R-12 Dvina

Last updated
8k63 na pu.jpg
Soviet R-12 (NATO designation SS-4) in Kapustin Yar museum, Znamensk, Russia.
Type Medium-range ballistic missile
Service history
In service4 March 1959-1993
Production history
Manufacturer Yuzhmash
Unit costunknown
Mass41.7 t
Length22.1 m
Diameter1.65 m
Warhead Thermonuclear
Blast yield1.0-2.3 Mt [1] [2] [3]

Engine RD-214 [4]
635.2 kilonewtons (142,800 lbf) [4]
Wingspan2.94 m (9.65 ft)
Propellantliquid (AK-27I / TM-185) [4]
2,080 km (1,290 mi) [3]
Maximum speed 3,530 m/s (Mach 10)
autonomous inertial
Accuracy2.4–5.16 km (1.49–3.21 mi) CEP [1] [2]
open-launch and silo-based
The cupola of the underground R-12U launching silo in Plokstine missile base, Lithuania Lithuania Plokstine missile base 2.jpg
The cupola of the underground R-12U launching silo in Plokštinė missile base, Lithuania

The R-12 Dvina was a theatre ballistic missile developed and deployed by the Soviet Union during the Cold War. Its GRAU designation was 8K63 (8K63U or 8K63У in Cyrillic for silo-launched version), and it was given the NATO reporting name of SS-4 Sandal. The R-12 rocket provided the Soviet Union with the capability to attack targets at medium ranges with a megaton-class thermonuclear warhead and constituted the bulk of the Soviet offensive missile threat to Western Europe. Deployments of the R-12 missile in Cuba caused the Cuban Missile Crisis in 1962. A total of 2335 missiles were produced; all were destroyed in 1993 under the START II treaty. [5]


As well as the single-stage ballistic technology, the R-12 Dvina had a two-stage capability that allowed payloads to be placed into low-earth orbit.

The Shahab-4 missile is likely an offshoot of the R-12 Dvina. [6]


The beginning

OKB-586 formed from a spin-off of portions of Sergei Korolev's OKB-1 production infrastructure under the direction of Mikhail Yangel in the early 1950s. Soon after, he started the development of an improved strategic missile that would outperform the R-5, SS-3 Shyster, that Korolev was in the process of bringing into production. Yangel's design was based on combining the basic airframe from the R-5 with an engine developed from the R-11 Zemlya. The R-11 was a short-range missile that used nitric acid as an oxidizer and kerosene as a fuel and could be stored for extended periods of time.

Valentin Glushko had long advocated using storable propellants, and proposed developing a new engine for the project. Earlier designs like the R-5 and R-7 used liquid oxygen as the oxidizer, and therefore had to be fueled immediately before launch, as the oxygen would "boil off" over time. He developed the RD-214 for the R-12, which consisted of four combustion chambers sharing a common turbopump assembly. The pumps were powered by decomposing the hydrogen peroxide, like earlier designs, to generate an exhaust. The new engine was too large to fit in the existing R-5 airframe, so a conical tail section was added to hold the engine.

Nikolay Pilyugin, head of the leading control system bureau, convinced Yangel to introduce a fully autonomous control system in the R-12 instead of the traditional radio control that had been used on earlier missiles. The R-5, for instance, used an inertial guidance system that had to be "fine tuned" by commands from ground radio stations that it passed over during its flight. Pilyugin felt that newer inertial systems would have the accuracy needed to hit targets at 2,000 km without the mid-course updates.

According to the official NPO Yuzhnoye history, Yangel's design was approved on 13 February 1953 by the Council of Ministers of the USSR. However, another source reports that the approval was granted on 13 August 1955.[ citation needed ] The first test was conducted at Kapustin Yar on 22 June 1957. In September 1958, Nikita Khrushchev personally visited Kapustin Yar to witness the launch of R-12, as well as its competitor, the R-5M. The latter had already been accepted into deployment at the time. The R-12 launch was a success and the next month, mass production of the vehicle started in Dnepropetrovsk. Test launches continued until December and demonstrated a maximum error of 2.3 km.

For the work on R-12, on 1 July 1959, OKB-586 received the Order of Lenin, while the Hero of Socialist Labor (the highest industrial award) was awarded to Yangel, Smirnov and Budnik.


Remaining wall of the rocket base barracks near Vepriai, Lithuania. Construction date visible Soviet rocket base.jpg
Remaining wall of the rocket base barracks near Vepriai, Lithuania. Construction date visible

The R-12 missile was introduced into the inventory on 4 March 1959 according to Russian sources, though Western intelligence believed that an initial operational capability was reached in late 1958.

The first public display of this system was in November 1960, and they were deployed to Cuba in October 1962 during the Cuban Missile Crisis. The first five regiments with surface-based R-12 missiles were put on alert in May 1960, while the first regiment of silo-based missiles was placed on alert in January 1963. Their reaction time was assessed by the West at one to three hours in the normal soft-site readiness condition, and five to fifteen minutes in the normal hard-site readiness condition. The allowable hold time in a highly alert condition (reaction time equals three to five minutes) was long—many hours for soft sites, and days for hard sites.

The R-12 and R-12U missiles reached their maximum operational launcher inventory of 608 in 196466. Some soft-site phase-out began in 1968, with some hard-site phase-out beginning in 1972. In 1978 their phase out and replacement with mobile ground-launched SS-20 "Pioneer" missiles began.

Further development

Inside the underground R-12U launching silo in Plokstine missile base, Lithuania Inside the underground R-12U launching silo in Plokstine missile base, Lithuania.jpg
Inside the underground R-12U launching silo in Plokštinė missile base, Lithuania

Efforts to create a railway based version of the R-12 missile were suspended, but work then started on a silo-launched version. An underground launch complex, code-named Mayak-2 (Beacon-2), was constructed in Kapustin Yar. In September 1959 the R-12 took off from the silo complex for the first time. In May 1960 the development of a new R-12 missile designated as R-12U was begun. The R-12U was designed to be used with both surface launchers and silos. The silo-launch complex of the R-12U missile comprised four launchers and was designated as "Dvina" (Russian : 8П763 «Двина»; English: Dvina )". The testing phase of the missile and the launch complex lasted from December 1961 through December 1963.

The R-12 was also used during the development of the V-1000 anti-ballistic missile, serving as a target. During a series of tests two R-12s detonated their warheads in the upper atmosphere in order to test radar systems. A follow-on test planned to launch an R-12 from Kapustin Yar while two R-9s from Tyuratam would fly into the area, but only the R-12 launched successfully.


Mock-up of the R-12 at the ground transporter in the Missile Crisis museum near Cabana Fortress, Havana, Cuba SS-4 Sandalwood in Havana.JPG
Mock-up of the R-12 at the ground transporter in the Missile Crisis museum near Cabaña Fortress, Havana, Cuba

The Intermediate-Range Nuclear Forces Treaty was signed in December 1987 and entered into force in June 1988. The fundamental purpose of the INF Treaty was to eliminate and ban US and Soviet ground-launched ballistic and cruise missiles, as well as associated support equipment, with ranges between 500 and 5500 kilometers. Elimination of SS-4 and SS-5 missiles and components took place at the Lesnaya Missile Elimination Facility. The last of the 149 Soviet SS-4 missiles was eliminated at Lesnaya in May 1990.

Space launcher variants

Rockets with new booster

In 1961, an upper stage using LOX and UDMH propellants was added to the R-12 to create the Kosmos 63S1 booster. Since there were no surface pads for the R-12, all launches took place from the Mayak silo at Kapustin Yar. However, as silos were not designed for repeated use, this arrangement proved impractical and necessitated their refurbishment after every few launches. The first two launch attempts of the 63S1 took place in October and December 1961 and both failed. On March 16, 1962, Kosmos 1, a navigation test satellite, was successfully orbited, marking the first Soviet space launch to be performed with a booster other than the R-7. Finally, a dedicated launch complex was constructed at Kapustin Yar and first used in December 1964.

An enhanced R-12 booster was flown in 196567 from the Dvina silo at Kapustin Yar on suborbital tests, eventually giving way to the 11K63, a modernized, improved launch vehicle. In 1967, a second launch complex was opened at Plesetsk and from there on, 11K63 flights alternated between Kapustin Yar and Plesetsk, mostly for orbiting lightweight scientific and military payloads. A total of 123 were flown, of which eight failed to attain orbit. In 1977, the R-12 and 11K63 were retired from use. [7]



The R-12 is a single-stage rocket with a separable single reentry vehicle. In the integrated fuel tanks the oxidizer was put forward of the fuel tank, separated by an intermediate plate. During flight this allowed the oxidizer from the lower unit to be spent first, improving in-flight stabilization. The propulsion system consists of four liquid propellant rocket motors with a common turbo pump unit. The flight control was carried out with the help of four carbon jet vanes, located in the nozzles of the rocket motors. The autonomous guidance and control system used center of mass normal and lateral stabilization devices, a velocity control system and a computer-assisted automatic range control system. The R-12 was deployed at both soft launch pads and hard silos.

Standard thermonuclear explosive charges 2.3 Mt. Explosive charges or chemical weapons could have been used as well.

R-12 steps of readiness

Readiness nr. 4 (constant). The missile was in the hangar. The gyroscopes (control devices) and the explosive charge were unconnected, the missile was unfilled. The missile could stay so for seven years (factory-guaranteed service time). It would take 3 hours and 25 minutes to start.

Readiness nr. 3 (elevated). The missile was in the hangar. The gyroscopes and the explosive charge were connected. The missile could stay so for three years. It would take 2 hours and 20 minutes to start.

Readiness nr. 2 (first step elevated). The missile was carried to the starting ground, the gyroscopes were started, and initial data inserted. Petrol tanks stood next to the missile. The missile could stay so for three months. It would take 1 hour to start.

Readiness nr. 1 (total). The missile was filled up and directed, but the starting mixture gas was not tanked up. The missile could stay so for one month. It would take 30 minutes to start.


Flag of the Soviet Union.svg  Soviet Union

Related Research Articles

Intercontinental ballistic missile Ballistic missile with a range of more than 5,500 kilometres

An intercontinental ballistic missile (ICBM) is a missile with a minimum range of 5,500 kilometres (3,400 mi) primarily designed for nuclear weapons delivery. Similarly, conventional, chemical, and biological weapons can also be delivered with varying effectiveness, but have never been deployed on ICBMs. Most modern designs support multiple independently targetable reentry vehicles (MIRVs), allowing a single missile to carry several warheads, each of which can strike a different target. Russia, United States, China, France, India, United Kingdom, and North Korea are the only countries that have operational ICBMs.

Strategic Missile Forces

The Strategic Missile Forces or Strategic Rocket Forces of the Russian Federation or RVSN RF are a military branch of the Russian Armed Forces that controls Russia's land-based intercontinental ballistic missiles (ICBMs). The RVSN was first formed in the Soviet Armed Forces, and when the USSR collapsed in December 1991, it effectively changed its name from the Soviet to the Russian Strategic Rocket Forces or Strategic Missile Troops.

The R-16 was the first successful intercontinental ballistic missile deployed by the Soviet Union. In the West it was known by the NATO reporting name SS-7 Saddler, and within Russia, it carried the GRAU index 8K64.

R-1 (missile) Type of Tactical ballistic missile

The R-1 rocket was a tactical ballistic missile manufactured in the Soviet Union based on the German V-2 rocket. Even though it was a copy, it was manufactured using Soviet industrial plants and gave the Soviets valuable experience which later enabled the USSR to construct its own much more capable rockets. The R-1 missile system entered into service in the Soviet Army on 28 November 1950.

Yuzhnoye Design Office Ukrainian rocket and satellite designer

Yuzhnoye Design Office, located in Dnipro, Ukraine, is a designer of satellites and rockets, and formerly of Soviet intercontinental ballistic missiles (ICBMs) established by Mikhail Yangel. Yuzhnoye's OKB designation was OKB-586.

Fractional Orbital Bombardment System

The Fractional Orbital Bombardment System (FOBS) was a nuclear-weapons delivery system developed in the 1960s by the Soviet Union. One of the first Soviet efforts to use space to deliver weapons, FOBS envisioned launching nuclear warheads into low Earth orbit before bringing them down on their targets.

RT-2PM2 Topol-M Type of Intercontinental ballistic missile

The RT-2PM2 «Topol-M» is one of the most recent intercontinental ballistic missiles to be deployed by Russia, and the first to be developed after the dissolution of the Soviet Union. It was developed from the RT-2PM Topol mobile intercontinental ballistic missile.

R-36 (missile) Also known as Satan

The R-36 is a family of intercontinental ballistic missiles (ICBMs) and space launch vehicles (Tsyklon) designed by the Soviet Union during the Cold War. The original R-36 was deployed under the GRAU index 8K67 and was given the NATO reporting name SS-9 Scarp. It was able to carry three warheads and was the first Soviet MRV(multiple reentry vehicle) missile. The later version, the R-36M was produced under the GRAU designations 15A14 and 15A18 and was given the NATO reporting name SS-18 Satan. This missile was viewed by certain United States analysts as giving the Soviet Union first strike advantage over the U.S., particularly because of its rapid silo-reload ability, very heavy throw weight and extremely large number of re-entry vehicles. Some versions of the R-36M were deployed with 10 warheads and up to 40 penetration aids and the missile's high throw-weight made it theoretically capable of carrying more warheads or penetration aids. Contemporary U.S. missiles, such as the Minuteman III, carried up to three warheads at most.

RT-2PM Topol Type of Intercontinental ballistic missile

The RT-2PM Topol is a mobile intercontinental ballistic missile designed in the Soviet Union and in service with Russia's Strategic Missile Troops. By the early 2020s, all SS-25 ICBMs will be replaced by versions of Topol-M.


The Production Association Yuzhny Machine-Building Plant named after A.M. Makarov, PA Pivdenmash or PA Yuzhmash is a Ukrainian state-owned aerospace manufacturer. It produces spacecraft, launch vehicles (rockets), liquid-propellant rockets, landing gears, castings, forgings, tractors, tools, and industrial products. The company is headquartered in Dnipro, and reports to the State Space Agency of Ukraine. It works with international aerospace partners in 23 countries.

Kapustin Yar Rocket launch and development site

Kapustin Yar is a Russian rocket launch and development site in Astrakhan Oblast, about 100km east of Volgograd. It was established by the Soviet Union on 13 May 1946 and in the beginning used technology, material and scientific support from defeated Germany. Numerous launches of test rockets for the Russian military were carried out at the site, as well as satellite and sounding rocket launches. The town of Znamensk and Kapustin Yar were built nearby to serve the missile test range.

Sary Shagan

Sary Shagan is an anti-ballistic missile testing range located in Kazakhstan.

R-9 Desna Type of ICBM

The R-9 was a two-stage ICBM of the Soviet Union, in service from 1964 to 1976.

R-5 Pobeda Type of Theatre ballistic missileMedium-range ballistic missile

The R-5 Pobeda was a theatre ballistic missile developed by the Soviet Union during the Cold War. The R-5M version was assigned the NATO reporting name SS-3 Shyster and carried the GRAU index 8K51.

R-14 Chusovaya Type of Intermediate-range ballistic missile

The R-14 Chusovaya was a single stage Intermediate-range ballistic missile developed by the Soviet Union during the Cold War. It was given the NATO reporting name SS-5 Skean and was known by GRAU index 8K65. It was designed by Mikhail Yangel. Chusovaya is the name of a river in Russia. Line production was undertaken by Facility No. 1001 in Krasnoyarsk.

UR-100N Type of ICBM

The UR-100N, also known as RS-18A is an intercontinental ballistic missile in service with Soviet and Russian Strategic Missile Troops. The missile was given the NATO reporting name SS-19 Stiletto and carries the industry designation 15A30.

The UR-200 was an intercontinental ballistic missile (ICBM) developed by Vladimir Chelomey's OKB-52 in the Soviet Union. It was known during the Cold War by the NATO reporting name SS-10 Scrag and internally by the GRAU index 8K81. The design was authorized by the Decisions of the Central Committee of the CPSU of March 16 and August 1, 1961, and the draft project was finished in July 1962. It first flew on November 4, 1963 from the Baikonur Cosmodrome. The ninth and final flight was conducted on October 20, 1964.

RS-24 Yars Type of Intercontinental Ballistic Missile

The RS-24 Yars - modification 24) also known as RT-24 Yars or Topol'-MR is a Russian MIRV-equipped, thermonuclear armed intercontinental ballistic missile first tested on May 29, 2007, after a secret military R&D project, to replace the older R-36 and UR-100N that have been in use for nearly 50 years.

R-11 Zemlya

The R-11 Zemlya, GRAU index 8A61 was a Soviet tactical ballistic missile. It is also known by its NATO reporting name SS-1b Scud-A. It was the first of several similar Soviet missiles to be given the reporting name Scud. Variant R-11M was accepted into service, with GRAU index 9K51.


The RD-214 (GRAU Index 8D59) was a liquid rocket engine, burning AK-27I (a mixture of 73% nitric acid and 27% N2O4 + iodine passivant and TM-185 (a kerosene and gasoline mix) in the gas generator cycle. As was the case with many V-2 influenced engines, the single turbine was driven by steam generated by catalytic decomposition of H2O2. It also had four combustion chambers and vector control was achieved by refractory vanes protruding into the nozzle's exhaust.


  1. 1 2 R-12. Encyclopedia Astronautica.
  2. 1 2 R-12U. Encyclopedia Astronautica.
  3. 1 2 R-12 / SS-4 SANDAL. Federation of American Scientists .
  4. 1 2 3 "RD-214". Encyclopedia Astronautica.
  5. Berezovsky, Peter F. "Russian Ballistic Missiles, баллистические ракеты России". Independent Belorussian Site (in Russian). archive.org. Archived from the original on 31 March 2013. Retrieved 14 September 2015. Демонтаж комплексов с последними изделиями серии Р-12У, согласно договоренностям по РСМД, закончен к 1993 году.
  6. "Iran Missile Chronology" (PDF). Nuclear Threat Initiative. August 2011. Retrieved 30 June 2020.
  7. "Kosmos 11K63". Encyclopedia Astronautica.
  8. Michael Holm, 58th Melitopolskaya Order of Suvorov Missile Division, retrieved January 2013.