Radio

Last updated
A variety of radio antennas on Sandia peak near Albuquerque, New Mexico, US. Transmitting antennas are often located on mountain peaks, to give maximum transmission range. Radio towers on Sandia Peak - closeup.jpg
A variety of radio antennas on Sandia peak near Albuquerque, New Mexico, US. Transmitting antennas are often located on mountain peaks, to give maximum transmission range.

Radio is the technology of signaling and communicating using radio waves. [1] [2] [3] Radio waves are electromagnetic waves of frequency between 30  hertz (Hz) and 300  gigahertz (GHz). They are generated by an electronic device called a transmitter connected to an antenna which radiates the waves, and received by a radio receiver connected to another antenna. Radio is very widely used in modern technology, in radio communication, radar, radio navigation, remote control, remote sensing and other applications.

Contents

In radio communication, used in radio and television broadcasting, cell phones, two-way radios, wireless networking and satellite communication among numerous other uses, radio waves are used to carry information across space from a transmitter to a receiver, by modulating the radio signal (impressing an information signal on the radio wave by varying some aspect of the wave) in the transmitter. In radar, used to locate and track objects like aircraft, ships, spacecraft and missiles, a beam of radio waves emitted by a radar transmitter reflects off the target object, and the reflected waves reveal the object's location. In radio navigation systems such as GPS and VOR, a mobile receiver receives radio signals from navigational radio beacons whose position is known, and by precisely measuring the arrival time of the radio waves the receiver can calculate its position on Earth. In wireless radio remote control devices like drones, garage door openers, and keyless entry systems, radio signals transmitted from a controller device control the actions of a remote device.

Applications of radio waves which do not involve transmitting the waves significant distances, such as RF heating used in industrial processes and microwave ovens, and medical uses such as diathermy and MRI machines, are not usually called radio. The noun radio is also used to mean a broadcast radio receiver.

Radio waves were first identified and studied by German physicist Heinrich Hertz in 1886. The first practical radio transmitters and receivers were developed around 1895-6 by Italian Guglielmo Marconi, and radio began to be used commercially around 1900. To prevent interference between users, the emission of radio waves is strictly regulated by law, coordinated by an international body called the International Telecommunications Union (ITU), which allocates frequency bands in the radio spectrum for different uses.

Radio technology

Radio waves are radiated by electric charges undergoing acceleration. [4] [5] They are generated artificially by time varying electric currents, consisting of electrons flowing back and forth in a metal conductor called an antenna, [6] [7] thus accelerating. In transmission, a transmitter generates an alternating current of radio frequency which is applied to an antenna. The antenna radiates the power in the current as radio waves. When the waves strike the antenna of a radio receiver, they push the electrons in the metal back and forth, inducing a tiny alternating current. The radio receiver connected to the receiving antenna detects this oscillating current and amplifies it.

As they travel farther from the transmitting antenna, radio waves spread out so their signal strength (intensity in watts per square meter) decreases, so radio transmissions can only be received within a limited range of the transmitter, the distance depending on the transmitter power, antenna radiation pattern, receiver sensitivity, noise level, and presence of obstructions between transmitter and receiver. An omnidirectional antenna transmits or receives radio waves in all directions, while a directional antenna or high gain antenna transmits radio waves in a beam in a particular direction, or receives waves from only one direction.

Radio waves travel through a vacuum at the speed of light, and in air at very close to the speed of light, so the wavelength of a radio wave, the distance in meters between adjacent crests of the wave, is inversely proportional to its frequency.

The other types of electromagnetic waves besides radio waves; infrared, visible light, ultraviolet, X-rays and gamma rays, are also able to carry information and be used for communication. The wide use of radio waves for telecommunication is mainly due to their desirable propagation properties stemming from their large wavelength. [7] Radio waves have the ability to pass through the atmosphere, foliage, and most building materials, and by diffraction can bend around obstructions, and unlike other electromagnetic waves they tend to be scattered rather than absorbed by objects larger than their wavelength.

Radio communication

Radio communication. Information such as sound is converted by a transducer such as a microphone to an electrical signal, which modulates a radio wave produced by the transmitter. A receiver intercepts the radio wave and extracts the information-bearing modulation signal, which is converted back to a human usable form with another transducer such as a loudspeaker. Signal processing system.png
Radio communication. Information such as sound is converted by a transducer such as a microphone to an electrical signal, which modulates a radio wave produced by the transmitter. A receiver intercepts the radio wave and extracts the information-bearing modulation signal, which is converted back to a human usable form with another transducer such as a loudspeaker.
Comparison of AM and FM modulated radio waves Amfm3-en-de.gif
Comparison of AM and FM modulated radio waves

In radio communication systems, information is carried across space using radio waves. At the sending end, the information to be sent is converted by some type of transducer to a time-varying electrical signal called the modulation signal. [7] [8] The modulation signal may be an audio signal representing sound from a microphone, a video signal representing moving images from a video camera, or a digital signal consisting of a sequence of bits representing binary data from a computer. The modulation signal is applied to a radio transmitter. In the transmitter, an electronic oscillator generates an alternating current oscillating at a radio frequency, called the carrier wave because it serves to "carry" the information through the air. The information signal is used to modulate the carrier, varying some aspect of the carrier wave, impressing the information on the carrier. Different radio systems use different modulation methods:

Many other types of modulation are also used. In some types, a carrier wave is not transmitted but just one or both modulation sidebands. The modulated carrier is amplified in the transmitter and applied to a transmitting antenna which radiates the energy as radio waves. The radio waves carry the information to the receiver location.

At the receiver, the radio wave induces a tiny oscillating voltage in the receiving antenna which is a weaker replica of the current in the transmitting antenna. [7] [8] This voltage is applied to the radio receiver, which amplifies the weak radio signal so it is stronger, then demodulates it, extracting the original modulation signal from the modulated carrier wave. The modulation signal is converted by a transducer back to a human-usable form: an audio signal is converted to sound waves by a loudspeaker or earphones, a video signal is converted to images by a display, while a digital signal is applied to a computer or microprocessor, which interacts with human users.

The radio waves from many transmitters pass through the air simultaneously without interfering with each other because each transmitter's radio waves oscillate at a different rate, in other words, each transmitter has a different frequency, measured in kilohertz (kHz), megahertz (MHz) or gigahertz (GHz). The receiving antenna typically picks up the radio signals of many transmitters. The receiver uses tuned circuits to select the radio signal desired out of all the signals picked up by the antenna and reject the others. A tuned circuit (also called resonant circuit or tank circuit) acts like a resonator, similarly to a tuning fork. [8] It has a natural resonant frequency at which it oscillates. The resonant frequency of the receiver's tuned circuit is adjusted by the user to the frequency of the desired radio station; this is called "tuning". The oscillating radio signal from the desired station causes the tuned circuit to resonate, oscillate in sympathy, and it passes the signal on to the rest of the receiver. Radio signals at other frequencies are blocked by the tuned circuit and not passed on.

Bandwidth

Frequency spectrum of a typical modulated AM or FM radio signal. It consists of a component C at the carrier wave frequency
f
c
{\displaystyle f_{c}}
with the information (modulation) contained in two narrow bands of frequencies called sidebands (SB) just above and below the carrier frequency. Modulated radio signal frequency spectrum.svg
Frequency spectrum of a typical modulated AM or FM radio signal. It consists of a component C at the carrier wave frequency with the information (modulation) contained in two narrow bands of frequencies called sidebands (SB) just above and below the carrier frequency.

A modulated radio wave, carrying an information signal, occupies a range of frequencies. See diagram. The information (modulation) in a radio signal is usually concentrated in narrow frequency bands called sidebands (SB) just above and below the carrier frequency. The width in hertz of the frequency range that the radio signal occupies, the highest frequency minus the lowest frequency, is called its bandwidth (BW). [9] For any given signal-to-noise ratio, an amount of bandwidth can carry the same amount of information (data rate in bits per second) regardless of where in the radio frequency spectrum it is located, so bandwidth is a measure of information-carrying capacity. The bandwidth required by a radio transmission depends on the data rate of the information (modulation signal) being sent, and the spectral efficiency of the modulation method used; how much data it can transmit in each kilohertz of bandwidth. Different types of information signals carried by radio have different data rates. For example, a television (video) signal has a greater data rate than an audio signal.

The radio spectrum, the total range of radio frequencies that can be used for communication in a given area, is a limited resource. [9] [3] Each radio transmission occupies a portion of the total bandwidth available. Radio bandwidth is regarded as an economic good which has a monetary cost and is in increasing demand. In some parts of the radio spectrum the right to use a frequency band or even a single radio channel is bought and sold for millions of dollars. So there is an incentive to employ technology to minimize the bandwidth used by radio services.

In recent years there has been a transition from analog to digital radio transmission technologies. Part of the reason for this is that digital modulation can often transmit more information (a greater data rate) in a given bandwidth than analog modulation, by using data compression algorithms, which reduce redundancy in the data to be sent, and more efficient modulation. Other reasons for the transition is that digital modulation has greater noise immunity than analog, digital signal processing chips have more power and flexibility than analog circuits, and a wide variety of types of information can be transmitted using the same digital modulation.

Because it is a fixed resource which is in demand by an increasing number of users, the radio spectrum has become increasingly congested in recent decades, and the need to use it more effectively is driving many additional radio innovations such as trunked radio systems, spread spectrum (ultra-wideband) transmission, frequency reuse, dynamic spectrum management, frequency pooling, and cognitive radio.

ITU frequency bands

The ITU arbitrarily divides the radio spectrum into 12 bands, each beginning at a wavelength which is a power of ten (10n) metres, with corresponding frequency of 3 times a power of ten, and each covering a decade of frequency or wavelength. [3] [10] Each of these bands has a traditional name:

Band nameAbbreviationFrequencyWavelengthBand nameAbbreviationFrequencyWavelength
Extremely low frequency ELF3 – 30 Hz100,000–10,000 km High frequency HF3 – 30 MHz100–10 m
Super low frequency SLF30 – 300 Hz10,000–1,000 km Very high frequency VHF30 – 300 MHz10–1 m
Ultra low frequency ULF300 – 3000 Hz1,000–100 km Ultra high frequency UHF300 – 3000 MHz100–10 cm
Very low frequency VLF3 – 30 kHz100–10 km Super high frequency SHF3 – 30 GHz10–1 cm
Low frequency LF30 – 300 kHz10–1 km Extremely high frequency EHF30 – 300 GHz10–1 mm
Medium frequency MF300 – 3000 kHz1000–100 m Tremendously high frequency THF300 – 3000 GHz1–0.1 mm

It can be seen that the bandwidth, the range of frequencies, contained in each band is not equal but increases exponentially as the frequency increases; each band contains nine times the bandwidth of the preceding band. The greater bandwidth available has motivated a continuing trend to exploit higher frequencies throughout radio's history.

Regulation

The airwaves are a resource shared by many users. Two radio transmitters in the same area that attempt to transmit on the same frequency will interfere with each other, causing garbled reception, so neither transmission may be received clearly. [9] Interference with radio transmissions can not only have a large economic cost, it can be life-threatening (for example, in the case of interference with emergency communications or air traffic control).

To prevent interference between different users, the emission of radio waves is strictly regulated by national laws, coordinated by an international body, the International Telecommunications Union (ITU), which allocates bands in the radio spectrum for different uses. [9] [3] Radio transmitters must be licensed by governments, under a variety of license classes depending on use, and are restricted to certain frequencies and power levels. In some classes, such as radio and television broadcasting stations, the transmitter is given a unique identifier consisting of a string of letters and numbers called a call sign , which must be used in all transmissions. The radio operator must hold a government license, such as the general radiotelephone operator license in the US, obtained by taking a test demonstrating adequate technical and legal knowledge of safe radio operation.

Exceptions to the above rules allow the unlicensed operation by the public of low power short range transmitters in consumer products such as cell phones, cordless phones, wireless devices, walkie-talkies, citizens band radios, wireless microphones, garage door openers, and baby monitors. In the US, these fall under Part 15 of the Federal Communications Commission (FCC) regulations. Many of these devices use the ISM bands, a series of frequency bands throughout the radio spectrum reserved for unlicensed use. Although they can be operated without a license, like all radio equipment these devices generally must be type-approved before sale.

Applications

Below are some of the most important uses of radio, organized by function.

Broadcasting

2008-07-28 Mast radiator.jpg
AM radio station
FM broadcasting antenna Willans Hill.jpg
FM radio station
Superturnstile Tx Muehlacker.JPG
Television station
Broadcasting antennas

Broadcasting is the one-way transmission of information from a radio transmitter to receivers belonging to a public audience. Since the radio waves become weaker with distance, a broadcasting station can only be received within a limited distance of its transmitter. Systems which broadcast from satellites can generally be received over an entire country or continent. Older terrestrial radio and television is paid for by commercial advertising or governments. In subscription systems like satellite television and satellite radio the customer pays a monthly fee. In these systems the radio signal is encrypted and can only be decrypted by the receiver, which is controlled by the company and can be deactivated if the customer doesn't pay his bill.

Broadcasting uses several parts of the radio spectrum, depending on the type of signals transmitted and the desired target audience. Longwave and medium wave signals can give reliable coverage of areas several hundred kilometres across, but have more limited information carrying capacity and so work best with audio signals (speech and music), and the sound quality can be degraded by radio noise from natural and artificial sources. The shortwave bands have greater potential range, but are more subject to interference by distant stations and varying atmospheric conditions that affect reception.

In the very high frequency band, greater than 30 megahertz, the Earth's atmosphere has less of an effect on the range of signals, and line-of-sight propagation becomes the principle mode. These higher frequencies permit the great bandwidth required for television broadcasting. Since natural and artificial noise sources are less present at these frequencies, high-quality audio transmission is possible, using frequency modulation.

FM broadcast transmitter of radio station KWNR, Las Vegas which transmits on 95.5 MHz with a power of 35 kW KWNR Continental 816R-5B SN 247.jpg
FM broadcast transmitter of radio station KWNR, Las Vegas which transmits on 95.5 MHz with a power of 35 kW

Radio broadcasting

Radio broadcasting means transmission of audio (sound) to radio receivers belonging to a public audience. Analog audio is the earliest form of radio broadcast. AM broadcasting began around 1920. FM broadcasting was introduced in the late 1930s with improved fidelity.

Digital audio broadcasting (DAB) debuted in some countries in 1998. It transmits audio as a digital signal rather than an analog signal as AM and FM do. DAB has the potential to provide higher quality sound than FM (although many stations do not choose to transmit at such high quality), has greater immunity to radio noise and interference, makes better use of scarce radio spectrum bandwidth, and provides advanced user features such as electronic program guides. Its disadvantage is that it is incompatible with previous radios so that a new DAB receiver must be purchased. Most countries plan an eventual switchover from FM to DAB. The United States and Canada have chosen not to implement DAB.

A single DAB station transmits a 1,500 kHz bandwidth signal that carries from 9 to 12 channels of digital audio modulated by OFDM from which the listener can choose. Broadcasters can transmit a channel at a range of different bit rates, so different channels can have different audio quality. In different countries DAB stations broadcast in either Band III (174–240 MHz) or L band (1.452–1.492 GHz) in the UHF range, so like FM reception is limited by the visual horizon to about 40 miles (64 km).

Digital Radio Mondiale (DRM) is a competing digital terrestrial radio standard developed mainly by broadcasters as a higher spectral efficiency replacement for legacy AM and FM broadcasting. Mondiale means "worldwide" in French and Italian, and DRM, developed in 2001, is currently supported by 23 countries and has been adopted by some European and Eastern broadcasters beginning in 2003. The DRM30 mode uses the AM broadcast bands below 30 MHz and is intended as a replacement for AM and shortwave broadcasting, and the DRM+ mode uses VHF frequencies centered on the FM broadcast band and is intended as a replacement for FM broadcasting. It is incompatible with existing radio receivers and requires listeners to purchase a new DRM receiver. The modulation used is a form of OFDM called COFDM in which up to 4 carriers are transmitted in a channel formerly occupied by a single AM or FM signal, modulated by quadrature amplitude modulation (QAM). The DRM system is designed to be as compatible as possible with existing AM and FM radio transmitters, so much of the equipment in existing radio stations will not have to be replaced.

Satellite radio is a subscription radio service that broadcasts CD quality digital audio direct to subscribers' receivers using a microwave downlink signal from a direct broadcast communication satellite in geostationary orbit 22,000 miles above the Earth. It is mostly intended for car radios in vehicles. Satellite radio uses the 2.3 GHz S band in North America, in other parts of the world, it uses the 1.4 GHz L band allocated for DAB.

Television receiver PANTALLA DE PLASMA.JPG
Television receiver

Television broadcasting

Television broadcasting is the transmission of moving images by radio, which consist of sequences of still images, which are displayed on a screen on a television receiver (a "television" or TV) along with a synchronized audio (sound) channel. Television (video) signals occupy a wider bandwidth than broadcast radio (audio) signals. Analog television, the original television technology, required 6 MHz, so the television frequency bands are divided into 6 MHz channels, now called "RF channels". The current television standard, introduced beginning in 2006, is a digital format called HDTV (high definition television), which transmits pictures at higher resolution, typically 1080 pixels high by 1920 pixels wide, at a rate of 25 or 30 frames per second. Digital television (DTV) transmission systems, which replaced older analog television in a transition beginning in 2006, use image compression and high efficiency digital modulation such as OFDM and 8VSB to transmit HDTV video within a smaller bandwidth than the old analog channels, saving scarce radio spectrum space. Therefore, each of the 6 MHz analog RF channels now carries up to 7 DTV channels – these are called "virtual channels". Digital television receivers have a different behavior in the presence of poor reception or noise than analog television, called the "digital cliff" effect. Unlike analog television, in which increasingly poor reception causes the picture quality to gradually degrade, in digital television picture quality is not affected by poor reception until, at a certain point, the receiver stops working and the screen goes black.

Terrestrial television, over-the-air (OTA) television, or broadcast television – the oldest television technology, is the transmission of television signals from land-based television stations to television receivers (called televisions or TVs) in viewer's homes. Terrestrial television broadcasting uses the bands 41 – 88 MHz (VHF low band or Band I, carrying RF channels 1–6), 174 – 240 MHz, (VHF high band or Band III; carrying RF channels 7–13), and 470 – 614 MHz (UHF Band IV and Band V; carrying RF channels 14 and up). The exact frequency boundaries vary in different countries. Propagation is by line-of-sight, so reception is limited by the visual horizon to 30–40 miles (48–64 km). In the US effective radiated power (ERP) of television transmitters is limited to 35 kW in the VHF low band, 50 kW in the VHF high band, and 220 kW in UHF band; most TV stations operate below 75% of the limit. In most areas viewers use a simple "rabbit ears" dipole antenna on top of the TV, but viewers in fringe reception areas more than 15 miles from a station usually have to use an outdoor antenna mounted on the roof to get adequate reception.

Satellite television dish on a residence SuperDISH121.jpg
Satellite television dish on a residence

Satellite television – a set-top box which receives subscription direct-broadcast satellite television, and displays it on an ordinary television. A direct broadcast satellite in geostationary orbit 22,200 miles (35,700 km) above the Earth's equator transmits many channels (up to 900) modulated on a 12.2 to 12.7 GHz Ku band microwave downlink signal to a rooftop satellite dish antenna on the subscriber's residence. The microwave signal is converted to a lower intermediate frequency at the dish and conducted into the building by a coaxial cable to a set-top box connected to the subscriber's TV, where it is demodulated and displayed. The subscriber pays a monthly fee.

Time and frequency

Government standard frequency and time signal services operate time radio stations which continuously broadcast extremely accurate time signals produced by atomic clocks, as a reference to synchronize other clocks. Examples are BPC, DCF77, JJY, MSF, RTZ, TDF, WWV, and YVTO. One use is in radio clocks and watches, which include an automated receiver which periodically (usually weekly) receives and decodes the time signal and resets the watch's internal quartz clock to the correct time, thus allowing a small watch or desk clock to have the same accuracy as an atomic clock. Government time stations are declining in number because GPS satellites and the Internet Network Time Protocol (NTP) provide equally accurate time standards.

Two way voice communication

HA0478-006 (6011470974).jpg
Cell-Tower.jpg
(left) Modern cellphone. (right) Cellular phone tower shared by antennas belonging to 3 different networks.

A two-way radio is an audio transceiver, a receiver and transmitter in the same device, used for bidirectional person-to-person voice communication with other users with similar radios. An older term for this mode of communication is radiotelephony . The radio link may be half-duplex, as in a walkie-talkie, using a single radio channel in which only one radio can transmit at a time, so different users take turns talking, pressing a "push to talk" button on their radio which switches off the receiver and switches on the transmitter. Or the radio link may be full duplex, a bidirectional link using two radio channels so both people can talk at the same time, as in a cell phone.

The purpose of cellular organization is to conserve radio bandwidth by frequency reuse. Low power transmitters are used so the radio waves used in a cell do not travel far beyond the cell, allowing the same frequencies to be reused in geographically separated cells. When a user carrying a cellphone crosses from one cell to another, his phone is automatically "handed off" seamlessly to the new antenna and assigned new frequencies. Cellphones have a highly automated full duplex digital transceiver using OFDM modulation using two digital radio channels, each carrying one direction of the bidirectional conversation, as well as a control channel that handles dialing calls and "handing off" the phone to another cell tower. Existing 2G, 3G, and 4G networks use frequencies in the UHF and low microwave range, between 700 MHz and 3 GHz. The cell phone transmitter adjusts its power output to use the minimum power necessary to communicate with the cell tower; 0.6 W when near the tower, up to 3 W when farther away. Cell tower channel transmitter power is 50 W. Current generation phones, called smartphones, have many functions besides making telephone calls, and therefore have several other radio transmitters and receivers that connect them with other networks: usually a WiFi modem, a Bluetooth modem, and a GPS receiver.
Satellite phones, showing the large antennas needed to communicate with the satellite Zivile Satellitentelefone.jpg
Satellite phones, showing the large antennas needed to communicate with the satellite
Firefighter using walkie-talkie Faster communications aid Marine, civilian first responders 130827-M-KX456-009.jpg
Firefighter using walkie-talkie
VHF marine radio on a ship Radio-Telephone.jpg
VHF marine radio on a ship

One way voice communication

One way, unidirectional radio transmission is called simplex .

Data communications

Parabolic antennas of microwave relay links on tower in Australia. Parabolic antennas.JPG
Parabolic antennas of microwave relay links on tower in Australia.
RFID tag from a DVD RFID Chip 001.JPG
RFID tag from a DVD

Space communication

Russian satellite ground station TsKS Dubna GPKS -6.jpg
Russian satellite ground station

This is radio communication between a spacecraft and an Earth-based ground station, or another spacecraft. Communication with spacecraft involves the longest transmission distances of any radio links, up to billions of kilometers for interplanetary spacecraft. In order to receive the weak signals from distant spacecraft, satellite ground stations use large parabolic "dish" antennas up to 25 metres (82 ft) in diameter and extremely sensitive receivers. High frequencies in the microwave band are used, since microwaves pass through the ionosphere without refraction, and at microwave frequencies the high gain antennas needed to focus the radio energy into a narrow beam pointed at the receiver are small and take up a minimum of space in a satellite. Portions of the UHF, L, C, S, ku and ka band are allocated for space communication. A radio link which transmits data from the Earth's surface to a spacecraft is called an uplink, while a link which transmits data from the spacecraft to the ground is called a downlink.

Communications satellite belonging to Azerbaijan Az@rbaycan peyki - VOA.jpg
Communications satellite belonging to Azerbaijan

Radar

Military air traffic controller on US Navy aircraft carrier monitors aircraft on radar screen US Navy 120208-N-TU894-022 Air-Traffic Controller 2nd Class Gregory Clemmons stands the departure position watch as Air-Traffic Controller 3rd Clas.jpg
Military air traffic controller on US Navy aircraft carrier monitors aircraft on radar screen

Radar is a radiolocation method used to locate and track aircraft, spacecraft, missiles, ships, vehicles, and also to map weather patterns and terrain. A radar set consists of a transmitter and receiver. The transmitter emits a narrow beam of radio waves which is swept around the surrounding space. When the beam strikes a target object, radio waves are reflected back to the receiver. The direction of the beam reveals the object's location. Since radio waves travel at a constant speed close to the speed of light, by measuring the brief time delay between the outgoing pulse and the received "echo", the range to the target can be calculated. The targets are often displayed graphically on a map display called a radar screen. Doppler radar can measure a moving object's velocity, by measuring the change in frequency of the return radio waves due to the Doppler effect.

Radar sets mainly use high frequencies in the microwave bands, because these frequencies create strong reflections from objects the size of vehicles and can be focused into narrow beams with compact antennas. Parabolic (dish) antennas are widely used. In most radars the transmitting antenna also serves as the receiving antenna; this is called a monostatic radar . A radar which uses separate transmitting and receiving antennas is called a bistatic radar .

ASR-8 airport surveillance radar antenna. It rotates once every 4.8 seconds. The rectangular antenna on top is the secondary radar. ASR-9 Radar Antenna.jpg
ASR-8 airport surveillance radar antenna. It rotates once every 4.8 seconds. The rectangular antenna on top is the secondary radar.
Rotating marine radar antenna on ship. Rotating marine radar - rotating waveguide antenna.gif
Rotating marine radar antenna on ship.

Radiolocation

Radiolocation is a generic term covering a variety of techniques which use radio waves to find the location of objects, or for navigation

A personal navigation assistant GPS receiver in a car, which can give driving directions to a destination. Paris-PorteMolitor-GPS.jpg
A personal navigation assistant GPS receiver in a car, which can give driving directions to a destination.
Wildlife officer tracking radio tagged mountain lion Tracking Mountain Lions.jpg
Wildlife officer tracking radio tagged mountain lion

Remote control

US Air Force MQ-1 Predator drone flown remotely by a pilot on the ground MQ-1 Predator unmanned aircraft.jpg
US Air Force MQ-1 Predator drone flown remotely by a pilot on the ground

Radio remote control is the use of electronic control signals sent by radio waves from a transmitter to control the actions of a device at a remote location. Remote control systems may also include telemetry channels in the other direction, used to transmit real-time information of the state of the device back to the control station. Unmanned spacecraft are an example of remote controlled machines, controlled by commands transmitted by satellite ground stations. Most handheld remote controls used to control consumer electronics products like televisions or DVD players actually operate by infrared light rather than radio waves, so are not examples of radio remote control. A security concern with remote control systems is spoofing, in which an unauthorized person transmits an imitation of the control signal to take control of the device. Examples of radio remote control:

Remote keyless entry fob for a car Automobile remote keyless entry transmitter.jpg
Remote keyless entry fob for a car
Quadcopter, a popular remote-controlled toy Md4-200.jpg
Quadcopter, a popular remote-controlled toy

Jamming

Radio jamming is the deliberate radiation of radio signals designed to interfere with the reception of other radio signals. Jamming devices are called "signal suppressors" or "interference generators" or just jammers. [12]

During wartime, militaries use jamming to interfere with enemies' tactical radio communication. Since radio waves can pass beyond national borders, some totalitarian countries which practice censorship use jamming to prevent their citizens from listening to broadcasts from radio stations in other countries. Jamming is usually accomplished by a powerful transmitter which generates noise on the same frequency as the target transmitter.

US Federal law prohibits the operation or sale of any type of jamming devices, including ones that interfere with GPS, cellular, Wi-Fi and police radars. [13]

Scientific research

Arecibo radio telescope, in Puerto Rico The Arecibo Observatory 20151101114231-0 8e7cc c7a44aca orig.jpg
Arecibo radio telescope, in Puerto Rico

Etymology

The word "radio" is derived from the Latin word "radius", meaning "spoke of a wheel, beam of light, ray". It was first applied to communications in 1881 when, at the suggestion of French scientist Ernest Mercadier, Alexander Graham Bell adopted "radiophone" (meaning "radiated sound") as an alternate name for his photophone optical transmission system. [14] However, this invention would not be widely adopted.

Following Heinrich Hertz's discovery of the existence of radio waves in 1886, a variety of terms were initially used for this radiation, including "Hertzian waves", "electric waves", and "ether waves". The first practical radio communications systems, developed by Guglielmo Marconi in 1894–5, transmitted telegraph signals by radio waves, so radio communication was first called "wireless telegraphy". Up until about 1910 the term "wireless telegraphy" also included a variety of other experimental systems for transmitting telegraph signals without wires, including electrostatic induction, electromagnetic induction and aquatic and earth conduction, so there was a need for a more precise term referring exclusively to electromagnetic radiation.

The first use of radio- in conjunction with electromagnetic radiation appears to have been by French physicist Édouard Branly, who in 1890 developed the coherer detector, which he called in French a radio-conducteur . [15] The radio- prefix was later used to form additional descriptive compound and hyphenated words, especially in Europe. For example, in early 1898 the British publication The Practical Engineer included a reference to "the radiotelegraph" and "radiotelegraphy", [16] The French text of both the 1903 and 1906 Berlin Radiotelegraphic Conventions includes the phrases "radiotélégraphique" and "radiotélégrammes".

The use of "radio" as a standalone word dates back to at least December 30, 1904, when instructions issued by the British Post Office for transmitting telegrams specified that "The word 'Radio'... is sent in the Service Instructions". [17] This practice was universally adopted, and the word "radio" introduced internationally, by the 1906 Berlin Radiotelegraphic Convention, which included a Service Regulation specifying that "Radiotelegrams shall show in the preamble that the service is 'Radio'".

The switch to "radio" in place of "wireless" took place slowly and unevenly in the English-speaking world. Lee de Forest helped popularize the new word in the United States—in early 1907 he founded the DeForest Radio Telephone Company, and his letter in the June 22, 1907 Electrical World about the need for legal restrictions warned that "Radio chaos will certainly be the result until such stringent regulation is enforced". [18] The United States Navy would also play a role. Although its translation of the 1906 Berlin Convention used the terms "wireless telegraph" and "wireless telegram", by 1912 it began to promote the use of "radio" instead. The term started to become preferred by the general public in the 1920s with the introduction of broadcasting. (the word broadcasting originated with the agricultural term meaning roughly "scattering seeds widely".) British Commonwealth countries continued to commonly use the term "wireless" until the mid-20th century, though the magazine of the British Broadcasting Corporation in the UK has been called Radio Times since its founding in the early 1920s.

In recent years "wireless" has gained renewed popularity as a more general term for devices communicating using electromagnetic radiation, either radio waves or light, due to the rapid growth of short-range computer networking, e.g., wireless local area networks Wi-Fi, and Bluetooth, as well as cell phones, to distinguish these uses from traditional "radio" communication, such as broadcasting.

History

See History of radio, Invention of radio, Timeline of radio, History of broadcasting

See also

Related Research Articles

Microwave Electromagnetic radiation with wavelengths from 1 m to 1 mm

Microwaves are a form of electromagnetic radiation with wavelengths ranging from about one meter to one millimeter; with frequencies between 300 MHz (1 m) and 300 GHz (1 mm). Different sources define different frequency ranges as microwaves; the above broad definition includes both UHF and EHF bands. A more common definition in radio-frequency engineering is the range between 1 and 100 GHz. In all cases, microwaves include the entire SHF band at minimum. Frequencies in the microwave range are often referred to by their IEEE radar band designations: S, C, X, Ku, K, or Ka band, or by similar NATO or EU designations.

Direct-sequence spread spectrum Modulation technique to reduce signal interference

In telecommunications, direct-sequence spread spectrum (DSSS) is a spread-spectrum modulation technique primarily used to reduce overall signal interference. The direct-sequence modulation makes the transmitted signal wider in bandwidth than the information bandwidth. After the despreading or removal of the direct-sequence modulation in the receiver, the information bandwidth is restored, while the unintentional and intentional interference is substantially reduced.

Shortwave radio radio frequencies in the range of 1.6-30 megahertz (ITU region 1) or 1.7-30 megahertz (ITU region 2)

Shortwave radio is radio transmission using shortwave radio frequencies. There is no official definition of the band, but the range always includes all of the high frequency band (HF), and generally extends from 3–30 MHz ; above the medium frequency band (MF), to the end of the HF band.

Transmitter Electronic device that emits radio waves

In electronics and telecommunications a transmitter or radio transmitter is an electronic device which produces radio waves with an antenna. The transmitter itself generates a radio frequency alternating current, which is applied to the antenna. When excited by this alternating current, the antenna radiates radio waves.

Intermediate frequency frequency to which a carrier wave is shifted as an intermediate step in transmission or reception

In communications and electronic engineering, an intermediate frequency (IF) is a frequency to which a carrier wave is shifted as an intermediate step in transmission or reception. The intermediate frequency is created by mixing the carrier signal with a local oscillator signal in a process called heterodyning, resulting in a signal at the difference or beat frequency. Intermediate frequencies are used in superheterodyne radio receivers, in which an incoming signal is shifted to an IF for amplification before final detection is done.

Ultra high frequency The range 300-3000 MHz of the electromagnetic spectrum

Ultra high frequency (UHF) is the ITU designation for radio frequencies in the range between 300 megahertz (MHz) and 3 gigahertz (GHz), also known as the decimetre band as the wavelengths range from one meter to one tenth of a meter. Radio waves with frequencies above the UHF band fall into the super-high frequency (SHF) or microwave frequency range. Lower frequency signals fall into the VHF or lower bands. UHF radio waves propagate mainly by line of sight; they are blocked by hills and large buildings although the transmission through building walls is strong enough for indoor reception. They are used for television broadcasting, cell phones, satellite communication including GPS, personal radio services including Wi-Fi and Bluetooth, walkie-talkies, cordless phones, and numerous other applications.

Ultra-wideband is a radio technology that can use a very low energy level for short-range, high-bandwidth communications over a large portion of the radio spectrum. UWB has traditional applications in non-cooperative radar imaging. Most recent applications target sensor data collection, precision locating and tracking applications.

Radio propagation behavior of radio waves as they travel, or are propagated, from one point to another, or into various parts of the atmosphere

Radio propagation is the behavior of radio waves as they travel, or are propagated, from one point to another, or into various parts of the atmosphere. As a form of electromagnetic radiation, like light waves, radio waves are affected by the phenomena of reflection, refraction, diffraction, absorption, polarization, and scattering. Understanding the effects of varying conditions on radio propagation has many practical applications, from choosing frequencies for international shortwave broadcasters, to designing reliable mobile telephone systems, to radio navigation, to operation of radar systems.

Digital radio is the use of digital technology to transmit or receive across the radio spectrum. Digital transmission by radio waves includes digital broadcasting, and especially digital audio radio services.

A continuous wave or continuous waveform (CW) is an electromagnetic wave of constant amplitude and frequency, typically a sine wave, that for mathematical analysis is considered to be of infinite duration. Continuous wave is also the name given to an early method of radio transmission, in which a sinusoidal carrier wave is switched on and off. Information is carried in the varying duration of the on and off periods of the signal, for example by Morse code in early radio. In early wireless telegraphy radio transmission, CW waves were also known as "undamped waves", to distinguish this method from damped wave signals produced by earlier spark gap type transmitters.

Super high frequency (SHF) is the ITU designation for radio frequencies (RF) in the range between 3 and 30 gigahertz (GHz). This band of frequencies is also known as the centimetre band or centimetre wave as the wavelengths range from one to ten centimetres. These frequencies fall within the microwave band, so radio waves with these frequencies are called microwaves. The small wavelength of microwaves allows them to be directed in narrow beams by aperture antennas such as parabolic dishes and horn antennas, so they are used for point-to-point communication and data links and for radar. This frequency range is used for most radar transmitters, wireless LANs, satellite communication, microwave radio relay links, and numerous short range terrestrial data links. They are also used for heating in industrial microwave heating, medical diathermy, microwave hyperthermy to treat cancer, and to cook food in microwave ovens.

Amateur television

Amateur television (ATV) is the transmission of broadcast quality video and audio over the wide range of frequencies of radio waves allocated for radio amateur (Ham) use. ATV is used for non-commercial experimentation, pleasure, and public service events. Ham TV stations were on the air in many cities before commercial television stations came on the air. Various transmission standards are used, these include the broadcast transmission standards of NTSC in North America and Japan, and PAL or SECAM elsewhere, utilizing the full refresh rates of those standards. ATV includes the study of building of such transmitters and receivers, and the study of radio propagation of signals travelling between transmitting and receiving stations.

Radio receiver radio device for receiving radio waves and converting them to a useful signal

In radio communications, a radio receiver, also known as a receiver, wireless or simply radio is an electronic device that receives radio waves and converts the information carried by them to a usable form. It is used with an antenna. The antenna intercepts radio waves and converts them to tiny alternating currents which are applied to the receiver, and the receiver extracts the desired information. The receiver uses electronic filters to separate the desired radio frequency signal from all the other signals picked up by the antenna, an electronic amplifier to increase the power of the signal for further processing, and finally recovers the desired information through demodulation.

The radio spectrum is the part of the electromagnetic spectrum with frequencies from 30 Hz to 300 GHz. Electromagnetic waves in this frequency range, called radio waves, are widely used in modern technology, particularly in telecommunication. To prevent interference between different users, the generation and transmission of radio waves is strictly regulated by national laws, coordinated by an international body, the International Telecommunication Union (ITU).

Cordless telephone

A cordless telephone or portable telephone is a telephone in which the handset is portable and communicates with the body of the phone by radio, instead of being attached by a cord. The base station is connected to the telephone network through a telephone line as a corded telephone is, and also serves as a charger to charge the handset's batteries. The range is limited, usually to the same building or some short distance from the base station.

Earth–Moon–Earth communication (EME), also known as Moon bounce, is a radio communications technique that relies on the propagation of radio waves from an Earth-based transmitter directed via reflection from the surface of the Moon back to an Earth-based receiver.

Radiolocating is the process of finding the location of something through the use of radio waves. It generally refers to passive uses, particularly radar—as well as detecting buried cables, water mains, and other public utilities. It is similar to radionavigation, but radiolocation usually refers to passively finding a distant object rather than actively one's own position. Both are types of radiodetermination. Radiolocation is also used in real-time locating systems (RTLS) for tracking valuable assets.

Wireless microphone microphone with circuitry to convert the audio signal to a radio signal

A wireless microphone, or cordless microphone, is a microphone without a physical cable connecting it directly to the sound recording or amplifying equipment with which it is associated. Also known as a radio microphone, it has a small, battery-powered radio transmitter in the microphone body, which transmits the audio signal from the microphone by radio waves to a nearby receiver unit, which recovers the audio. The other audio equipment is connected to the receiver unit by cable. In one type the transmitter is contained within the handheld microphone body. In another type the transmitter is contained within a separate unit called a "bodypack", usually clipped to the user's belt or concealed under his clothes. The bodypack is connected by wire to a "lavalier microphone" or "lav", a headset or earset microphone, or another wired microphone. Most bodypack designs also support a wired instrument connection. Wireless microphones are widely used in the entertainment industry, television broadcasting, and public speaking to allow public speakers, interviewers, performers, and entertainers to move about freely while using a microphone without requiring a cable attached to the microphone.

Microwave transmission technology of transmitting information or energy by the use of microwaves

Microwave transmission is the transmission of information by microwave radio waves. Although an experimental 40-mile (64 km) microwave telecommunication link across the English Channel was demonstrated in 1931, the development of radar in World War II provided the technology for practical exploitation of microwave communication. In the 1950s, large transcontinental microwave relay networks, consisting of chains of repeater stations linked by line-of-sight beams of microwaves were built in Europe and America to relay long distance telephone traffic and television programs between cities. Communication satellites which transferred data between ground stations by microwaves took over much long distance traffic in the 1960s. In recent years, there has been an explosive increase in use of the microwave spectrum by new telecommunication technologies such as wireless networks, and direct-broadcast satellites which broadcast television and radio directly into consumers' homes.

There are several uses of the 2.4 GHz band. Interference may occur between devices operating at 2.4 GHz. This article details the different users of the 2.4 GHz band, how they cause interference to other users and how they are prone to interference from other users.

References

  1. "Radio". Oxford Living Dictionaries. Oxford University Press. 2019. Retrieved 26 February 2019.
  2. "Definition of radio". Encyclopedia. PCMagazine website, Ziff-Davis. 2018. Retrieved 26 February 2019.
  3. 1 2 3 4 Ellingson, Steven W. (2016). Radio Systems Engineering. Cambridge University Press. pp. 1–4. ISBN   978-1316785164.
  4. Kraus, John D. (1988). Antennas, 2nd Ed. Tata-McGraw Hill. p. 50. ISBN   0074632191.
  5. Serway, Raymond; Faughn, Jerry; Vuille, Chris (2008). College Physics, 8th Ed. Cengage Learning. p. 714. ISBN   0495386936.
  6. Balanis, Constantine A. (2005). Antenna theory: Analysis and Design, 3rd Ed. John Wiley and Sons. pp.  10. ISBN   9781118585733.
  7. 1 2 3 4 Ellingson, Steven W. (2016). Radio Systems Engineering. Cambridge University Press. pp. 16–17. ISBN   1316785165.
  8. 1 2 3 Brain, Marshall (2000-12-07). "How Radio Works". HowStuffWorks.com. Retrieved 2009-09-11.
  9. 1 2 3 4 "Spectrum 101" (PDF). US National Aeronautics and Space Administration (NASA). February 2016. Retrieved 2 December 2019.Cite journal requires |journal= (help), p. 6
  10. "Radio Regulations, 2016 Edition" (PDF). International Telecommunications Union. 3 November 2016. Retrieved 9 November 2019.Cite journal requires |journal= (help) Article 2, Section 1, p.27
  11. 1 2 Brain, Marshall; Jeff Tyson & Julia Layton (2018). "How Cell Phones Work". How Stuff Works. InfoSpace Holdings LLC. Retrieved 31 December 2018.
  12. "What jamming of a wireless security system is and how to resist it | Ajax Systems Blog". Ajax Systems. Retrieved 2020-01-18.
  13. "Jammer Enforcement". Federal Communications Commission. 2011-03-03. Retrieved 2020-01-18.
  14. "Production of Sound by Radiant Energy" by Alexander Graham Bell, Popular Science Monthly, July, 1881, pages 329–330: "[W]e have named the apparatus for the production and reproduction of sound in this way the "photophone", because an ordinary beam of light contains the rays which are operative. To avoid in future any misunderstandings upon this point, we have decided to adopt the term "radiophone", proposed by M. Mercadier, as a general term signifying the production of sound by any form of radiant energy..."
  15. "The Genesis of Wireless Telegraphy" by A. Frederick Collins, Electrical World and Engineer, May 10, 1902, page 811.
  16. "Wireless Telegraphy", The Practical Engineer, February 25, 1898, page 174. "Dr. O. J. Lodge, who preceded Marconi in making experiments in what may be called "ray" telegraphy or radiotelegraphy by a year or two, has devised a new method of sending and receiving the messages. The reader will understand that in the radiotelegraph electric waves forming the signals of the message start from the sending instrument and travel in all directions like rays of light from a lamp, only they are invisible."
  17. "Wireless Telegraphy", The Electrical Review (London), January 20, 1905, page 108, quoting from the British Post Office's December 30, 1904 Post Office Circular.
  18. "Interference with Wireless Messages", Electrical World, June 22, 1907, page 1270.