In the theory of partially ordered sets, a pseudoideal is a subset characterized by a bounding operator LU.
In mathematics, especially order theory, a partially ordered set formalizes and generalizes the intuitive concept of an ordering, sequencing, or arrangement of the elements of a set. A poset consists of a set together with a binary relation indicating that, for certain pairs of elements in the set, one of the elements precedes the other in the ordering. The word "partial" in the names "partial order" or "partially ordered set" is used as an indication that not every pair of elements needs to be comparable. That is, there may be pairs of elements for which neither element precedes the other in the poset. Partial orders thus generalize total orders, in which every pair is comparable.
LU(A) is the set of all lower bounds of the set of all upper bounds of the subset A of a partially ordered set.
A subset I of a partially ordered set (P,≤) is a Doyle pseudoideal, if the following condition holds:
For every finite subset S of P that has a supremum in P, SI implies that LU(S) I.
A subset I of a partially ordered set (P,≤) is a pseudoideal, if the following condition holds:
For every subset S of P having at most two elements that has a supremum in P, SI implies that LU(S) I.
In mathematics, and more specifically set theory, the empty set is the unique set having no elements; its size or cardinality is zero. Some axiomatic set theories ensure that the empty set exists by including an axiom of empty set; in other theories, its existence can be deduced. Many possible properties of sets are vacuously true for the empty set.
In mathematics, a set A is a subset of a set B, or equivalently B is a superset of A, if A is "contained" inside B, that is, all elements of A are also elements of B. A and B may coincide. The relationship of one set being a subset of another is called inclusion or sometimes containment. A is a subset of B may also be expressed as B includes A; or A is included in B.
In mathematics, the infimum of a subset S of a partially ordered set T is the greatest element in T that is less than or equal to all elements of S, if such an element exists. Consequently, the term greatest lower bound is also commonly used.
In mathematics, especially in order theory, an upper bound of a subset S of some partially ordered set is an element of K which is greater than or equal to every element of S. The term lower bound is defined dually as an element of K which is less than or equal to every element of S. A set with an upper bound is said to be bounded from above by that bound, a set with a lower bound is said to be bounded from below by that bound. The terms bounded above are also used in the mathematical literature for sets that have upper bounds.
In mathematics, a complete lattice is a partially ordered set in which all subsets have both a supremum (join) and an infimum (meet). Complete lattices appear in many applications in mathematics and computer science. Being a special instance of lattices, they are studied both in order theory and universal algebra.
Zorn's lemma, also known as the Kuratowski–Zorn lemma, after mathematicians Max Zorn and Kazimierz Kuratowski, is a proposition of set theory that states that a partially ordered set containing upper bounds for every chain necessarily contains at least one maximal element.
In mathematics, more specifically in the area of abstract algebra known as ring theory, a Noetherian ring is a ring that satisfies the ascending chain condition on left and right ideals, which means there is no infinite ascending sequence of left ideals; that is, given any chain of left ideals,
This is a glossary of some terms used in various branches of mathematics that are related to the fields of order, lattice, and domain theory. Note that there is a structured list of order topics available as well. Other helpful resources might be the following overview articles:
A lattice is an abstract structure studied in the mathematical subdisciplines of order theory and abstract algebra. It consists of a partially ordered set in which every two elements have a unique supremum and a unique infimum. An example is given by the natural numbers, partially ordered by divisibility, for which the unique supremum is the least common multiple and the unique infimum is the greatest common divisor.
In mathematics, a closure operator on a set S is a function from the power set of S to itself which satisfies the following conditions for all sets
In the mathematical area of order theory, one often speaks about functions that preserve certain limits, i.e. certain suprema or infima. Roughly speaking, these functions map the supremum/infimum of a set to the supremum/infimum of the image of the set. Depending on the type of sets for which a function satisfies this property, it may preserve finite, directed, non-empty, or just arbitrary suprema or infima. Each of these requirements appears naturally and frequently in many areas of order theory and there are various important relationships among these concepts and other notions such as monotonicity. If the implication of limit preservation is inverted, such that the existence of limits in the range of a function implies the existence of limits in the domain, then one obtains functions that are limit-reflecting.
In mathematical order theory, an ideal is a special subset of a partially ordered set (poset). Although this term historically was derived from the notion of a ring ideal of abstract algebra, it has subsequently been generalized to a different notion. Ideals are of great importance for many constructions in order and lattice theory.
In the mathematical area of order theory, completeness properties assert the existence of certain infima or suprema of a given partially ordered set (poset). The most familiar example is the completeness of the real numbers. A special use of the term refers to complete partial orders or complete lattices. However, many other interesting notions of completeness exist.
In the mathematical area of order theory, the compact or finite elements of a partially ordered set are those elements that cannot be subsumed by a supremum of any non-empty directed set that does not already contain members above the compact element.
In the mathematical fields of order and domain theory, a Scott domain is an algebraic, bounded-complete cpo. It has been named in honour of Dana S. Scott, who was the first to study these structures at the advent of domain theory. Scott domains are very closely related to algebraic lattices, being different only in possibly lacking a greatest element. They are also closely related to Scott information systems, which constitute a "syntactic" representation of Scott domains.
In mathematics, a complete Boolean algebra is a Boolean algebra in which every subset has a supremum. Complete Boolean algebras are used to construct Boolean-valued models of set theory in the theory of forcing. Every Boolean algebra A has an essentially unique completion, which is a complete Boolean algebra containing A such that every element is the supremum of some subset of A. As a partially ordered set, this completion of A is the Dedekind–MacNeille completion.
In mathematics, an upper set of a partially ordered set is a subset U of X such that if x is in U and x ≤ y, then y is in U. That is, U satisfies the property
In a partially ordered set P, the join and meet of a subset S are respectively the supremum of S, denoted ⋁S, and infimum of S, denoted ⋀S. In general, the join and meet of a subset of a partially ordered set need not exist; when they do exist, they are elements of P.
In abstract algebra, an associated prime of a module M over a ring R is a type of prime ideal of R that arises as an annihilator of a (prime) submodule of M. The set of associated primes is usually denoted by .
In mathematics, a Frink ideal, introduced by Orrin Frink, is a certain kind of subset of a partially ordered set.
The Bulletin of the American Mathematical Society is a quarterly mathematical journal published by the American Mathematical Society.