Quilt packaging

Last updated
Copper interconnects prepared for joining via quilt packaging QP 2.jpg
Copper interconnects prepared for joining via quilt packaging

Quilt Packaging (QP) is an integrated circuit packaging and chip-to-chip interconnect technology that incorporates conductive “nodules” fabricated on the sides of chips. These nodule structures function as extremely wide bandwidth, low-loss electrical I/O, with sub-micron mechanical chip-to-chip alignment. [1] When utilized for electrical I/O, QP nodules have demonstrated around 2 dB of insertion loss across the entire bandwidth from 50 MHz to 220 GHz. [2]

Integrated circuit packaging Final stage of semiconductor device fabrication

In electronics manufacturing, integrated circuit packaging is the final stage of semiconductor device fabrication, in which the block of semiconductor material is encapsulated in a supporting case that prevents physical damage and corrosion. The case, known as a "package", supports the electrical contacts which connect the device to a circuit board.

Terminal (electronics) Connection point in electronic circuits

A terminal is the point at which a conductor from an electrical component, device or network comes to an end and provides a point of connection to external circuits. A terminal may simply be the end of a wire or it may be fitted with a connector or fastener. In network analysis, terminal means a point at which connections can be made to a network in theory and does not necessarily refer to any real physical object. In this context, especially in older documents, it is sometimes called a pole. On circuit diagrams, terminals for external connections are denoted by empty circles. They are distinguished from nodes that are entirely internal to the circuit, which are denoted by solid circles.

Related Research Articles

InfiniBand (IB) is a computer-networking communications standard used in high-performance computing that features very high throughput and very low latency. It is used for data interconnect both among and within computers. InfiniBand is also used as either a direct or switched interconnect between servers and storage systems, as well as an interconnect between storage systems.

Vertical-cavity surface-emitting laser

The vertical-cavity surface-emitting laser, or VCSEL, is a type of semiconductor laser diode with laser beam emission perpendicular from the top surface, contrary to conventional edge-emitting semiconductor lasers which emit from surfaces formed by cleaving the individual chip out of a wafer. VCSELs are used in various laser products, including computer mice, fiber optic communications, laser printers, Face ID, and smartglasses.

Electromigration transport of material caused by the gradual movement of the ions in a conductor

Electromigration is the transport of material caused by the gradual movement of the ions in a conductor due to the momentum transfer between conducting electrons and diffusing metal atoms. The effect is important in applications where high direct current densities are used, such as in microelectronics and related structures. As the structure size in electronics such as integrated circuits (ICs) decreases, the practical significance of this effect increases.

Robert Drost American computer scientist

Robert Drost is an American computer scientist. He was born in 1970 in New York City.

Multi-chip module

A multi-chip module (MCM) is generically an electronic assembly where multiple integrated circuits, semiconductor dies and/or other discrete components are integrated, usually onto a unifying substrate, so that in use it is treated as if it were a single component . Other terms, such as "hybrid" or "hybrid integrated circuit", also refer to MCMs.

Radio-frequency microelectromechanical system

A radio-frequency microelectromechanical system (RFMEMS) is a microelectromechanical systems with electronic components comprising moving sub-millimeter-sized parts that provide radio-frequency (RF) functionality. RF functionality can be implemented using a variety of RF technologies. Besides RF MEMS technology, III-V compound semiconductor, ferrite, ferroelectric, silicon-based semiconductor, and vacuum tube technology are available to the RF designer. Each of the RF technologies offers a distinct trade-off between cost, frequency, gain, large-scale integration, lifetime, linearity, noise figure, packaging, power handling, power consumption, reliability, ruggedness, size, supply voltage, switching time and weight.

Through-silicon via

In electronic engineering, a through-silicon via (TSV) or through-chip via is a vertical electrical connection (via) that passes completely through a silicon wafer or die. TSVs are high performance interconnect techniques used as an alternative to wire-bond and flip chips to create 3D packages and 3D integrated circuits. Compared to alternatives such as package-on-package, the interconnect and device density is substantially higher, and the length of the connections becomes shorter.

In microelectronics, a three-dimensional integrated circuit is an integrated circuit manufactured by stacking silicon wafers or dies and interconnecting them vertically using, for instance, through-silicon vias (TSVs) or Cu-Cu connections, so that they behave as a single device to achieve performance improvements at reduced power and smaller footprint than conventional two dimensional processes. 3D IC is just one of a host of 3D integration schemes that exploit the z-direction to achieve electrical performance benefits.

Thermal copper pillar bump

The thermal copper pillar bump, also known as the "thermal bump", is a thermoelectric device made from thin-film thermoelectric material embedded in flip chip interconnects for use in electronics and optoelectronic packaging, including: flip chip packaging of CPU and GPU integrated circuits (chips), laser diodes, and semiconductor optical amplifiers (SOA). Unlike conventional solder bumps that provide an electrical path and a mechanical connection to the package, thermal bumps act as solid-state heat pumps and add thermal management functionality locally on the surface of a chip or to another electrical component. The diameter of a thermal bump is 238 μm and 60 μm high.

Microvias are used as the interconnects between layers in high density interconnect (HDI) substrates and printed circuit boards (PCBs) to accommodate the high input/output (I/O) density of advanced packages. Driven by portability and wireless communications, the electronics industry strives to produce affordable, light, and reliable products with increased functionality. At the electronic component level, this translates to components with increased I/Os with smaller footprint areas, and on the printed circuit board and package substrate level, to the use of high density interconnects (HDIs).

In integrated circuits, optical interconnects refers to any system of transmitting signals from one part of an integrated circuit to another using light. Optical interconnects have been the topic of study due to the high latency and power consumption incurred by conventional metal interconnects in transmitting electrical signals over long distances, such as in interconnects classed as global interconnects. The International Technology Roadmap for Semiconductors (ITRS) has highlighted interconnect scaling as a problem for the semiconductor industry.

Embedded Wafer Level Ball Grid Array

Embedded Wafer Level Ball Grid Array (eWLB) is a packaging technology for integrated circuits. The package interconnects are applied on an artificial wafer made of silicon chips and a casting compound.

Terabit Ethernet or TbE is Ethernet with speeds above 100 Gbit/s. 400 Gigabit Ethernet and 200 Gigabit Ethernet standards developed by the IEEE P802.3bs Task Force using broadly similar technology to 100 Gigabit Ethernet were approved on December 6, 2017. In 2016, several networking equipment suppliers were already offering proprietary solutions for 200G and 400G.

A superluminescent diode is an edge-emitting semiconductor light source based on superluminescence. It combines the high power and brightness of laser diodes with the low coherence of conventional light-emitting diodes. Its emission band is 5–700 nm wide.

In the electronics industry, embedded instrumentation refers to the integration of test and measurement instrumentation into semiconductor chips. Embedded instrumentation differs from embedded system, which are electronic systems or subsystems that usually comprise the control portion of a larger electronic system. Instrumentation embedded into chips is employed in a variety of electronic test applications, including validating and testing chips themselves, validating, testing and debugging the circuit boards where these chips are deployed, and troubleshooting systems once they have been installed in the field.

High Bandwidth Memory high-performance RAM interface for 3D-stacked DRAM from AMD and Hynix

High Bandwidth Memory (HBM) is a high-performance RAM interface for 3D-stacked DRAM from Samsung, AMD, and Hynix. It is to be used in conjunction with high-performance graphics accelerators and network devices. The first devices to use HBM are the AMD Fiji GPUs.

Eby Friedman

Eby G. Friedman is an electrical engineer, and Distinguished Professor of Electrical and Computer Engineering at the University of Rochester. Friedman is also a Visiting Professor at the Technion - Israel Institute of Technology. He is a Senior Fulbright Fellow and a Fellow of the IEEE.


  1. G.H. Bernstein, Q. Liu, M. Yan, Z. Sun, W. Porod, G. Snider and P. Fay, "Quilt Packaging: High Density, High-Speed Interchip Communications," IEEE Trans. on Advanced Packaging, 30(4), 731-740, 2007
  2. P. Fay, D. Kopp, T. Lu, D. Neal, G.H. Bernstein, J.M. Kulick, "Ultrawide Bandwidth Chip-to-Chip Interconnects for III-V MMICS, " IEEE Microwaves and Wireless Components Letters, Vol. PP, Issue 99, November 2013.