Last updated
1:1 scale model of an RD-170 rocket engine, shown upside down
Country of origin Soviet Union/Russian Federation
First flight1985-04-13
Manufacturer NPO Energomash
ApplicationMain engine
Associated LV Energia
Liquid-fuel engine
Propellant LOX / RP-1
Mixture ratio2.63
Cycle Oxidizer-rich staged combustion
Nozzle ratio36.87
Thrust (vac.)7.90 MN (1,780,000 lbf)
Thrust (SL)7.25 MN (1,630,000 lbf)
Throttle range100–40%
Thrust-to-weight ratio 75:1
Chamber pressure 24.52 MPa (3,556 psi)
Isp (vac.)337 s (3.30 km/s)
Isp (SL)309 s (3.03 km/s)
Burn time150 seconds
Length4.0 m (160 in)
Diameter3.8 m (150 in)
Dry weight9,750 kg (21,500 lb)
Used in
References [1] [2] [3] [4]

The RD-170 (РД-170, Реактивный Двигатель-170, Reactive Engine-170) is the world's most powerful liquid-fuel rocket engine. It was designed and produced in the Soviet Union by NPO Energomash for use with the Energia launch vehicle. The engine burns the Russian equivalent of RP-1 fuel and LOX oxidizer in four combustion chambers, all supplied by one single-shaft, single-turbine turbopump rated at 170 MW (230,000 hp) in a staged combustion cycle. [3] [5]


Shared turbopump

Several Soviet and Russian rocket engines use the approach of clustering small combustion chambers around a single turbine and pump. During the early 1950s, many Soviet engine designers, including Valentin P. Glushko, faced problems of combustion instability while designing bigger thrust chambers. At that time, they solved the problem by using a cluster of smaller thrust chambers.



The RD-170 engine featured four combustion chambers and was developed for use on the Energia launch vehicle – both the engine and the launch vehicle were in production only for a short time. Energia was launched twice. Each Energia vehicle had 4 Zenit boosters, each booster had one RD-170. So eight RD-170 engines flew (on Energia).


RD-171 model RD171 ILA2006.jpg
RD-171 model

Building on the technology from the Energia's liquid fuel booster the Zenit (rocket family) was developed, which uses a RD-170 variant, the RD-171. While the RD-170 had nozzles which swiveled on one axis only, the RD-171 swivels on two axes. [2] RD-171 was intended to be used on Zenit rocket. Models called the RD-172 and RD-173 were proposed, upgrades that would provide additional thrust, and the RD-173 proposal was finalized as the RD-171M upgrade in 2006. [2]


A modification of RD-171M being developed for the Irtysh rocket. Unlike RD-171M it's completely made from Russian components and features a new control system. [6] First test sample was manufactured in early 2019 [7]

Dual-chamber derivative

The RD-180 uses only two combustion chambers instead of the four of the RD-170. The RD-180 used on the Atlas V replaced the three engines used on early Atlas rockets with a single engine and achieved significant payload and performance gains. This engine had also been chosen to be the main propulsion system for the first stage of the now cancelled Russian Rus-M rocket. [8]

Single-chamber derivative

The RD-191 is a single-chamber version used in the Russian Angara rocket. [9] Variants of RD-191 include RD-151 in South Korean Naro-1 rocket, [10] RD-181 in American Orbital ATK Antares rocket, and the proposed RD-193 for the Soyuz-2-1v project. [11]

Proposed variants

On 28 July 2011, NPO Energomash summarised the results of the work on Rus-M rocket engine and considered the possibility of construction several new variants of RD-170 family engines. [12] According to the information, new and proposed variants will be marked as:

In 2017, Director General of RKK Energia Vladimir Solntsev referred to a "simplified" and "cheaper" version of the RD-171 engine in connection with the Soyuz-5 (Sunkar) project. [15]


See also

Related Research Articles

Energia Soviet launch vehicle

Energia was a super-heavy lift launch vehicle. It was designed by NPO Energia of the Soviet Union for a variety of payloads including the Buran spacecraft. Control system main developer enterprise was the Khartron NPO "Electropribor". The Energia used four strap-on boosters each powered by a four-chamber RD-170 engine burning kerosene/LOX, and a central core stage with four single-chamber RD-0120 (11D122) engines fueled by liquid hydrogen/LOX.

Zenit (rocket family) Soviet (now Ukrainian) RP-1/LOX fueled rocket, for satellite launch

Zenit is a family of space launch vehicles designed by the Yuzhnoye Design Bureau in Dnipro, Ukraine, which was then part of the Soviet Union. Zenit was originally built in the 1980s for two purposes: as a liquid rocket booster for the Energia rocket and, equipped with a second stage, as a stand-alone middle-weight launcher with a payload greater than the 7 tonnes of the Soyuz but smaller than the 20 tonnes payload of the Proton. The last rocket family developed in the USSR, the Zenit was intended as an eventual replacement for the dated Soyuz and Proton families, and it would employ propellants which were safer and less toxic than the Proton's nitrogen tetroxide/UDMH mix. Zenit was planned to take over crewed spaceship launches from Soyuz, but these plans were abandoned after the dissolution of the Soviet Union in 1991.

Angara (rocket family) Russian family of RP-1/LOX fueled space-launch vehicles

The Angara rocket family is a family of space-launch vehicles being developed by the Moscow-based Khrunichev State Research and Production Space Center. The rockets are to put between 3,800 and 24,500 kg into low Earth orbit and are intended, along with Soyuz-2 variants, to replace several existing launch vehicles.

Valentin Glushko Soviet rocket engineer (1908–1989)

Valentin Petrovich Glushko, was a Soviet engineer and designer of rocket engines during the Soviet/American Space Race.

Staged combustion cycle Rocket engine operation method

The staged combustion cycle is a power cycle of a bipropellant rocket engine. In the staged combustion cycle, propellant flows through multiple combustion chambers, and is thus combusted in stages. The main advantage relative to other rocket engine power cycles is high fuel efficiency, measured through specific impulse, while its main disadvantage is engineering complexity.

RD-180 Russian rocket engine

The RD-180 is a rocket engine designed and built in Russia. It features a dual combustion chamber, dual-nozzle design and is fueled by a RP-1/LOX mixture. Currently, RD-180 engines are used for the first stage of the American Atlas V launch vehicle.

NK-33 Soviet rocket engine

The NK-33 and NK-43 are rocket engines designed and built in the late 1960s and early 1970s by the Kuznetsov Design Bureau. The NK designation is derived from the initials of chief designer Nikolay Kuznetsov. The NK-33 was among the most powerful LOX/RP-1 rocket engines when it was built, with a high specific impulse and low structural mass. They were intended for the ill-fated Soviet N1F moon rocket, which is an upgraded version of the N1. The NK-33A rocket engine is now used on the first stage of the Soyuz-2-1v launch vehicle. When the supply of the NK-33 engines are exhausted, Russia will supply the new RD-193 rocket engine. It used to be the first stage engines of the Antares 100 rocket series, although those engines are rebranded the AJ-26 and the newer Antares 200 and Antares 200+ rocket series uses the RD-181 for the first stage engines, which is a modified RD-191, but shares some properties like a single combustion chamber unlike the two combustion chambers used in the RD-180 of the Atlas V and the four combustion chambers used in the RD-170 of the Energia and Zenit rocket families, and the RD-107, RD-108, RD-117, and RD-118 rocket engines used on all of the variants of the Soyuz rocket.

The RD-8 is a Soviet / Ukrainian liquid propellant rocket engine burning LOX and RG-1 in an oxidizer rich staged combustion cycle. It has a four combustion chambers that provide thrust vector control by gimbaling each of the nozzles in a single axis ±33°. It was designed in Dnipropetrovsk by the Yuzhnoye Design Bureau as the vernier thruster of the Zenit second stage. As such, it has always been paired with the RD-120 engine for main propulsion.


The RD-58 is a rocket engine, developed in the 1960s by OKB-1, now RKK Energia. The project was managed by Mikhail Melnikov, and it was based on the previous S1.5400 which was the first staged combustion engine in the world. The engine was initially created to power the Block D stage of the Soviet Union's abortive N-1 rocket. Derivatives of this stage are now used as upper stages on some Proton and Zenit rockets. An alternative version of the RD-58 chamber, featuring a shorter nozzle, was used as the N-1's roll-control engine.

NPO Energomash Russian rocket engine manufacturer

NPO Energomash “V. P. Glushko” is a major Russian rocket engine manufacturer. The company primarily develops and produces liquid propellant rocket engines. Energomash originates from the Soviet design bureau OKB-456, which was founded in 1946. NPO Energomash acquired its current name on May 15, 1991, in honor of its former chief designer Valentin Glushko.

RD-270 (Russian: Раке́тный дви́гатель 270, Rocket Engine 270, 8D420) was a single-chamber liquid-bipropellant rocket engine designed by Energomash (USSR) in 1960–1970. It was to be used on the first stages of proposed heavy-lift UR-700 and UR-900 rocket families, as well as on the N1. It has the highest thrust among single-chamber engines of the USSR, 640 metric tons at the surface of Earth. The propellants used are unsymmetrical dimethylhydrazine (UDMH) and nitrogen tetroxide (N2O4). The chamber pressure was among the highest considered, being about 26 MPa. This was achieved by applying full-flow staged combustion cycle for all the incoming mass of fuel, which is turned into a gas and passes through a couple of turbines before being burned in the combustion chamber. This allowed the engine to achieve a specific impulse of 301 s (2.95 km/s) at the Earth's surface.

RD-107 Russian rocket engine

The RD-107 and its sibling, the RD-108, are a type of rocket engine initially used to launch R-7 Semyorka missiles. RD-107 engines were later used on space launch vehicles based on the R-7. As of 2021, very similar RD-107A and RD-108A engines are used to launch the Soyuz-2.1a, and Soyuz-2.1b, which are in active service.

RD-0120 Soviet rocket engine

The Soviet RD-0120 (also designated 11D122) was the Energia core rocket engine, fueled by LH2/LOX, roughly equivalent to the Space Shuttle Main Engine (SSME). These were attached to the Energia core rather than the orbiter, so were not recoverable after a flight, but created a more modular design (the Energia core could be used for a variety of missions besides launching the shuttle). The RD-0120 and the SSME have both similarities and differences. The RD-0120 achieved a slightly higher specific impulse and combustion chamber pressure with reduced complexity and cost (but it was single-use), as compared to the SSME. It uses a fuel-rich staged combustion cycle and a single shaft to drive both the fuel and oxidizer turbopumps. Some of the Russian design features, such as the simpler and cheaper channel wall nozzles, were evaluated by Rocketdyne for possible upgrades to the SSME. It achieved combustion stability without the acoustic resonance chambers that the SSME required.

RD-191 Russian rocket engine

The RD-191(РД-191,Ракетный Двигатель-191, Rocket Engine 191)is a high-performance single-combustion chamber rocket engine, developed in Russia. It is derived from the RD-180 dual-combustion chamber engine, which itself was derived in turn from the four-chamber RD-170 originally used in the Energia launcher.


The RD-0124 is a rocket engine burning liquid oxygen and kerosene in a staged combustion cycle. RD-0124 engines are used on the Soyuz-2.1b and Soyuz-2-1v. A slight variation of the engine, the RD-0124A, is used on the Angara rocket family URM-2 upper stage. RD-0124 is developed by Chemical Automatics Design Bureau in Voronezh.

Space industry of Russia Overview of the space industry of Russia

Russia's space industry comprises more than 100 companies and employs 250,000 people. Most of the companies are descendants of Soviet design bureaux and state production companies. The industry entered a deep crisis following the dissolution of the Soviet Union, with its fullest effect occurring in the last years of the 1990s. Funding of the space program declined by 80% and the industry lost a large part of its work force before recovery began in the early 2000s. Many companies survived by creating joint-ventures with foreign firms and marketing their products abroad.

The RD-120 is a liquid upper stage rocket engine burning RG-1 and LOX in an oxidizer rich staged combustion cycle with an O/F ratio of 2.6. It is used in the second stage of the Zenit family of launch vehicles. It has a single, fixed combustion chamber and thus on the Zenit it is paired with the RD-8 vernier engine. The engine has been developed from 1976 to 1985 by NPO Energomash with V.P. Radovsky leading the development. It is manufactured by, among others, Yuzhmash in Ukraine.

This page is an incomplete list of orbital rocket engine data.

The RD-193 is a high performance single-combustion chamber rocket engine, developed in Russia from 2011 to 2013. It is derived from the RD-170 originally used in the Energia launcher.


The RD-214 (GRAU Index 8D59) was a liquid rocket engine, burning AK-27I (a mixture of 73% nitric acid and 27% N2O4 + iodine passivant and TM-185 (a kerosene and gasoline mix) in the gas generator cycle. As was the case with many V-2 influenced engines, the single turbine was driven by steam generated by catalytic decomposition of H2O2. It also had four combustion chambers and vector control was achieved by refractory vanes protruding into the nozzle's exhaust.


  1. "RD-171M". NPO Energomash . Retrieved 2018-02-22.
  2. 1 2 3 Ponomarenko, Alexander. "ЖРД РД-170 (11Д521) и РД-171 (11Д520)" [RD-170 (11D521) and RD-171 (11D520)] (in Russian). Retrieved 2015-10-08.
  3. 1 2 Wade, Mark. "RD-170". Encyclopedia Astronautica. Retrieved 2015-10-08.
  4. Krebs, Gunter Dick (2015-09-15). "Zenit family". Gunter's Space Page. Retrieved 2015-10-08.
  5. "South Korea to launch first space rocket on Aug. 19". Yonhap News Agency. 2009-08-25. Retrieved 2015-10-08.
  6. "В НПО ЭНЕРГОМАШ СОЗДАН ЭТАЛОННЫЙ МАКЕТ ДВИГАТЕЛЯ РД-171 МВ" [Energomash has made a reference model of RD-171MV]. NPO Energomash (in Russian). 16 October 2018. Retrieved 17 March 2019.
  7. @Rogozin (8 February 2019). "Первый двигатель РД-171МВ для новейшей ракеты среднего класса Союз-5 "Иртыш" собран на подмосковном "НПО Энергомаш" и готовится к огневым испытаниям" [First sample RD-171MV for Soyuz-5 Irtish manufactured in Energomash is ready for testing.] (Tweet) (in Russian) via Twitter.
  8. Coppinger, Rob (2009-08-11). "The Bear's stars shine brighter". Flight International. Retrieved 2009-08-22.
  9. "Successful Tests of Angara Stage 1 Engine". Khrunichev. 2007-12-12. Archived from the original on 2007-12-30.
  10. "First launch of KSLV-1 is conducted". 2009-08-25.
  11. Zak, Anatoly. "RD-193". russianspaceweb.com. Retrieved 2015-06-04.
  12. "Проведено заседание НТС" (in Russian). August 1, 2011. Archived from the original on September 30, 2011. Retrieved August 26, 2011.
  13. "Energomash 2011 catalog (Russian)". Roscosmos. Retrieved February 15, 2018.
  14. "Russia's Energomash: new rocket engines in development". VoiceofRussia.com. The Voice of Russia. 2012-02-22. Retrieved 2014-11-12.
  15. "Russia charts new path to super rocket". russianspaceweb.com. Retrieved February 15, 2018.
  16. "РД-170 (11Д521) и РД-171 (11Д520)".