Quaternary

Last updated
Quaternary
2.588 – 0 Ma
O
S
D
C
P
T
J
K
Pg
N
Mollweide projection SW.jpg
Mollweide projection of the present-day Earth.
Chronology
Quaternary Graphical Timeline
2 
2 
2 
2 
1 
1 
1 
1 
1 
0 
0 
0 
0 
0 
Subdivision of the Quaternary according to the ICS, as of 2021. [1] [2]
Vertical axis scale: millions of years ago.
Etymology
Name formalityFormal
Usage information
Celestial body Earth
Regional usageGlobal (ICS)
Time scale(s) usedICS Time Scale
Definition
Chronological unit Period
Stratigraphic unit System
Time span formalityFormal
Lower boundary definition
Lower boundary GSSPMonte San Nicola Section, Gela, Sicily, Italy
37°08′49″N14°12′13″E / 37.1469°N 14.2035°E / 37.1469; 14.2035
GSSP ratified2009 (as base of Quaternary and Pleistocene) [3]
Upper boundary definitionN/A
Upper boundary GSSPN/A
GSSP ratifiedN/A
Atmospheric and climatic data
Mean atmospheric O
2
content
c. 20.8 vol %
(104 % of modern)
Mean atmospheric CO
2
content
c. 250 ppm
(1 times pre-industrial)
Mean surface temperaturec. 14 °C
(0 °C above modern)

Quaternary ( /kwəˈtɜːrnəri,ˈkwɒt.ərˌnɛr.i/ kwə-TUR-nə-ree, KWOT-ər-nerr-ee) is the current and most recent of the three periods of the Cenozoic Era in the geologic time scale of the International Commission on Stratigraphy (ICS). [4] It follows the Neogene Period and spans from 2.588 ± 0.005 million years ago to the present. [4] The Quaternary Period is divided into two epochs: the Pleistocene (2.588 million years ago to 11.7 thousand years ago) and the Holocene (11.7 thousand years ago to today). [4] The informal term "Late Quaternary" refers to the past 0.5–1.0 million years. [5]

Contents

The Quaternary Period is typically defined by the cyclic growth and decay of continental ice sheets related to the Milankovitch cycles and the associated climate and environmental changes that they caused. [6] [7]

Research history

In 1759 Giovanni Arduino proposed that the geological strata of northern Italy could be divided into four successive formations or "orders" (Italian : quattro ordini). [8] The term "quaternary" was introduced by Jules Desnoyers in 1829 for sediments of France's Seine Basin that seemed clearly to be younger than Tertiary Period rocks. [9] [10] [11]

The Quaternary Period follows the Neogene Period and extends to the present. The Quaternary covers the time span of glaciations classified as the Pleistocene, and includes the present interglacial time-period, the Holocene.

This places the start of the Quaternary at the onset of Northern Hemisphere glaciation approximately 2.6 million years ago. Prior to 2009, the Pleistocene was defined to be from 1.805 million years ago to the present, so the current definition of the Pleistocene includes a portion of what was, prior to 2009, defined as the Pliocene.

Quaternary stratigraphers usually worked with regional subdivisions. From the 1970s, the International Commission on Stratigraphy (ICS) tried to make a single geologic time scale based on GSSP's, which could be used internationally. The Quaternary subdivisions were defined based on biostratigraphy instead of paleoclimate.

This led to the problem that the proposed base of the Pleistocene was at 1.805 Mya, long after the start of the major glaciations of the northern hemisphere. The ICS then proposed to abolish use of the name Quaternary altogether, which appeared unacceptable to the International Union for Quaternary Research (INQUA).

In 2009, it was decided to make the Quaternary the youngest period of the Cenozoic Era with its base at 2.588 Mya and including the Gelasian stage, which was formerly considered part of the Neogene Period and Pliocene Epoch. [12]

The Anthropocene has been proposed as a third epoch as a mark of the anthropogenic impact on the global environment starting with the Industrial Revolution, or about 200 years ago. [13] The Anthropocene is not officially designated by the ICS, but a working group has been working on a proposal for the creation of an epoch or sub-period. [14]

Geology

The 2.6 million years of the Quaternary represents the time during which recognizable humans existed. [15] Over this geologically short time period there has been relatively little change in the distribution of the continents due to plate tectonics.

The Quaternary geological record is preserved in greater detail than that for earlier periods.

The major geographical changes during this time period included the emergence of the Strait of Bosphorus and Skagerrak during glacial epochs, which respectively turned the Black Sea and Baltic Sea into fresh water, followed by their flooding (and return to salt water) by rising sea level; [16] the periodic filling of the English Channel, forming a land bridge between Britain and the European mainland; the periodic closing of the Bering Strait, forming the land bridge between Asia and North America; and the periodic flash flooding of Scablands of the American Northwest by glacial water. [17]

The current extent of Hudson Bay, the Great Lakes and other major lakes of North America are a consequence of the Canadian Shield's readjustment since the last ice age; different shorelines have existed over the course of Quaternary time. [18]

Climate

The climate was one of periodic glaciations with continental glaciers moving as far from the poles as 40 degrees latitude. There was a major extinction of large mammals in Northern areas at the end of the Pleistocene Epoch. Many forms such as saber-toothed cats, mammoths, mastodons, glyptodonts, etc., became extinct worldwide. Others, including horses, camels and American cheetahs became extinct in North America. [19] [20]

Quaternary glaciation

Glaciation took place repeatedly during the Quaternary Ice Age  – a term coined by Schimper in 1839 that began with the start of the Quaternary about 2.58 Mya and continues to the present day.

Last glacial period

Artist's impression of Earth during the Last Glacial Maximum IceAgeEarth.jpg
Artist's impression of Earth during the Last Glacial Maximum

In 1821, a Swiss engineer, Ignaz Venetz, presented an article in which he suggested the presence of traces of the passage of a glacier at a considerable distance from the Alps. This idea was initially disputed by another Swiss scientist, Louis Agassiz, but when he undertook to disprove it, he ended up affirming his colleague's hypothesis. A year later, Agassiz raised the hypothesis of a great glacial period that would have had long-reaching general effects. This idea gained him international fame and led to the establishment of the Glacial Theory.

In time, thanks to the refinement of geology, it has been demonstrated that there were several periods of glacial advance and retreat and that past temperatures on Earth were very different from today. In particular, the Milankovitch cycles of Milutin Milankovitch are based on the premise that variations in incoming solar radiation are a fundamental factor controlling Earth's climate.

During this time, substantial glaciers advanced and retreated over much of North America and Europe, parts of South America and Asia, and all of Antarctica. The Great Lakes formed and giant mammals thrived in parts of North America and Eurasia not covered in ice. These mammals became extinct when the glacial period Age ended about 11,700 years ago. Modern humans evolved about 315,000 years ago. During the Quaternary Period, mammals, flowering plants, and insects dominated the land. [ citation needed ]

See also

Related Research Articles

Holocene Current geological epoch, covering the last 11,700 years

The Holocene is the current geological epoch. It began approximately 11,650 cal years before present, after the last glacial period, which concluded with the Holocene glacial retreat. The Holocene and the preceding Pleistocene together form the Quaternary period. The Holocene has been identified with the current warm period, known as MIS 1. It is considered by some to be an interglacial period within the Pleistocene Epoch, called the Flandrian interglacial.

The Neogene is a geologic period and system that spans 20.45 million years from the end of the Paleogene Period 23.03 million years ago (Mya) to the beginning of the present Quaternary Period 2.58 Mya. The Neogene is sub-divided into two epochs, the earlier Miocene and the later Pliocene. Some geologists assert that the Neogene cannot be clearly delineated from the modern geological period, the Quaternary. The term "Neogene" was coined in 1853 by the Austrian palaeontologist Moritz Hörnes (1815–1868).

Pleistocene First epoch of the Quaternary Period

The Pleistocene is the geological epoch that lasted from about 2,580,000 to 11,700 years ago, spanning the world's most recent period of repeated glaciations. Before a change finally confirmed in 2009 by the International Union of Geological Sciences, the cutoff of the Pleistocene and the preceding Pliocene was regarded as being at 1.806 million years Before Present (BP). Publications from earlier years may use either definition of the period. The end of the Pleistocene corresponds with the end of the last glacial period and also with the end of the Paleolithic age used in archaeology. The name is a combination of Ancient Greek πλεῖστος and καινός (kainós, "new".

Tertiary is a widely used, but obsolete term for the geologic period from 66 million to 2.6 million years ago. The period began with the demise of the non-avian dinosaurs in the Cretaceous–Paleogene extinction event, at the start of the Cenozoic Era, and extended to the beginning of the Quaternary glaciation at the end of the Pliocene Epoch. The time span covered by the Tertiary has no exact equivalent in the current geologic time system, but it is essentially the merged Paleogene and Neogene periods, which are informally called the Lower Tertiary and the Upper Tertiary, respectively.

Timeline of glaciation Chronology of the major ice ages of the Earth

There have been five or six major ice ages in the history of Earth over the past 3 billion years. The Late Cenozoic Ice Age began 34 million years ago, its latest phase being the Quaternary glaciation, in progress since 2.58 million years ago.

Anglian stage

The Anglian Stage is the name used in the British Isles for a middle Pleistocene glaciation. It precedes the Hoxnian Stage and follows the Cromerian Stage in the British Isles. The Anglian Stage is correlated to Marine Isotope Stage 12, which started about 478,000 years ago and ended about 424,000 years ago.

The Wolstonian Stage is a middle Pleistocene stage of the geological history of Earth that precedes the Ipswichian Stage and follows the Hoxnian Stage in the British Isles. The Wolstonian Stage apparently includes three periods of glaciation. The Wolstonian Stage is temporally analogous to the Warthe Stage and Saalian Stage in northern Europe and the Riss glaciation in the Alps, and temporally equivalent to all of the Illinoian Stage and the youngest part of the Pre-Illinoian Stage in North America. It is contemporaneous with the North American Pre-Illinoian A, Early Illinoian, and Late Illinoian glaciations. The Wolstonian Stage is equivalent to Marine Isotope stages 6 through 10. It started 352,000 years ago and ended 130,000 years ago.

The Kansan glaciation or Kansan glacial was a glacial stage and part of an early conceptual climatic and chronological framework composed of four glacial and interglacial stages.

The Illinoian Stage is the name used by Quaternary geologists in North America to designate the period c.191,000 to c.130,000 years ago, during the middle Pleistocene, when sediments comprising the Illinoian Glacial Lobe were deposited. It precedes the Sangamonian Stage and follows the Pre-Illinoian Stage in North America. The Illinoian Stage is defined as the period of geologic time during which the glacial tills and outwash, which comprise the bulk of the Glasford Formation, accumulated to create the Illinoian Glacial Lobe. It occurs at about the same time as the penultimate glacial period.

The Yarmouthian stage and the Yarmouth Interglacial were part of a now obsolete geologic timescale of the early Quaternary of North America.

Elster glaciation

The Elster glaciation or, less commonly, the Elsterian glaciation, in the older and popular scientific literature also called the Elster Ice Age (Elster-Eiszeit), is the oldest known ice age that resulted in the large-scale glaciation of North Germany. It took place 500,000–300,000 years ago. It succeeded a long period of rather warmer average temperatures, the Cromerian Complex. The Elster was followed by the Holstein interglacial and the Saale glaciation. The glacial period is named after the White Elster, a right tributary of the Saale.

The Beestonian Stage is an early Pleistocene stage used in the British Isles. It is named after Beeston Cliffs near West Runton in Norfolk where deposits from this stage are preserved.

The Pre-Pastonian Stage or Baventian Stage, is the name for an early Pleistocene stage used in the British Isles. It precedes the Pastonian Stage and follows the Bramertonian Stage. This stage ended 1.806 Ma at the end of Marine Isotope Stage 65. It is not currently known when this stage started. The Pre-Pastonian Stage is equivalent to the Tiglian C4c Stage of Europe and the Pre-Illinoian J glaciation of the early Pre-Illinoian Stage of North America.

The Bramertonian Stage is the name for an early Pleistocene biostratigraphic stage in the British Isles. It precedes the Pre-Pastonian Stage. It derives its name from Bramerton Pits in Norfolk, where the deposits can be found on the surface. The exact timing of the beginning and end of the Bramertonian Stage is currently unknown. It is only known that it is equivalent to the Tiglian C1-4b Stage of Europe and early Pre-Illinoian Stage of North America. It lies somewhere in time between Marine Oxygen Isotope stages 65 to 95 and somewhere between 1.816 and 2.427 Ma. The Bramertonian is correlated with the Antian stage identified from pollen assemblages in the Ludham borehole.

The Gelasian is an age in the international geologic timescale or a stage in chronostratigraphy, being the earliest or lowest subdivision of the Quaternary period/system and Pleistocene epoch/series. It spans the time between 2.588 ± 0.005 Ma and 1.806 ± 0.005 Ma. It follows the Piacenzian stage and is followed by the Calabrian stage.

The Chibanian, widely known by its previous designation of Middle Pleistocene, is an age in the international geologic timescale or a stage in chronostratigraphy, being a division of the Pleistocene epoch within the ongoing Quaternary period. The Chibanian name was officially ratified in January 2020. It is currently estimated to span the time between 0.770 Ma and 0.126 Ma, also expressed as 770–126 ka. It includes the transition in palaeoanthropology from the Lower to the Middle Palaeolithic over 300 ka.

Quaternary glaciation Series of alternating glacial and interglacial periods

The Quaternary glaciation, also known as the Pleistocene glaciation, is an alternating series of glacial and interglacial periods during the Quaternary period that began 2.58 Ma, and is ongoing. Although geologists describe the entire time period as an "ice age", in popular culture the term "ice age" is usually associated with just the most recent glacial period during the Pleistocene. Since planet Earth still has ice sheets, geologists consider the Quaternary glaciation to be ongoing, with the Earth now experiencing an interglacial period.

The Holstein interglacial, also called the Mindel-Riss interglacial (Mindel-Riß-Interglazial) in the Alpine region, is the third to last major interglacial before the Holocene, the present warm period. It followed directly after the Elster glaciation and came before the Saale glaciation, during the Middle Pleistocene. The more precise timing is controversial since Holstein is commonly correlated to two different marine isotope stages, MIS 11 and MIS 9. This ambiguity is much related to the correlation problem described in more detail in the article 'Elster glaciation'.

The Pre-Illinoian Stage is used by Quaternary geologists for the early and middle Pleistocene glacial and interglacial periods of geologic time in North America from ~2.5–0.2 Ma.

The Early Pleistocene is an unofficial sub-epoch in the international geologic timescale in chronostratigraphy, being the earliest division of the Pleistocene Epoch within the ongoing Quaternary Period. It is currently estimated to span the time between 2.580 ± 0.005 Ma and 0.773 ± 0.005 Ma. The term Early Pleistocene applies to both the Gelasian Age and the Calabrian Age.

References

  1. Cohen, K. M.; Finney, S. C.; Gibbard, P. L.; Fan, J.-X. (January 2020). "International Chronostratigraphic Chart" (PDF). International Commission on Stratigraphy. Retrieved 23 February 2020.
  2. Mike Walker; et al. (December 2018). "Formal ratification of the subdivision of the Holocene Series/Epoch (Quaternary System/Period)" (PDF). Episodes. Subcommission on Quaternary Stratigraphy (SQS). 41 (4): 213–223. doi:10.18814/epiiugs/2018/018016 . Retrieved 11 November 2019.
  3. Gibbard, Philip; Head, Martin (September 2010). "The newly-ratified definition of the Quaternary System/Period and redefinition of the Pleistocene Series/Epoch, and comparison of proposals advanced prior to formal ratification" (PDF). Episodes. 33: 152–158. Retrieved 8 December 2020.
  4. 1 2 3 Cohen, K.M.; Finney, S.C.; Gibbard, P.L.; Fan, J.-X. "International Chronostratigraphic Chart 2013" (PDF). stratigraphy.org. ICS. Retrieved 15 June 2014.
  5. Earthquake Glossary - Late Quaternary U.S. Geological Survey
  6. Denton, G.H.; Anderson, R.F.; Toggweiler, J.R.; Edwards, R.L.; Schaefer, J.M.; Putnam, A.E. (2010). "The Last Glacial Termination". Science. 328 (5986): 1652–1656. Bibcode:2010Sci...328.1652D. CiteSeerX   10.1.1.1018.5454 . doi:10.1126/science.1184119. PMID   20576882. S2CID   27485445.
  7. Lowe, J.J.; Walker, M.J.C. (1997). Reconstructing Quaternary Environments. Routledge. ISBN   978-0582101661.
  8. See:
    • Arduino, Giovanni (1760). "Lettera Segonda di Giovanni Arduino … sopra varie sue osservazioni fatte in diverse parti del territorio di Vicenza, ed altrove, apparenenti alla Teoria terrestre, ed alla Mineralogia" [Second letter of Giovani Arduino … on his various observations made in different parts of the territory of Vincenza, and elsewhere, concerning the theory of the earth and mineralogy]. Nuova Raccolta d'Opuscoli Scientifici e Filologici [New collection of scientific and philogical pamphlets] (in Italian). 6: 133 (cxxxiii)–180(clxxx). Available at: Museo Galileo (Florence (Firenze), Italy) From p. 158 (clviii): "Per quanto ho potuto sinora osservavare, la serie di questi strati, che compongono la corteccia visibile della terra, mi pare distinta in quattro ordini generali, e successivi, senza considerarvi il mare." (As far as I have been able to observe, the series of these layers that compose the visible crust of the earth seems to me distinct in four general orders, and successive, not considering the sea.)
    • English translation: Ell, Theodore (2012). "Two letters of Signor Giovanni Arduino, concerning his natural observations: first full English translation. Part 2". Earth Sciences History. 31 (2): 168–192. doi:10.17704/eshi.31.2.c2q4076006wn7751.
  9. Desnoyers, J. (1829). "Observations sur un ensemble de dépôts marins plus récents que les terrains tertiaires du bassin de la Seine, et constituant une formation géologique distincte; précédées d'un aperçu de la nonsimultanéité des bassins tertiares" [Observations on a set of marine deposits [that are] more recent than the tertiary terrains of the Seine basin and [that] constitute a distinct geological formation; preceded by an outline of the non-simultaneity of tertiary basins]. Annales des Sciences Naturelles (in French). 16: 171–214, 402–491. From p. 193: "Ce que je désirerais … dont il faut également les distinguer." (What I would desire to prove above all is that the series of tertiary deposits continued – and even began in the more recent basins – for a long time, perhaps after that of the Seine had been completely filled, and that these later formations – Quaternary (1), so to say – should not retain the name of alluvial deposits any more than the true and ancient tertiary deposits, from which they must also be distinguished.) However, on the very same page, Desnoyers abandoned the use of the term "quaternary" because the distinction between quaternary and tertiary deposits wasn't clear. From p. 193: "La crainte de voir mal comprise … que ceux du bassin de la Seine." (The fear of seeing my opinion in this regard be misunderstood or exaggerated, has made me abandon the word "quaternary", which at first I had wanted to apply to all deposits more recent than those of the Seine basin.)
  10. "Late Quaternary Fluvial and Coastal Sequences Chapter 1: Introduction" (PDF). Retrieved March 26, 2017.
  11. Wiz Science™ (2015-09-28), Quaternary - Video Learning - WizScience.com , retrieved 2017-03-26
  12. See the 2009 version of the ICS geologic time scale
  13. Zalasiewicz, J.; Williams, M.; Haywood, A.; Ellis, M. (2011). "The Anthropocene: a new epoch of geological time?" (PDF). Philosophical Transactions of the Royal Society A. 369 (1938): 835–841. Bibcode:2011RSPTA.369..835Z. doi: 10.1098/rsta.2010.0339 . PMID   21282149. S2CID   2624037.
  14. "Working Group on the 'Anthropocene'". Subcomission on Quaternary Stratigraphy. Retrieved 16 June 2014.
  15. Ghosh, Pallab (March 4, 2015). "'First human' discovered in Ethiopia". BBC News. London. Retrieved 2015-04-19.
  16. Ryan, William B.F.; Pitman, Walter C.; Major, Candace O.; Shimkus, Kazimieras; Moskalenko, Vladamir; Jones, Glenn A.; Dimitrov, Petko; Gorür, Naci; Sakinç, Mehmet; Yüce, Hüseyin (April 1997). "An abrupt drowning of the Black Sea shelf". Marine Geology. 138 (1–2): 119–126. Bibcode:1997MGeol.138..119R. doi:10.1016/s0025-3227(97)00007-8.
  17. Balbas, A.M., Barth, A.M., Clark, P.U., Clark, J., Caffee, M., O'Connor, J., Baker, V.R., Konrad, K. and Bjornstad, B., 2017. 10Be dating of late Pleistocene megafloods and Cordilleran Ice Sheet retreat in the northwestern United States. Geology, 45(7), pp. 583-586.
  18. Dyke, Arthur S. (2004). "An outline of North American deglaciation with emphasis on central and northern Canada". Developments in Quaternary Sciences. 2: 373–424. doi:10.1016/S1571-0866(04)80209-4.
  19. Haynes. "Stanford Camelops" (PDF). Archived from the original (PDF) on 2014-03-09.
  20. "Extinct American Cheetah Fact Sheet". library.sandiegozoo.org. Archived from the original on 2016-03-04. Retrieved 2015-12-10.