necessary and sufficient condition for a complex function to be holomorphic. This system of equations first appeared in the work of Jean le Rond d'Alembert. Later, Leonhard Euler connected this system to the analytic functions. Cauchy then used these equations to construct his theory of functions. Riemann's dissertation on the theory of functions appeared in 1851.

In differential geometry, a subject of mathematics, a symplectic manifold is a smooth manifold, , equipped with a closed nondegenerate differential 2-form , called the symplectic form. The study of symplectic manifolds is called symplectic geometry or symplectic topology. Symplectic manifolds arise naturally in abstract formulations of classical mechanics and analytical mechanics as the cotangent bundles of manifolds. For example, in the Hamiltonian formulation of classical mechanics, which provides one of the major motivations for the field, the set of all possible configurations of a system is modeled as a manifold, and this manifold's cotangent bundle describes the phase space of the system.

Symplectic geometry Branch of differential geometry and differential topology

Symplectic geometry is a branch of differential geometry and differential topology that studies symplectic manifolds; that is, differentiable manifolds equipped with a closed, nondegenerate 2-form. Symplectic geometry has its origins in the Hamiltonian formulation of classical mechanics where the phase space of certain classical systems takes on the structure of a symplectic manifold.

In mathematics, a symplectomorphism or symplectic map is an isomorphism in the category of symplectic manifolds. In classical mechanics, a symplectomorphism represents a transformation of phase space that is volume-preserving and preserves the symplectic structure of phase space, and is called a canonical transformation.

In mathematics, deformation theory is the study of infinitesimal conditions associated with varying a solution P of a problem to slightly different solutions Pε, where ε is a small number, or a vector of small quantities. The infinitesimal conditions are the result of applying the approach of differential calculus to solving a problem with constraints. The name is an analogy to non-rigid structures that deform slightly to accommodate external forces.

In mathematics and physics, a Hamiltonian vector field on a symplectic manifold is a vector field defined for any energy function or Hamiltonian. Named after the physicist and mathematician Sir William Rowan Hamilton, a Hamiltonian vector field is a geometric manifestation of Hamilton's equations in classical mechanics. The integral curves of a Hamiltonian vector field represent solutions to the equations of motion in the Hamiltonian form. The diffeomorphisms of a symplectic manifold arising from the flow of a Hamiltonian vector field are known as canonical transformations in physics and (Hamiltonian) symplectomorphisms in mathematics.

In mathematics, specifically in symplectic topology and algebraic geometry, one can construct the moduli space of stable maps, satisfying specified conditions, from Riemann surfaces into a given symplectic manifold. This moduli space is the essence of the Gromov–Witten invariants, which find application in enumerative geometry and type IIA string theory. The idea of stable map was proposed by Maxim Kontsevich around 1992 and published in Kontsevich (1995).

In mathematics, specifically in symplectic topology and algebraic geometry, Gromov–Witten (GW) invariants are rational numbers that, in certain situations, count pseudoholomorphic curves meeting prescribed conditions in a given symplectic manifold. The GW invariants may be packaged as a homology or cohomology class in an appropriate space, or as the deformed cup product of quantum cohomology. These invariants have been used to distinguish symplectic manifolds that were previously indistinguishable. They also play a crucial role in closed type IIA string theory. They are named after Mikhail Gromov and Edward Witten.

In mathematics, Floer homology is a tool for studying symplectic geometry and low-dimensional topology. Floer homology is a novel invariant that arises as an infinite-dimensional analogue of finite-dimensional Morse homology. Andreas Floer introduced the first version of Floer homology, now called Lagrangian Floer homology, in his proof of the Arnold conjecture in symplectic geometry. Floer also developed a closely related theory for Lagrangian submanifolds of a symplectic manifold. A third construction, also due to Floer, associates homology groups to closed three-dimensional manifolds using the Yang–Mills functional. These constructions and their descendants play a fundamental role in current investigations into the topology of symplectic and contact manifolds as well as (smooth) three- and four-dimensional manifolds.

In mathematics, the Gromov invariant of Clifford Taubes counts embedded pseudoholomorphic curves in a symplectic 4-manifold, where the curves are holomorphic with respect to an auxiliary compatible almost complex structure.

In mathematics, specifically in symplectic geometry, the symplectic sum is a geometric modification on symplectic manifolds, which glues two given manifolds into a single new one. It is a symplectic version of connected summation along a submanifold, often called a fiber sum.

In the mathematical field of symplectic topology, Gromov's compactness theorem states that a sequence of pseudoholomorphic curves in an almost complex manifold with a uniform energy bound must have a subsequence which limits to a pseudoholomorphic curve which may have nodes or "bubbles". A bubble is a holomorphic sphere which has a transverse intersection with the rest of the curve. This theorem, and its generalizations to punctured pseudoholomorphic curves, underlies the compactness results for flow lines in Floer homology and symplectic field theory.

In mathematics, specifically in symplectic topology and algebraic geometry, a quantum cohomology ring is an extension of the ordinary cohomology ring of a closed symplectic manifold. It comes in two versions, called small and big; in general, the latter is more complicated and contains more information than the former. In each, the choice of coefficient ring significantly affects its structure, as well.

In mathematics, and especially gauge theory, Seiberg–Witten invariants are invariants of compact smooth oriented 4-manifolds introduced by Edward Witten (1994), using the Seiberg–Witten theory studied by Nathan Seiberg and Witten during their investigations of Seiberg–Witten gauge theory.

In symplectic topology, a Fukaya category of a symplectic manifold is a category whose objects are Lagrangian submanifolds of , and morphisms are Floer chain groups: . Its finer structure can be described in the language of quasi categories as an A-category.

In differential geometry, algebraic geometry, and gauge theory, the Kobayashi–Hitchin correspondence relates stable vector bundles over a complex manifold to Einstein–Hermitian vector bundles. The correspondence is named after Shoshichi Kobayashi and Nigel Hitchin, who independently conjectured in the 1980s that the moduli spaces of stable vector bundles and Einstein–Hermitian vector bundles over a complex manifold were essentially the same.

In mathematics, especially in topology, a Kuranishi structure is a smooth analogue of scheme structure. If a topological space is endowed with a Kuranishi structure, then locally it can be identified with the zero set of a smooth map , or the quotient of such a zero set by a finite group. Kuranishi structures were introduced by Japanese mathematicians Kenji Fukaya and Kaoru Ono in the study of Gromov–Witten invariants and Floer homology in symplectic geometry, and were named after Masatake Kuranishi.

In mathematics, differential forms on a Riemann surface are an important special case of the general theory of differential forms on smooth manifolds, distinguished by the fact that the conformal structure on the Riemann surface intrinsically defines a Hodge star operator on 1-forms without specifying a Riemannian metric. This allows the use of Hilbert space techniques for studying function theory on the Riemann surface and in particular for the construction of harmonic and holomorphic differentials with prescribed singularities. These methods were first used by Hilbert (1909) in his variational approach to the Dirichlet principle, making rigorous the arguments proposed by Riemann. Later Weyl (1940) found a direct approach using his method of orthogonal projection, a precursor of the modern theory of elliptic differential operators and Sobolev spaces. These techniques were originally applied to prove the uniformization theorem and its generalization to planar Riemann surfaces. Later they supplied the analytic foundations for the harmonic integrals of Hodge (1940). This article covers general results on differential forms on a Riemann surface that do not rely on any choice of Riemannian structure.

In mathematics, and especially differential geometry and mathematical physics, gauge theory is the general study of connections on vector bundles, principal bundles, and fibre bundles. Gauge theory in mathematics should not be confused with the closely related concept of a gauge theory in physics, which is a field theory which admits gauge symmetry. In mathematics theory means a mathematical theory, encapsulating the general study of a collection of concepts or phenomena, whereas in the physical sense a gauge theory is a mathematical model of some natural phenomenon.

In mathematics, mirror symmetry is a conjectural relationship between certain Calabi–Yau manifolds and a constructed "mirror manifold". The conjecture allows one to relate the number of rational curves on a Calabi-Yau manifold to integrals from a family of varieties. In short, this means there is a relation between the number of genus algebraic curves of degree on a Calabi-Yau variety and integrals on a dual variety . These relations were original discovered by Candelas, De la Ossa, Green, and Parkes in a paper studying a generic quintic threefold in as the variety and a construction from the quintic Dwork family giving . Shortly after, Sheldon Katz wrote a summary paper outlining part of their construction and conjectures what the rigorous mathematical interpretation could be.