Last updated
Quaternary Period
2.58–0 million years ago
Mean atmospheric O
content over period duration
c. 20.8 vol % [1] [2]
(104 % of modern level)
Mean atmospheric CO
content over period duration
c. 250 ppm [3]
(1 times pre-industrial level)
Mean surface temperature over period durationc. 14 °C [4]
(0 °C above modern level)

Quaternary ( /kwəˈtɜːrnəri/ ) is the current and most recent of the three periods of the Cenozoic Era in the geologic time scale of the International Commission on Stratigraphy (ICS). [5] It follows the Neogene Period and spans from 2.588 ± 0.005 million years ago to the present. [5] The Quaternary Period is divided into two epochs: the Pleistocene (2.588 million years ago to 11.7 thousand years ago) and the Holocene (11.7 thousand years ago to today). [5] The informal term "Late Quaternary" refers to the past 0.5–1.0 million years. [6]

The Cenozoic Era meaning "new life", is the current and most recent of the three Phanerozoic geological eras, following the Mesozoic Era and extending from 66 million years ago to the present day.

An era is a span of time defined for the purposes of chronology or historiography, as in the regnal eras in the history of a given monarchy, a calendar era used for a given calendar, or the geological eras defined for the history of Earth.

Geologic time scale A system of chronological dating that relates geological strata to time

The geologic time scale (GTS) is a system of chronological dating that relates geological strata (stratigraphy) to time. It is used by geologists, paleontologists, and other Earth scientists to describe the timing and relationships of events that have occurred during Earth's history. The table of geologic time spans, presented here, agree with the nomenclature, dates and standard color codes set forth by the International Commission on Stratigraphy (ICS).


The Quaternary Period is typically defined by the cyclic growth and decay of continental ice sheets associated with Milankovitch cycles and the associated climate and environmental changes that occurred. [7] [8]

Ice sheet large mass of glacier ice

An ice sheet, also known as a continental glacier, is a mass of glacial ice that covers surrounding terrain and is greater than 50,000 km2 (19,000 sq mi). The only current ice sheets are in Antarctica and Greenland; during the last glacial period at Last Glacial Maximum (LGM) the Laurentide ice sheet covered much of North America, the Weichselian ice sheet covered northern Europe and the Patagonian Ice Sheet covered southern South America.

Milankovitch cycles periodic changes in the orbital movements of the earth

Milankovitch cycles describe the collective effects of changes in the Earth's movements on its climate over thousands of years. The term is named for Serbian geophysicist and astronomer Milutin Milanković. In the 1920s, he hypothesized that variations in eccentricity, axial tilt, and precession of the Earth's orbit resulted in cyclical variation in the solar radiation reaching the Earth, and that this orbital forcing strongly influenced climatic patterns on Earth.

Research history

In 1759 Giovanni Arduino proposed that the geological strata of northern Italy could be divided into four successive formations or "orders" (Italian : quattro ordini). [9] The term "quaternary" was introduced by Jules Desnoyers in 1829 for sediments of France's Seine Basin that seemed clearly to be younger than Tertiary Period rocks. [10] [11] [12]

Giovanni Arduino (geologist) Italian geologist

Giovanni Arduino was an Italian geologist who is known as the "Father of Italian Geology".

Italy republic in Southern Europe

Italy, officially the Italian Republic, is a country in Southern and Western Europe. Located in the middle of the Mediterranean Sea, Italy shares open land borders with France, Switzerland, Austria, Slovenia and the enclaved microstates San Marino and Vatican City. Italy covers an area of 301,340 km2 (116,350 sq mi) and has a largely temperate seasonal and Mediterranean climate. With around 61 million inhabitants, it is the fourth-most populous EU member state and the most populous country in Southern Europe.

Italian language Romance language

Italian is a Romance language of the Indo-European language family. Italian, together with Sardinian, is by most measures the closest language to Vulgar Latin of the Romance languages. Italian is an official language in Italy, Switzerland, San Marino and Vatican City. It has an official minority status in western Istria. It formerly had official status in Albania, Malta, Monaco, Montenegro (Kotor) and Greece, and is generally understood in Corsica and Savoie. It also used to be an official language in the former Italian East Africa and Italian North Africa, where it plays a significant role in various sectors. Italian is also spoken by large expatriate communities in the Americas and Australia. In spite of not existing any Italian community in their respective national territories and of not being spoken at any level, Italian is included de jure, but not de facto, between the recognized minority languages of Bosnia-Herzegovina and Romania. Many speakers of Italian are native bilinguals of both standardized Italian and other regional languages.

The Quaternary Period follows the Neogene Period and extends to the present. The Quaternary covers the time span of glaciations classified as the Pleistocene, and includes the present interglacial time-period, the Holocene.

The Neogene is a geologic period and system that spans 20.45 million years from the end of the Paleogene Period 23.03 million years ago (Mya) to the beginning of the present Quaternary Period 2.58 Mya. The Neogene is sub-divided into two epochs, the earlier Miocene and the later Pliocene. Some geologists assert that the Neogene cannot be clearly delineated from the modern geological period, the Quaternary. The term "Neogene" was coined in 1853 by the Austrian palaeontologist Moritz Hörnes (1815–1868).

Glacier Persistent body of ice that is moving under its own weight

A glacier is a persistent body of dense ice that is constantly moving under its own weight; it forms where the accumulation of snow exceeds its ablation over many years, often centuries. Glaciers slowly deform and flow due to stresses induced by their weight, creating crevasses, seracs, and other distinguishing features. They also abrade rock and debris from their substrate to create landforms such as cirques and moraines. Glaciers form only on land and are distinct from the much thinner sea ice and lake ice that form on the surface of bodies of water.

The Pleistocene is the geological epoch which lasted from about 2,588,000 to 11,700 years ago, spanning the world's most recent period of repeated glaciations. The end of the Pleistocene corresponds with the end of the last glacial period and also with the end of the Paleolithic age used in archaeology.

This places the start of the Quaternary at the onset of Northern Hemisphere glaciation approximately 2.6 million years ago. Prior to 2009, the Pleistocene was defined to be from 1.805 million years ago to the present, so the current definition of the Pleistocene includes a portion of what was, prior to 2009, defined as the Pliocene.

Northern Hemisphere half of Earth that is north of the equator

The Northern Hemisphere is the half of Earth that is north of the Equator. For other planets in the Solar System, north is defined as being in the same celestial hemisphere relative to the invariable plane of the solar system as Earth's North Pole.

The Pliocene Epoch is the epoch in the geologic timescale that extends from 5.333 million to 2.58 million years BP. It is the second and youngest epoch of the Neogene Period in the Cenozoic Era. The Pliocene follows the Miocene Epoch and is followed by the Pleistocene Epoch. Prior to the 2009 revision of the geologic time scale, which placed the four most recent major glaciations entirely within the Pleistocene, the Pliocene also included the Gelasian stage, which lasted from 2.588 to 1.806 million years ago, and is now included in the Pleistocene.

Subdivisions of the Quaternary System
Age  (Ma)
Quaternary Holocene Meghalayan 00.0042
Northgrippian 0.00420.0082
Greenlandian 0.00820.0117
Pleistocene 'Tarantian' 0.01170.126
'Chibanian' 0.1260.781
Calabrian 0.7811.80
Gelasian 1.802.58
Neogene Pliocene Piacenzian 2.583.60
Notes and references [13] [14] [15]
Subdivision of the Quaternary period according to the ICS, as of 2018. [13]

For the Holocene, dates are relative to the year 2000 (e.g. Greenlandian began 11,700 years before 2000). For the begin of the Northgrippian a date of 8,236 years before 2000 has been set. [14] The Meghalayan has been set to begin 4,250 years before 2000, apparently from a calibrated radio-carbon date of 4,200 years BP i.e. before 1950. [15] [ clarification needed ]

'Chibanian' and 'Tarantian' are informal, unofficial names proposed to replace the also informal, unofficial 'Middle Pleistocene' and 'Upper Pleistocene' subseries/subepochs respectively.

In Europe and North America, the Holocene is subdivided into Preboreal, Boreal, Atlantic, Subboreal, and Subatlantic stages of the Blytt–Sernander time scale. There are many regional subdivisions for the Upper or Late Pleistocene; usually these represent locally recognized cold (glacial) and warm (interglacial) periods. The last glacial period ends with the cold Younger Dryas substage.

Quaternary stratigraphers usually worked with regional subdivisions. From the 1970s, the International Commission on Stratigraphy (ICS) tried to make a single geologic time scale based on GSSP's, which could be used internationally. The Quaternary subdivisions were defined based on biostratigraphy instead of paleoclimate.

The International Commission on Stratigraphy (ICS), sometimes referred to by the unofficial name "International Stratigraphic Commission" is a daughter or major subcommittee grade scientific daughter organization that concerns itself with stratigraphy, geological, and geochronological matters on a global scale.


Biostratigraphy is the branch of stratigraphy which focuses on correlating and assigning relative ages of rock strata by using the fossil assemblages contained within them. Usually the aim is correlation, demonstrating that a particular horizon in one geological section represents the same period of time as another horizon at some other section. The fossils are useful because sediments of the same age can look completely different because of local variations in the sedimentary environment. For example, one section might have been made up of clays and marls while another has more chalky limestones, but if the fossil species recorded are similar, the two sediments are likely to have been laid down at the same time.

This led to the problem that the proposed base of the Pleistocene was at 1.805 Mya, long after the start of the major glaciations of the northern hemisphere. The ICS then proposed to abolish use of the name Quaternary altogether, which appeared unacceptable to the International Union for Quaternary Research (INQUA).

In 2009, it was decided to make the Quaternary the youngest period of the Cenozoic Era with its base at 2.588 Mya and including the Gelasian stage, which was formerly considered part of the Neogene Period and Pliocene Epoch. [16]

The Anthropocene has been proposed as a third epoch as a mark of the anthropogenic impact on the global environment starting with the Industrial Revolution, or about 200 years ago. [17] The Anthropocene is not officially designated by the ICS, but a working group has been working on a proposal for the creation of an epoch or sub-period. [18]


The 2.6 million years of the Quaternary represents the time during which recognizable humans existed. Over this geologically short time period, there has been relatively little change in the distribution of the continents due to plate tectonics.

The Quaternary geological record is preserved in greater detail than that for earlier periods.

The major geographical changes during this time period included the emergence of the Strait of Bosphorus and Skagerrak during glacial epochs, which respectively turned the Black Sea and Baltic Sea into fresh water, followed by their flooding (and return to salt water) by rising sea level; the periodic filling of the English Channel, forming a land bridge between Britain and the European mainland; the periodic closing of the Bering Strait, forming the land bridge between Asia and North America; and the periodic flash flooding of Scablands of the American Northwest by glacial water.

The current extent of Hudson Bay, the Great Lakes and other major lakes of North America are a consequence of the Canadian Shield's readjustment since the last ice age; different shorelines have existed over the course of Quaternary time.


The climate was one of periodic glaciations with continental glaciers moving as far from the poles as 40 degrees latitude. There was a major extinction of large mammals in Northern areas at the end of the Pleistocene Epoch. Many forms such as saber-toothed cats, mammoths, mastodons, glyptodonts, etc., became extinct worldwide. Others, including horses, camels and American cheetahs became extinct in North America. [19] [20]

Quaternary glaciation

Glaciation took place repeatedly during the Quaternary Ice Age  – a term coined by Schimper in 1839 that began with the start of the Quaternary about 2.58 Mya and continues to the present day.

Last glacial period

Artist's impression of Earth during the Last Glacial Maximum IceAgeEarth.jpg
Artist's impression of Earth during the Last Glacial Maximum

In 1821, a Swiss engineer, Ignaz Venetz, presented an article in which he suggested the presence of traces of the passage of a glacier at a considerable distance from the Alps. This idea was initially disputed by another Swiss scientist, Louis Agassiz, but when he undertook to disprove it, he ended up affirming his colleague's hypothesis. A year later, Agassiz raised the hypothesis of a great glacial period that would have had long-reaching general effects. This idea gained him international fame and led to the establishment of the Glacial Theory.

In time, thanks to the refinement of geology, it has been demonstrated that there were several periods of glacial advance and retreat and that past temperatures on Earth were very different from today. In particular, the Milankovitch cycles of Milutin Milankovitch are based on the premise that variations in incoming solar radiation are a fundamental factor controlling Earth's climate.

During this time, substantial glaciers advanced and retreated over much of North America and Europe, parts of South America and Asia, and all of Antarctica. The Great Lakes formed and giant mammals thrived in parts of North America and Eurasia not covered in ice. These mammals became extinct when the glacial period Age ended about 11,700 years ago. Modern humans evolved about 315,000 years ago. During the Quaternary Period, mammals, flowering plants, and insects dominated the land. [ citation needed ]

Journals relating to the Quaternary Period

See also

Related Research Articles

Holocene The current geological epoch, covering the last 11,700 years

The Holocene is the current geological epoch. It began approximately 11,650 cal years before present, after the last glacial period, which concluded with the Holocene glacial retreat. The Holocene and the preceding Pleistocene together form the Quaternary period. The Holocene has been identified with the current warm period, known as MIS 1. It is considered by some to be an interglacial period within the Pleistocene Epoch.

Tertiary is the former term for the geologic period from 66 million to 2.58 million years ago, a timespan that occurs between the superseded Secondary period and the Quaternary. The Tertiary is no longer recognized as a formal unit by the International Commission on Stratigraphy, but the word is still widely used. The traditional span of the Tertiary has been divided between the Paleogene and Neogene periods and extends to the first stage of the Pleistocene Epoch, the Gelasian stage.

Timeline of glaciation Chronology of the major ice ages of the Earth

There have been five or six major ice ages in the history of Earth over the past 3 billion years. The Late Cenozoic Ice Age began 34 million years ago, its latest phase being the Quaternary glaciation, in progress since 2.58 million years ago.

A glacial period is an interval of time within an ice age that is marked by colder temperatures and glacier advances. Interglacials, on the other hand, are periods of warmer climate between glacial periods. The last glacial period ended about 15,000 years ago. The Holocene epoch is the current interglacial. A time with no glaciers on Earth is considered a greenhouse climate state.

Anglian stage

The Anglian Stage is the name used in the British Isles for a middle Pleistocene glaciation. It precedes the Hoxnian Stage and follows the Cromerian Stage in the British Isles. The Anglian Stage is equivalent to the Elsterian Stage of northern Continental Europe, the Mindel Stage in the Alps and Marine Isotope Stage 12. The Anglian Stage and Marine Oxygen Isotope Stage 12 started about 478,000 years ago and ended about 424,000 years ago.

The Hoxnian Stage is a middle Pleistocene stage of the geological history of the British Isles. It precedes the Wolstonian Stage and follows the Anglian Stage. The Hoxnian Stage corresponds to the Holstein Interglacial in northern Europe and the Mindel-Riss Interglacial in the Alps. It is equivalent to Marine Isotope Stage 11. Marine Isotope Stage 11 started 424,000 years ago and ended 374,000 years ago. The Hoxnian divided into sub-stages Ho I to Ho IV.

The Wolstonian Stage is a middle Pleistocene stage of the geological history of earth that precedes the Ipswichian Stage and follows the Hoxnian Stage in the British Isles. The Wolstonian Stage apparently includes three periods of glaciation. The Wolstonian Stage is temporally analogous to the Warthe Stage and Saalian Stage in northern Europe and the Riss glaciation in the Alps, and temporally equivalent to all of the Illinoian Stage and the youngest part of the Pre-Illinoian Stage in North America. It is contemporaneous with the North American Pre-Illinoian A, Early Illinoian, and Late Illinoian glaciations. The Wolstonian Stage is equivalent to Marine Isotope stages 6 through 10. It started 352,000 years ago and ended 130,000 years ago.

The Illinoian Stage is the name used by Quaternary geologists in North America to designate the period c.191,000 to c.130,000 years ago, during the middle Pleistocene, when sediments comprising the Illinoian Glacial Lobe were deposited. It precedes the Sangamonian stage and follows the Pre-Illinoian Stage in North America. The Illinoian Stage is defined as the period of geologic time during which the glacial tills and outwash, which comprise the bulk of the Glasford Formation, accumulated to create the Illinoian Glacial Lobe. It occurs at about the same time as the penultimate glacial period.

The Yarmouthian stage and the Yarmouth Interglacial were part of a now obsolete geologic timescale of the early Quaternary of North America.

The Beestonian Stage is the name for an early Pleistocene stage used in the British Isles. It precedes the Cromerian Stage and follows the Pastonian Stage. This stage consists of alternating glacial and interglacial phases instead of being a continuous glacial epoch. It is equivalent to the Bavelian, Waalian, and Eburonian stages from the Netherlands Quaternary subdivision combined and Marine Isotope stages 22 to (60?). The Beestonian Stage and Marine Isotope Stage 22 ended about 866,000 years ago.

The Pre-Pastonian Stage or Baventian Stage, is the name for an early Pleistocene stage used in the British Isles. It precedes the Pastonian Stage and follows the Bramertonian Stage. This stage ended 1.806 Ma at the end of Marine Isotope Stage 65. It is not currently known when this stage started. The Pre-Pastonian Stage is equivalent to the Tiglian C4c Stage of Europe and the Pre-Illinoian J glaciation of the early Pre-Illinoian Stage of North America.

The Late Pleistocene is a geochronological age of the Pleistocene Epoch and is associated with Upper Pleistocene stage rocks. The beginning of the stage is defined by the base of the Eemian interglacial phase before the final glacial episode of the Pleistocene 126,000 ± 5,000 years ago. Its end is defined at the end of the Younger Dryas, some 11,700 years ago. The age represents the end of the Pleistocene epoch and is followed by the Holocene epoch.

The Pre-Illinoian Stage is used by Quaternary geologists for the early and middle Pleistocene glacial and interglacial periods of geologic time in North America from ~2.5–0.2 Ma.

The Early Pleistocene is a subepoch in the international geologic timescale or a subseries in chronostratigraphy, being the earliest or lowest subdivision of the Quaternary period/system and Pleistocene epoch/series. It spans the time between 2.588 ± 0.005 Ma and 0.781 ± 0.005 Ma. The Early Pleistocene consists of the Gelasian and the Calabrian ages.

A geological period is one of the several subdivisions of geologic time enabling cross-referencing of rocks and geologic events from place to place.

In the geologic time scale, the Meghalayan is the latest age or uppermost stage of the Quaternary. It is also the upper, or latest, of three subdivisions of the Holocene epoch or series. Its Global Boundary Stratotype Section and Point (GSSP) is a Mawmluh cave formation in Meghalaya, northeast India. Mawmluh cave is one of the longest and deepest caves in India, and conditions here were suitable for preserving chemical signs of the transition in ages. The global auxiliary stratotype is an ice core from Mount Logan in Canada.


  1. Image:Sauerstoffgehalt-1000mj.svg
  2. File:OxygenLevel-1000ma.svg
  3. Image:Phanerozoic Carbon Dioxide.png
  4. Image:All palaeotemps.png
  5. 1 2 3 Cohen, K.M.; Finney, S.C.; Gibbard, P.L.; Fan, J.-X. "International Chronostratigraphic Chart 2013" (PDF). stratigraphy.org. ICS. Retrieved 15 June 2014.
  6. Earthquake Glossary - Late Quaternary U.S. Geological Survey
  7. Denton, G.H.; Anderson, R.F.; Toggweiler, J.R.; Edwards, R.L.; Schaefer, J.M.; Putnam, A.E. (2010). "The Last Glacial Termination". Science. 328 (5986): 1652–1656. CiteSeerX . doi:10.1126/science.1184119. PMID   20576882.
  8. Lowe, J.J.; Walker, M.J.C. (1997). Reconstructing Quaternary Environments. Routledge. ISBN   978-0582101661.
  9. See:
    • Arduino, Giovanni (1760). "Lettera Segonda di Giovanni Arduino … sopra varie sue osservazioni fatte in diverse parti del territorio di Vicenza, ed altrove, apparenenti alla Teoria terrestre, ed alla Mineralogia" [Second letter of Giovani Arduino … on his various observations made in different parts of the territory of Vincenza, and elsewhere, concerning the theory of the earth and mineralogy]. Nuova Raccolta d'Opuscoli Scientifici e Filologici [New collection of scientific and philogical pamphlets] (in Italian). 6: 133 (cxxxiii)–180(clxxx). Available at: Museo Galileo (Florence (Firenze), Italy) From p. 158 (clviii): "Per quanto ho potuto sinora osservavare, la serie di questi strati, che compongono la corteccia visibile della terra, mi pare distinta in quattro ordini generali, e successivi, senza considerarvi il mare." (As far as I have been able to observe, the series of these layers that compose the visible crust of the earth seems to me distinct in four general orders, and successive, not considering the sea.)
    • English translation: Ell, Theodore (2012). "Two letters of Signor Giovanni Arduino, concerning his natural observations: first full English translation. Part 2". Earth Sciences History. 31 (2): 168–192. doi:10.17704/eshi.31.2.c2q4076006wn7751.
  10. Desnoyers, J. (1829). "Observations sur un ensemble de dépôts marins plus récents que les terrains tertiaires du bassin de la Seine, et constituant une formation géologique distincte; précédées d'un aperçu de la nonsimultanéité des bassins tertiares" [Observations on a set of marine deposits [that are] more recent than the tertiary terrains of the Seine basin and [that] constitute a distinct geological formation; preceded by an outline of the non-simultaneity of tertiary basins]. Annales des Sciences Naturelles (in French). 16: 171–214, 402–491. From p. 193: "Ce que je désirerais … dont il faut également les distinguer." (What I would desire to prove above all is that the series of tertiary deposits continued – and even began in the more recent basins – for a long time, perhaps after that of the Seine had been completely filled, and that these later formations – Quaternary (1), so to say – should not retain the name of alluvial deposits any more than the true and ancient tertiary deposits, from which they must also be distinguished.) However, on the very same page, Desnoyers abandoned the use of the term "quaternary" because the distinction between quaternary and tertiary deposits wasn't clear. From p. 193: "La crainte de voir mal comprise … que ceux du bassin de la Seine." (The fear of seeing my opinion in this regard be misunderstood or exaggerated, has made me abandon the word "quaternary", which at first I had wanted to apply to all deposits more recent than those of the Seine basin.)
  11. "Late Quaternary Fluvial and Coastal Sequences Chapter 1: Introduction" (PDF). Retrieved March 26, 2017.
  12. Wiz Science™ (2015-09-28), Quaternary - Video Learning - WizScience.com , retrieved 2017-03-26
  13. 1 2 Cohen, K.M.; Finney, S.C.; Gibbard, P.L.; Fan, J.-X. "International Chronostratigraphic Chart". International Commission on Stratigraphy . Retrieved July 10, 2018.
  14. 1 2 "IUGS ratifies Holocene" . Retrieved 18 August 2018.
  15. 1 2 "announcement ICS chart v2018/07" . Retrieved 9 August 2018.
  16. See the 2009 version of the ICS geologic time scale
  17. Zalasiewicz, J.; Williams, M.; Haywood, A.; Ellis, M. (2011). "The Anthropocene: a new epoch of geological time?". Philosophical Transactions of the Royal Society A. 369 (1938): 835–841. doi:10.1098/rsta.2010.0339. PMID   21282149.
  18. "Working Group on the 'Anthropocene'". Subcomission on Quaternary Stratigraphy. Retrieved 16 June 2014.
  19. Haynes. "Stanford Camelops" (PDF). Archived from the original (PDF) on 2014-03-09.
  20. "Extinct American Cheetah Fact Sheet". library.sandiegozoo.org. Retrieved 2015-12-10.