Quartz

Last updated

Quartz
Quartz, Tibet.jpg
Quartz crystal cluster from Tibet
General
Category oxide mineral [1] [2]
Formula
(repeating unit)
SiO2
Strunz classification 4.DA.05 (Oxides)
Dana classification75.01.03.01 (tectosilicates)
Crystal system α-quartz: trigonal
β-quartz: hexagonal
Crystal class α-quartz: trapezohedral (class 3 2); β-quartz: trapezohedral (class 6 2 2) [3]
Unit cell a = 4.9133 Å, c = 5.4053 Å; Z=3
Identification
ColorColorless through various colors to black
Crystal habit 6-sided prism ending in 6-sided pyramid (typical), drusy, fine-grained to microcrystalline, massive
Twinning Common Dauphine law, Brazil law and Japan law
Cleavage {0110} Indistinct
Fracture Conchoidal
Tenacity Brittle
Mohs scale hardness7 – lower in impure varieties (defining mineral)
Luster Vitreous – waxy to dull when massive
Streak White
Diaphaneity Transparent to nearly opaque
Specific gravity 2.65; variable 2.59–2.63 in impure varieties
Optical properties Uniaxial (+)
Refractive index nω = 1.543–1.545
nε = 1.552–1.554
Birefringence +0.009 (B-G interval)
Pleochroism None
Melting point 1670 °C (β tridymite) 1713 °C (β cristobalite) [3]
Solubility Insoluble at STP; 1 ppmmass at 400 °C and 500 lb/in2 to 2600 ppmmass at 500 °C and 1500 lb/in2 [3]
Other characteristicslattice: hexagonal, Piezoelectric, may be triboluminescent, chiral (hence optically active if not racemic)
References [1] [4] [5] [6]

Quartz is a mineral composed of silicon and oxygen atoms in a continuous framework of SiO4 silicon–oxygen tetrahedra, with each oxygen being shared between two tetrahedra, giving an overall chemical formula of SiO2. Quartz is the second most abundant mineral in Earth's continental crust, behind feldspar. [7]

Mineral Element or chemical compound that is normally crystalline and that has been formed as a result of geological processes

A mineral is, broadly speaking, a solid chemical compound that occurs naturally in pure form. A rock may consist of a single mineral, or may be an aggregate of two or more different minerals, spacially segregated into distinct phases. Compounds that occur only in living beings are usually excluded, but some minerals are often biogenic and/or are organic compounds in the sense of chemistry. Moreover, living beings often synthesize inorganic minerals that also occur in rocks.

Silicon Chemical element with atomic number 14

Silicon is a chemical element with the symbol Si and atomic number 14. It is a hard and brittle crystalline solid with a blue-grey metallic lustre; and it is a tetravalent metalloid and semiconductor. It is a member of group 14 in the periodic table: carbon is above it; and germanium, tin, and lead are below it. It is relatively unreactive. Because of its high chemical affinity for oxygen, it was not until 1823 that Jöns Jakob Berzelius was first able to prepare it and characterize it in pure form. Its melting and boiling points of 1414 °C and 3265 °C respectively are the second-highest among all the metalloids and nonmetals, being only surpassed by boron. Silicon is the eighth most common element in the universe by mass, but very rarely occurs as the pure element in the Earth's crust. It is most widely distributed in dusts, sands, planetoids, and planets as various forms of silicon dioxide (silica) or silicates. More than 90% of the Earth's crust is composed of silicate minerals, making silicon the second most abundant element in the Earth's crust after oxygen.

Oxygen Chemical element with atomic number 8

Oxygen is the chemical element with the symbol O and atomic number 8, meaning its nucleus has 8 protons. The number of neutrons varies according to the isotope: the stable isotopes have 8, 9, or 10 neutrons. Oxygen is a member of the chalcogen group on the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as well as with other compounds. By mass, oxygen is the third-most abundant element in the universe, after hydrogen and helium. At standard temperature and pressure, two atoms of the element bind to form dioxygen, a colorless and odorless diatomic gas with the formula O
2
. Diatomic oxygen gas constitutes 20.8% of the Earth's atmosphere. As compounds including oxides, the element makes up almost half of the Earth's crust.

Contents

Quartz exists in two forms, the normal α-quartz and the high-temperature β-quartz, both of which are chiral. The transformation from α-quartz to β-quartz takes place abruptly at 573 °C (846 K). Since the transformation is accompanied by a significant change in volume, it can easily induce fracturing of ceramics or rocks passing through this temperature threshold.

There are many different varieties of quartz, several of which are semi-precious gemstones. Since antiquity, varieties of quartz have been the most commonly used minerals in the making of jewelry and hardstone carvings, especially in Eurasia.

Gemstone Piece of mineral crystal used to make jewelry

A gemstone is a piece of mineral crystal which, in cut and polished form, is used to make jewelry or other adornments. However, certain rocks and occasionally organic materials that are not minerals are also used for jewelry and are therefore often considered to be gemstones as well. Most gemstones are hard, but some soft minerals are used in jewelry because of their luster or other physical properties that have aesthetic value. Rarity is another characteristic that lends value to a gemstone.

Jewellery Form of personal adornment

Jewellery or jewelry consists of small decorative items worn for personal adornment, such as brooches, rings, necklaces, earrings, pendants, bracelets, and cufflinks. Jewellery may be attached to the body or the clothes. From a western perspective, the term is restricted to durable ornaments, excluding flowers for example. For many centuries metal, often combined with gemstones, has been the normal material for jewellery, but other materials such as shells and other plant materials may be used. It is one of the oldest type of archaeological artefact – with 100,000-year-old beads made from Nassarius shells thought to be the oldest known jewellery. The basic forms of jewellery vary between cultures but are often extremely long-lived; in European cultures the most common forms of jewellery listed above have persisted since ancient times, while other forms such as adornments for the nose or ankle, important in other cultures, are much less common.

Hardstone carving

Hardstone carving is a general term in art history and archaeology for the artistic carving of predominantly semi-precious stones, such as jade, rock crystal, agate, onyx, jasper, serpentine, or carnelian, and for an object made in this way. Normally the objects are small, and the category overlaps with both jewellery and sculpture. Hardstone carving is sometimes referred to by the Italian term pietre dure; however, pietra dura is the common term used for stone inlay work, which causes some confusion.

Etymology

The word "quartz" is derived from the German word "Quarz", which had the same form in the first half of the 14th century in Middle High German in East Central German [8] and which came from the Polish dialect term kwardy, which corresponds to the Czech term tvrdý ("hard"). [9]

German language West Germanic language

German is a West Germanic language that is mainly spoken in Central Europe. It is the most widely spoken and official or co-official language in Germany, Austria, Switzerland, South Tyrol in Italy, the German-speaking Community of Belgium, and Liechtenstein. It is also one of the three official languages of Luxembourg and a co-official language in the Opole Voivodeship in Poland. The languages which are most similar to German are the other members of the West Germanic language branch: Afrikaans, Dutch, English, the Frisian languages, Low German/Low Saxon, Luxembourgish, and Yiddish. There are also strong similarities in vocabulary with Danish, Norwegian and Swedish, although those belong to the North Germanic group. German is the second most widely spoken Germanic language, after English.

Middle High German is the term for the form of German spoken in the High Middle Ages. It is conventionally dated between 1050 and 1350, developing from Old High German and into Early New High German. High German is defined as those varieties of German which were affected by the Second Sound Shift; the Middle Low German and Middle Dutch languages spoken to the North and North West, which did not participate in this sound change, are not part of MHG.

East Central German dialect

East Central German is the eastern, non-Franconian sub-group of Central German dialects, themselves part of High German. Present-day Standard German as a High German variant has actually developed from a compromise of East Central and East Franconian German. East Central German dialects are mainly spoken in Central Germany and parts of Brandenburg, and were formerly also spoken in Silesia and Bohemia.

The Ancient Greeks referred to quartz as κρύσταλλος (krustallos) derived from the Ancient Greek κρύος (kruos) meaning "icy cold", because some philosophers (including Theophrastus) apparently believed the mineral to be a form of supercooled ice. [10] Today, the term rock crystal is sometimes used as an alternative name for the purest form of quartz.

Ancient Greece Civilization belonging to an early period of Greek history

Ancient Greece was a civilization belonging to a period of Greek history from the Greek Dark Ages of the 12th–9th centuries BC to the end of antiquity. Immediately following this period was the beginning of the Early Middle Ages and the Byzantine era. Roughly three centuries after the Late Bronze Age collapse of Mycenaean Greece, Greek urban poleis began to form in the 8th century BC, ushering in the Archaic period and colonization of the Mediterranean Basin. This was followed by the period of Classical Greece, an era that began with the Greco-Persian Wars, lasting from the 5th to 4th centuries BC. Due to the conquests by Alexander the Great of Macedon, Hellenistic civilization flourished from Central Asia to the western end of the Mediterranean Sea. The Hellenistic period came to an end with the conquests and annexations of the eastern Mediterranean world by the Roman Republic, which established the Roman province of Macedonia in Roman Greece, and later the province of Achaea during the Roman Empire.

Ancient Greek Version of the Greek language used from roughly the 9th century BCE to the 6th century CE

The Ancient Greek language includes the forms of Greek used in Ancient Greece and the ancient world from around the 9th century BCE to the 6th century CE. It is often roughly divided into the Archaic period, Classical period, and Hellenistic period. It is antedated in the second millennium BCE by Mycenaean Greek and succeeded by medieval Greek.

Philosopher person with an extensive knowledge of philosophy

A philosopher is someone who practices philosophy. The term "philosopher" comes from the Ancient Greek, φιλόσοφος (philosophos), meaning "lover of wisdom". The coining of the term has been attributed to the Greek thinker Pythagoras.

Crystal habit and structure

Quartz mineral embedded in limestone (top right of the sample), easily identifiable by its hexagonal form. It cannot be scratched by steel (see Mohs scale). Quartz crystals on section of limestone core.jpg
Quartz mineral embedded in limestone (top right of the sample), easily identifiable by its hexagonal form. It cannot be scratched by steel (see Mohs scale).

Quartz belongs to the trigonal crystal system. The ideal crystal shape is a six-sided prism terminating with six-sided pyramids at each end. In nature quartz crystals are often twinned (with twin right-handed and left-handed quartz crystals), distorted, or so intergrown with adjacent crystals of quartz or other minerals as to only show part of this shape, or to lack obvious crystal faces altogether and appear massive. Well-formed crystals typically form in a 'bed' that has unconstrained growth into a void; usually the crystals are attached at the other end to a matrix and only one termination pyramid is present. However, doubly terminated crystals do occur where they develop freely without attachment, for instance within gypsum. A quartz geode is such a situation where the void is approximately spherical in shape, lined with a bed of crystals pointing inward.

Crystal habit mineralogical term for the visible shape of a mineral

In mineralogy, crystal habit is the characteristic external shape of an individual crystal or crystal group. A single crystal's habit is a description of its general shape and its crystallographic forms, plus how well developed each form is.

Prism (geometry) geometric shape, a polyhedron with an n-sided polygonal base

In geometry, a prism is a polyhedron comprising an n-sided polygonal base, a second base which is a translated copy of the first, and n other faces joining corresponding sides of the two bases. All cross-sections parallel to the bases are translations of the bases. Prisms are named for their bases, so a prism with a pentagonal base is called a pentagonal prism. The prisms are a subclass of the prismatoids.

Pyramid structure whose shape is roughly that of a pyramid in the geometric sense

A pyramid is a structure whose outer surfaces are triangular and converge to a single point at the top, making the shape roughly a pyramid in the geometric sense. The base of a pyramid can be trilateral, quadrilateral, or of any polygon shape. As such, a pyramid has at least three outer triangular surfaces. The square pyramid, with a square base and four triangular outer surfaces, is a common version.

α-quartz crystallizes in the trigonal crystal system, space group P3121 or P3221 depending on the chirality. β-quartz belongs to the hexagonal system, space group P6222 and P6422, respectively. [11] These space groups are truly chiral (they each belong to the 11 enantiomorphous pairs). Both α-quartz and β-quartz are examples of chiral crystal structures composed of achiral building blocks (SiO4 tetrahedra in the present case). The transformation between α- and β-quartz only involves a comparatively minor rotation of the tetrahedra with respect to one another, without change in the way they are linked.

Varieties (according to microstructure)

Although many of the varietal names historically arose from the color of the mineral, current scientific naming schemes refer primarily to the microstructure of the mineral. Color is a secondary identifier for the cryptocrystalline minerals, although it is a primary identifier for the macrocrystalline varieties. [12]

Major varieties of quartz
TypeColor & DescriptionTransparent
Herkimer diamond ColorlessTransparent
Rock crystalColorlessTransparent
Amethyst Purple to violet colored quartzTransparent
Citrine Yellow quartz ranging to reddish orange or brown, and occasionally greenish yellowTransparent
Ametrine A mix of amethyst and citrine with hues of purple/violet and yellow or orange/brownTransparent
Rose quartz Pink, may display diasterism Transparent
Chalcedony Fibrous, variously translucent, cryptocrystalline quartz occurring in many varieties.
The term is often used for white, cloudy, or lightly colored material intergrown with moganite.
Otherwise more specific names are used.
Carnelian Reddish orange chalcedonyTranslucent
Aventurine Quartz with tiny aligned inclusions (usually mica) that shimmer with Aventurescence Translucent to opaque
Agate Multi-colored, curved or concentric banded chalcedony (cf. Onyx)Semi-translucent to translucent
Onyx Multi-colored, straight banded chalcedony or chert (cf. Agate)Semi-translucent to opaque
Jasper Opaque cryptocrystalline quartz, typically red to brown but often used for other colorsOpaque
Milky quartz White, may display diasterism Translucent to opaque
Smoky quartz Light to dark gray, sometimes with a brownish hueTranslucent to opaque
Tiger's eye Fibrous gold, red-brown or bluish colored chalcedony, exhibiting chatoyancy.
Prasiolite Mint greenTransparent
Rutilated quartz Contains acicular (needle-like) inclusions of rutile
Dumortierite quartzContains large amounts of dumortierite crystals

Varieties (according to color)

Quartz crystal demonstrating transparency Transparency.jpg
Quartz crystal demonstrating transparency

Pure quartz, traditionally called rock crystal or clear quartz, is colorless and transparent or translucent, and has often been used for hardstone carvings, such as the Lothair Crystal. Common colored varieties include citrine, rose quartz, amethyst, smoky quartz, milky quartz, and others. [13] These color differentiation's arise from chromophores which have been incorporated into the crystal structure of the mineral. Polymorphs of quartz include: α-quartz (low), β-quartz, tridymite, moganite, cristobalite, coesite, and stishovite.

The most important distinction between types of quartz is that of macrocrystalline (individual crystals visible to the unaided eye) and the microcrystalline or cryptocrystalline varieties (aggregates of crystals visible only under high magnification). The cryptocrystalline varieties are either translucent or mostly opaque, while the transparent varieties tend to be macrocrystalline. Chalcedony is a cryptocrystalline form of silica consisting of fine intergrowths of both quartz, and its monoclinic polymorph moganite. [14] Other opaque gemstone varieties of quartz, or mixed rocks including quartz, often including contrasting bands or patterns of color, are agate, carnelian or sard, onyx, heliotrope, and jasper.

Amethyst

Amethyst is a form of quartz that ranges from a bright vivid violet to dark or dull lavender shade. The world's largest deposits of amethysts can be found in Brazil, Mexico, Uruguay, Russia, France, Namibia and Morocco. Sometimes amethyst and citrine are found growing in the same crystal. It is then referred to as ametrine. An amethyst is formed when there is iron in the area where it was formed.

Blue quartz

Blue quartz contains inclusions of fibrous magnesio-riebeckite or crocidolite. [15]

Dumortierite quartz

Inclusions of the mineral dumortierite within quartz pieces often result in silky-appearing splotches with a blue hue, shades giving off purple and/or grey colors additionally being found. "Dumortierite quartz" (sometimes called "blue quartz") will sometimes feature contrasting light and dark color zones across the material. [16] [17] Interest in the certain quality forms of blue quartz as a collectible gemstone particularly arises in India and in the United States. [16]

Citrine

Citrine is a variety of quartz whose color ranges from a pale yellow to brown due to ferric impurities. Natural citrines are rare; most commercial citrines are heat-treated amethysts or smoky quartzes. However, a heat-treated amethyst will have small lines in the crystal, as opposed to a natural citrine's cloudy or smokey appearance. It is nearly impossible to differentiate between cut citrine and yellow topaz visually, but they differ in hardness. Brazil is the leading producer of citrine, with much of its production coming from the state of Rio Grande do Sul. The name is derived from the Latin word citrina which means "yellow" and is also the origin of the word "citron". Sometimes citrine and amethyst can be found together in the same crystal, which is then referred to as ametrine. [18] Citrine has been referred to as the "merchant's stone" or "money stone", due to a superstition that it would bring prosperity. [19]

Citrine was first appreciated as a golden-yellow gemstone in Greece between 300 and 150 BC, during the Hellenistic Age. The yellow quartz was used prior to that to decorate jewelry and tools but it was not highly sought after. [20]

Milky quartz

Milk quartz or milky quartz is the most common variety of crystalline quartz. The white color is caused by minute fluid inclusions of gas, liquid, or both, trapped during crystal formation, [21] making it of little value for optical and quality gemstone applications. [22]

Rose quartz

Rose quartz is a type of quartz which exhibits a pale pink to rose red hue. The color is usually considered as due to trace amounts of titanium, iron, or manganese, in the material. Some rose quartz contains microscopic rutile needles which produces an asterism in transmitted light. Recent X-ray diffraction studies suggest that the color is due to thin microscopic fibers of possibly dumortierite within the quartz. [23]

Additionally, there is a rare type of pink quartz (also frequently called crystalline rose quartz) with color that is thought to be caused by trace amounts of phosphate or aluminium. The color in crystals is apparently photosensitive and subject to fading. The first crystals were found in a pegmatite found near Rumford, Maine, USA and in Minas Gerais, Brazil. [24]

Smoky quartz

Smoky quartz is a gray, translucent version of quartz. It ranges in clarity from almost complete transparency to a brownish-gray crystal that is almost opaque. Some can also be black. The translucency results from natural irradiation creating free silicon within the crystal.

Prasiolite

Prasiolite, also known as vermarine, is a variety of quartz that is green in color. Since 1950, almost all natural prasiolite has come from a small Brazilian mine, but it is also seen in Lower Silesia in Poland. Naturally occurring prasiolite is also found in the Thunder Bay area of Canada. It is a rare mineral in nature; most green quartz is heat-treated amethyst. [25]

Synthetic and artificial treatments

A synthetic quartz crystal grown by the hydrothermal method, about 19 cm long and weighing about 127 grams Quartz synthese.jpg
A synthetic quartz crystal grown by the hydrothermal method, about 19 cm long and weighing about 127 grams

Not all varieties of quartz are naturally occurring. Some clear quartz crystals can be treated using heat or gamma-irradiation to induce color where it would not otherwise have occurred naturally. Susceptibility to such treatments depends on the location from which the quartz was mined. [26]

Prasiolite, an olive colored material, is produced by heat treatment; natural prasiolite has also been observed in Lower Silesia in Poland. Although citrine occurs naturally, the majority is the result of heat-treating amethyst or smoky quartz. Carnelian is widely heat-treated to deepen its color.

Because natural quartz is often twinned, synthetic quartz is produced for use in industry. Large, flawless, single crystals are synthesized in an autoclave via the hydrothermal process; emeralds are also synthesized in this fashion.

Like other crystals, quartz may be coated with metal vapors to give it an attractive sheen.

Occurrence

Granite rock in the cliff of Gros la Tete on Aride Island, Seychelles. The thin (1-3 cm wide) brighter layers are quartz veins, formed during the late stages of crystallization of granitic magmas. They are sometimes called "hydrothermal veins". ArideGranite1.jpg
Granite rock in the cliff of Gros la Tête on Aride Island, Seychelles. The thin (1–3 cm wide) brighter layers are quartz veins, formed during the late stages of crystallization of granitic magmas. They are sometimes called "hydrothermal veins".

Quartz is a defining constituent of granite and other felsic igneous rocks. It is very common in sedimentary rocks such as sandstone and shale. It is a common constituent of schist, gneiss, quartzite and other metamorphic rocks. Quartz has the lowest potential for weathering in the Goldich dissolution series and consequently it is very common as a residual mineral in stream sediments and residual soils.

While the majority of quartz crystallizes from molten magma, much quartz also chemically precipitates from hot hydrothermal veins as gangue, sometimes with ore minerals like gold, silver and copper. Large crystals of quartz are found in magmatic pegmatites. Well-formed crystals may reach several meters in length and weigh hundreds of kilograms.

Naturally occurring quartz crystals of extremely high purity, necessary for the crucibles and other equipment used for growing silicon wafers in the semiconductor industry, are expensive and rare. A major mining location for high purity quartz is the Spruce Pine Gem Mine in Spruce Pine, North Carolina, United States. [27] Quartz may also be found in Caldoveiro Peak, in Asturias, Spain. [28]

The largest documented single crystal of quartz was found near Itapore, Goiaz, Brazil; it measured approximately 6.1×1.5×1.5 m and weighed 39,916 kilograms. [29]

Tridymite and cristobalite are high-temperature polymorphs of SiO2 that occur in high-silica volcanic rocks. Coesite is a denser polymorph of SiO2 found in some meteorite impact sites and in metamorphic rocks formed at pressures greater than those typical of the Earth's crust. Stishovite is a yet denser and higher-pressure polymorph of SiO2 found in some meteorite impact sites. Lechatelierite is an amorphous silica glass SiO2 which is formed by lightning strikes in quartz sand.

History

The word "quartz" comes from the German Loudspeaker.svg Quarz  , [30] which is of Slavic origin (Czech miners called it křemen). Other sources attribute the word's origin to the Saxon word Querkluftertz, meaning cross-vein ore. [31]

Quartz is the most common material identified as the mystical substance maban in Australian Aboriginal mythology. It is found regularly in passage tomb cemeteries in Europe in a burial context, such as Newgrange or Carrowmore in Ireland. The Irish word for quartz is grianchloch, which means 'sunstone'. Quartz was also used in Prehistoric Ireland, as well as many other countries, for stone tools; both vein quartz and rock crystal were knapped as part of the lithic technology of the prehistoric peoples. [32]

While jade has been since earliest times the most prized semi-precious stone for carving in East Asia and Pre-Columbian America, in Europe and the Middle East the different varieties of quartz were the most commonly used for the various types of jewelry and hardstone carving, including engraved gems and cameo gems, rock crystal vases, and extravagant vessels. The tradition continued to produce objects that were very highly valued until the mid-19th century, when it largely fell from fashion except in jewelry. Cameo technique exploits the bands of color in onyx and other varieties.

Roman naturalist Pliny the Elder believed quartz to be water ice, permanently frozen after great lengths of time. [33] (The word "crystal" comes from the Greek word κρύσταλλος, "ice".) He supported this idea by saying that quartz is found near glaciers in the Alps, but not on volcanic mountains, and that large quartz crystals were fashioned into spheres to cool the hands. This idea persisted until at least the 17th century. He also knew of the ability of quartz to split light into a spectrum.

In the 17th century, Nicolas Steno's study of quartz paved the way for modern crystallography. He discovered that regardless of a quartz crystal's size or shape, its long prism faces always joined at a perfect 60° angle. [34]

Quartz's piezoelectric properties were discovered by Jacques and Pierre Curie in 1880. [35] [36] The quartz oscillator or resonator was first developed by Walter Guyton Cady in 1921. [37] [38] George Washington Pierce designed and patented quartz crystal oscillators in 1923. [39] [40] [41] Warren Marrison created the first quartz oscillator clock based on the work of Cady and Pierce in 1927. [42]

Efforts to synthesize quartz began in the mid nineteenth century as scientists attempted to create minerals under laboratory conditions that mimicked the conditions in which the minerals formed in nature: German geologist Karl Emil von Schafhäutl (1803–1890) [43] was the first person to synthesize quartz when in 1845 he created microscopic quartz crystals in a pressure cooker. [44] However, the quality and size of the crystals that were produced by these early efforts were poor. [45]

By the 1930s, the electronics industry had become dependent on quartz crystals. The only source of suitable crystals was Brazil; however, World War II disrupted the supplies from Brazil, so nations attempted to synthesize quartz on a commercial scale. German mineralogist Richard Nacken (1884–1971) achieved some success during the 1930s and 1940s. [46] After the war, many laboratories attempted to grow large quartz crystals. In the United States, the U.S. Army Signal Corps contracted with Bell Laboratories and with the Brush Development Company of Cleveland, Ohio to synthesize crystals following Nacken's lead. [47] [48] (Prior to World War II, Brush Development produced piezoelectric crystals for record players.) By 1948, Brush Development had grown crystals that were 1.5 inches (3.8 cm) in diameter, the largest to date. [49] [50] By the 1950s, hydrothermal synthesis techniques were producing synthetic quartz crystals on an industrial scale, and today virtually all the quartz crystal used in the modern electronics industry is synthetic.

Piezoelectricity

Some types of quartz crystals have piezoelectric properties; they develop an electric potential upon the application of mechanical stress. [52] An early use of this property of quartz crystals was in phonograph pickups. One of the most common piezoelectric uses of quartz today is as a crystal oscillator. The quartz clock is a familiar device using the mineral. The resonant frequency of a quartz crystal oscillator is changed by mechanically loading it, and this principle is used for very accurate measurements of very small mass changes in the quartz crystal microbalance and in thin-film thickness monitors.

See also

Related Research Articles

Amethyst Mineral, quartz variety

Amethyst is a violet variety of quartz.

Agate A rock consisting of cryptocrystalline silica alternating with microgranular quartz

Agate is a rock consisting primarily of cryptocrystalline silica, chiefly chalcedony, alternating with microgranular quartz. It is characterized by its fineness of grain and variety of color. Although agates may be found in various kinds of host rock, they are classically associated with volcanic rocks and can be common in certain metamorphic rocks.

Beryl gemstone: cyclosilicate

Beryl ( BERR-əl) is a mineral composed of beryllium aluminium cyclosilicate with the chemical formula Be3Al2Si6O18. Well-known varieties of beryl include emerald and aquamarine. Naturally occurring, hexagonal crystals of beryl can be up to several meters in size, but terminated crystals are relatively rare. Pure beryl is colorless, but it is frequently tinted by impurities; possible colors are green, blue, yellow, red (the rarest), and white. Beryl is also an ore source of beryllium.

Crystal oscillator electronic oscillator circuit

A crystal oscillator is an electronic oscillator circuit that uses the mechanical resonance of a vibrating crystal of piezoelectric material to create an electrical signal with a precise frequency. This frequency is often used to keep track of time, as in quartz wristwatches, to provide a stable clock signal for digital integrated circuits, and to stabilize frequencies for radio transmitters and receivers. The most common type of piezoelectric resonator used is the quartz crystal, so oscillator circuits incorporating them became known as crystal oscillators, but other piezoelectric materials including polycrystalline ceramics are used in similar circuits.

Chalcedony Microcrystalline varieties of quartz, may contain moganite as well

Chalcedony is a cryptocrystalline form of silica, composed of very fine intergrowths of quartz and moganite. These are both silica minerals, but they differ in that quartz has a trigonal crystal structure, while moganite is monoclinic. Chalcedony's standard chemical structure (based on the chemical structure of quartz) is SiO2 (silicon dioxide).

Chrysoberyl oxide mineral

The mineral or gemstone chrysoberyl is an aluminate of beryllium with the formula BeAl2O4. The name chrysoberyl is derived from the Greek words χρυσός chrysos and βήρυλλος beryllos, meaning "a gold-white spar". Despite the similarity of their names, chrysoberyl and beryl are two completely different gemstones, although they both contain beryllium. Chrysoberyl is the third-hardest frequently encountered natural gemstone and lies at 8.5 on the Mohs scale of mineral hardness, between corundum (9) and topaz (8).

Sillimanite nesolicate mineral

Sillimanite is an aluminosilicate mineral with the chemical formula Al2SiO5. Sillimanite is named after the American chemist Benjamin Silliman (1779–1864). It was first described in 1824 for an occurrence in Chester, Middlesex County, Connecticut, US.

Tanzanite Blue to purple variety of the mineral zoisite

Tanzanite is the blue and violet variety of the mineral zoisite, caused by small amounts of vanadium, belonging to the epidote group. Tanzanite is only found in Tanzania, in a very small mining area near the Merelani Hills.

Smoky quartz quartz variety

Smoky quartz is a grey, translucent variety of quartz that ranges in clarity from almost complete transparency to an almost-opaque brownish-gray or black crystal. Like other quartz gems, it is a silicon dioxide crystal. The smoky colour results from free silicon formed from the silicon dioxide by natural irradiation.

Cristobalite silica mineral

Cristobalite is a mineral polymorph of silica that is formed at very high-temperatures. It is used in dentistry as a component of alginate impression materials as well as for making models of teeth

Brazilianite phosphate mineral

Brazilianite, whose name derives from its country of origin, Brazil, is a typically yellow-green phosphate mineral, most commonly found in phosphate-rich pegmatites.

Cordierite cyclosilicate, mineral

Cordierite (mineralogy) or iolite (gemology) is a magnesium iron aluminium cyclosilicate. Iron is almost always present and a solid solution exists between Mg-rich cordierite and Fe-rich sekaninaite with a series formula: (Mg,Fe)2Al3(Si5AlO18) to (Fe,Mg)2Al3(Si5AlO18). A high-temperature polymorph exists, indialite, which is isostructural with beryl and has a random distribution of Al in the (Si,Al)6O18 rings.

Chrysoprase apple-green, gem-quality, chalcedony variety

Chrysoprase, chrysophrase or chrysoprasus is a gemstone variety of chalcedony that contains small quantities of nickel. Its color is normally apple-green, but varies to deep green. The darker varieties of chrysoprase are also referred to as prase.

Dumortierite nesosilicate mineral

Dumortierite is a fibrous variably colored aluminium boro-silicate mineral, Al7BO3(SiO4)3O3. Dumortierite crystallizes in the orthorhombic system typically forming fibrous aggregates of slender prismatic crystals. The crystals are vitreous and vary in color from brown, blue, and green to more rare violet and pink. Substitution of iron and other tri-valent elements for aluminium result in the color variations. It has a Mohs hardness of 7 and a specific gravity of 3.3 to 3.4. Crystals show pleochroism from red to blue to violet. Dumortierite quartz is blue colored quartz containing abundant dumortierite inclusions.

Ametrine Mineral, quartz variety

Ametrine, also known as trystine or by its trade name as bolivianite, is a naturally occurring variety of quartz. It is a mixture of amethyst and citrine with zones of purple and yellow or orange. Almost all commercially available ametrine is mined only in Bolivia.

Prasiolite Mineral, quartz variety

Prasiolite is a green variety of quartz, a silicate mineral chemically silicon dioxide.

Hydrothermal synthesis

Hydrothermal synthesis includes the various techniques of crystallizing substances from high-temperature aqueous solutions at high vapor pressures; also termed "hydrothermal method". The term "hydrothermal" is of geologic origin. Geochemists and mineralogists have studied hydrothermal phase equilibria since the beginning of the twentieth century. George W. Morey at the Carnegie Institution and later, Percy W. Bridgman at Harvard University did much of the work to lay the foundations necessary to containment of reactive media in the temperature and pressure range where most of the hydrothermal work is conducted.

Berlinite aluminium phosphate mineral

Berlinite (aluminium phosphate, chemical formula AlPO4 or Al(PO4)) is a rare high-temperature hydrothermal or metasomatic phosphate mineral. It has the same crystal structure as quartz with a low temperature polytype isostructural with α–quartz and a high temperature polytype isostructural with β–quartz. Berlinite can vary from colorless to greyish or pale pink and has translucent crystals.

References

  1. 1 2 Quartz Archived 14 December 2005 at the Wayback Machine . Mindat.org. Retrieved 2013-03-07.
  2. Quartz page on Mineralien Atlas
  3. 1 2 3 Deer, W. A., R. A. Howie and J. Zussman, An Introduction to the Rock Forming Minerals, Logman, 1966, pp. 340–355 ISBN   0-582-44210-9
  4. Anthony, John W.; Bideaux, Richard A.; Bladh, Kenneth W.; Nichols, Monte C. (eds.). "Quartz" (PDF). Handbook of Mineralogy. III (Halides, Hydroxides, Oxides). Chantilly, VA, US: Mineralogical Society of America. ISBN   0962209724. Archived (PDF) from the original on 1 April 2010. Retrieved 21 October 2009.
  5. Quartz Archived 12 November 2006 at the Wayback Machine . Webmineral.com. Retrieved 2013-03-07.
  6. Hurlbut, Cornelius S.; Klein, Cornelis (1985). Manual of Mineralogy (20 ed.). ISBN   0-471-80580-7.
  7. Anderson, Robert S.; Anderson, Suzanne P. (2010). Geomorphology: The Mechanics and Chemistry of Landscapes. Cambridge University Press. p. 187. ISBN   978-1-139-78870-0.
  8. Digitales Wörterbuch der deutschen Sprache Archived 1 December 2017 at the Wayback Machine (in German)
  9. "{title}". Archived from the original on 1 December 2017. Retrieved 26 November 2017.
  10. Tomkeieff, S.I. (1942). "On the origin of the name 'quartz'" (PDF). Mineralogical Magazine. 26 (176): 172–178. doi:10.1180/minmag.1942.026.176.04. Archived (PDF) from the original on 4 September 2015. Retrieved 12 August 2015.
  11. Crystal Data, Determinative Tables, ACA Monograph No. 5, American Crystallographic Association, 1963
  12. "Quartz Gemstone and Jewelry Information: Natural Quartz – GemSelect". www.gemselect.com. Archived from the original on 29 August 2017. Retrieved 29 August 2017.
  13. "Quartz: The gemstone Quartz information and pictures". www.minerals.net. Archived from the original on 27 August 2017. Retrieved 29 August 2017.
  14. Heaney, Peter J. (1994). "Structure and Chemistry of the low-pressure silica polymorphs". Reviews in Mineralogy and Geochemistry. 29 (1): 1–40. Archived from the original on 24 July 2011. Retrieved 26 October 2009.
  15. "Blue Quartz". Mindat.org. Archived from the original on 24 February 2017. Retrieved 24 February 2017.
  16. 1 2 Oldershaw, Cally (2003). Firefly Guide to Gems. Firefly Books. p. 100. ISBN   9781552978146. Archived from the original on 22 February 2017. Retrieved 19 February 2017.
  17. "The Gemstone Dumortierite". Minerals.net. Archived from the original on 6 May 2017. Retrieved 23 April 2017.
  18. Citrine Archived 2 May 2010 at the Wayback Machine . Mindat.org (2013-03-01). Retrieved 2013-03-07.
  19. The Encyclopedia of Superstitions By Richard Webster, p.19
  20. "{title}". Archived from the original on 18 August 2017. Retrieved 18 August 2017.
  21. Hurrell, Karen; Johnson, Mary L. (15 December 2016). Gemstones: A Complete Color Reference for Precious and Semiprecious Stones of the World. Book Sales. p. 97. ISBN   978-0-7858-3498-4.
  22. Milky quartz at Mineral Galleries Archived 19 December 2008 at the Wayback Machine . Galleries.com. Retrieved 2013-03-07.
  23. Rose Quartz Archived 1 April 2009 at the Wayback Machine . Mindat.org (2013-02-18). Retrieved 2013-03-07.
  24. Colored Varieties of Quartz Archived 19 July 2011 at the Wayback Machine , Caltech
  25. "Prasiolite". quarzpage.de. 28 October 2009. Archived from the original on 13 July 2011. Retrieved 28 November 2010.
  26. Liccini, Mark, Treating Quartz to Create Color Archived 23 December 2014 at the Wayback Machine , International Gem Society website. Retrieved 22 December 2014
  27. Nelson, Sue (2 August 2009). "Silicon Valley's secret recipe". BBC News. Archived from the original on 5 August 2009. Retrieved 16 September 2009.
  28. "Caldoveiro Mine, Tameza, Asturias, Spain". mindat.org. Archived from the original on 12 February 2018. Retrieved 15 February 2018.
  29. Rickwood, P. C. (1981). "The largest crystals" (PDF). American Mineralogist. 66: 885–907 (903). Archived (PDF) from the original on 25 August 2013. Retrieved 7 March 2013.
  30. German Loan Words in English Archived 21 August 2007 at the Wayback Machine . German.about.com (2012-04-10). Retrieved 2013-03-07.
  31. Mineral Atlas Archived 4 September 2007 at the Wayback Machine , Queensland University of Technology. Mineralatlas.com. Retrieved 2013-03-07.
  32. "Driscoll, Killian. 2010. Understanding quartz technology in early prehistoric Ireland". Archived from the original on 25 June 2017. Retrieved 19 July 2017.
  33. Pliny the Elder, The Natural History, Book 37, Chapter 9. Available on-line at: Perseus.Tufts.edu Archived 9 November 2012 at the Wayback Machine .
  34. Nicolaus Steno (Latinized name of Niels Steensen) with John Garrett Winter, trans., The Prodromus of Nicolaus Steno's Dissertation Concerning a Solid Body Enclosed by Process of Nature Within a Solid (New York, New York: Macmillan Co., 1916). On page 272 Archived 4 September 2015 at the Wayback Machine , Steno states his law of constancy of interfacial angles: "Figures 5 and 6 belong to the class of those which I could present in countless numbers to prove that in the plane of the axis both the number and the length of the sides are changed in various ways without changing the angles; … "
  35. Curie, Jacques; Curie, Pierre (1880). "Développement par compression de l'électricité polaire dans les cristaux hémièdres à faces inclinées" [Development, via compression, of electric polarization in hemihedral crystals with inclined faces]. Bulletin de la Société minérologique de France. 3 (4): 90–93. doi:10.3406/bulmi.1880.1564.. Reprinted in: Curie, Jacques; Curie, Pierre (1880). "Développement, par pression, de l'électricité polaire dans les cristaux hémièdres à faces inclinées". Comptes rendus. 91: 294–295. Archived from the original on 5 December 2012. Retrieved 17 December 2013.
  36. Curie, Jacques; Curie, Pierre (1880). "Sur l'électricité polaire dans les cristaux hémièdres à faces inclinées" [On electric polarization in hemihedral crystals with inclined faces]. Comptes rendus. 91: 383–386. Archived from the original on 5 December 2012. Retrieved 17 December 2013.
  37. Cady, W. G. (1921). "The piezoelectric resonator". Physical Review. 17: 531–533. doi:10.1103/PhysRev.17.508.
  38. "The Quartz Watch – Walter Guyton Cady". The Lemelson Center, National Museum of American History, Smithsonian Institution. Archived from the original on 4 January 2009.
  39. Pierce, G. W. (1923). "Piezoelectric crystal resonators and crystal oscillators applied to the precision calibration of wavemeters". Proceedings of the American Academy of Arts and Sciences. 59 (4): 81–106. doi:10.2307/20026061. hdl:2027/inu.30000089308260. JSTOR   20026061.
  40. Pierce, George W. "Electrical system," U.S. Patent 2,133,642 , filed: 25 February 1924; issued: 18 October 1938.
  41. "The Quartz Watch – George Washington Pierce". The Lemelson Center, National Museum of American History, Smithsonian Institution. Archived from the original on 4 January 2009.
  42. "The Quartz Watch – Warren Marrison". The Lemelson Center, National Museum of American History, Smithsonian Institution. Archived from the original on 25 January 2009.
  43. For biographical information about Karl von Schafhäutl, see German Wikipedia's article: Karl Emil von Schafhäutl (in German).
  44. von Schafhäutl, Karl Emil (10 April 1845). "Die neuesten geologischen Hypothesen und ihr Verhältniß zur Naturwissenschaft überhaupt (Fortsetzung)" [The latest geological hypotheses and their relation to science in general (continuation)]. Gelehrte Anzeigen. München: im Verlage der königlichen Akademie der Wissenschaften, in Commission der Franz'schen Buchhandlung. 20 (72): 577–584. OCLC   1478717. From page 578: 5) Bildeten sich aus Wasser, in welchen ich im Papinianischen Topfe frisch gefällte Kieselsäure aufgelöst hatte, beym Verdampfen schon nach 8 Tagen Krystalle, die zwar mikroscopisch, aber sehr wohl erkenntlich aus sechseitigen Prismen mit derselben gewöhnlichen Pyramide bestanden. ( 5) There formed from water in which I had dissolved freshly precipitated silicic acid in a Papin pot [i.e., pressure cooker], after just 8 days of evaporating, crystals, which albeit were microscopic but consisted of very easily recognizable six-sided prisms with their usual pyramids.)
  45. Byrappa, K. and Yoshimura, Masahiro (2001) Handbook of Hydrothermal Technology. Norwich, New York: Noyes Publications. ISBN   008094681X. Chapter 2: History of Hydrothermal Technology.
  46. Nacken, R. (1950) "Hydrothermal Synthese als Grundlage für Züchtung von Quarz-Kristallen" (Hydrothermal synthesis as a basis for the production of quartz crystals), Chemiker Zeitung, 74 : 745–749.
  47. Hale, D. R. (1948). "The Laboratory Growing of Quartz". Science. 107 (2781): 393–394. doi:10.1126/science.107.2781.393.
  48. Lombardi, M. (2011). "The evolution of time measurement, Part 2: Quartz clocks [Recalibration]" (PDF). IEEE Instrumentation & Measurement Magazine. 14 (5): 41–48. doi:10.1109/MIM.2011.6041381. Archived (PDF) from the original on 27 May 2013. Retrieved 30 March 2013.
  49. "Record crystal," Popular Science, 154 (2) : 148 (February 1949).
  50. Brush Development's team of scientists included: Danforth R. Hale, Andrew R. Sobek, and Charles Baldwin Sawyer (1895–1964). The company's U.S. patents included:
    • Sobek, Andrew R. "Apparatus for growing single crystals of quartz," U.S. Patent 2,674,520 ; filed: 11 April 1950; issued: 6 April 1954.
    • Sobek, Andrew R. and Hale, Danforth R. "Method and apparatus for growing single crystals of quartz," U.S. Patent 2,675,303 ; filed: 11 April 1950; issued: 13 April 1954.
    • Sawyer, Charles B. "Production of artificial crystals," U.S. Patent 3,013,867 ; filed: 27 March 1959; issued: 19 December 1961. (This patent was assigned to Sawyer Research Products of Eastlake, Ohio.)
  51. The International Antiques Yearbook. Studio Vista Limited. 1972. p. 78. Apart from Prague and Florence, the main Renaissance centre for crystal cutting was Milan.
  52. Forwood, Anthony K. (2011). They Would Be Gods. Lulu.com. p. 302. ISBN   978-1-257-37362-8.