Range criterion

Last updated

In quantum mechanics, in particular quantum information, the Range criterion is a necessary condition that a state must satisfy in order to be separable. In other words, it is a separability criterion.

Quantum mechanics branch of physics dealing with phenomena at scales of the order of the Planck constant

Quantum mechanics, including quantum field theory, is a fundamental theory in physics which describes nature at the smallest scales of energy levels of atoms and subatomic particles.

In physics and computer science, quantum information is the information of the state of a quantum system; it is the basic entity of study in quantum information theory, and can be manipulated using quantum information processing techniques. Quantum information, like classical information, can be processed using digital computers, transmitted from one location to another, manipulated with algorithms, and analyzed with the computer science mathematics. While the fundamental unit of classical information is the bit, the most basic unit of quantum information is the qubit.

Contents

The result

Consider a quantum mechanical system composed of n subsystems. The state space H of such a system is the tensor product of those of the subsystems, i.e. .

For simplicity we will assume throughout that all relevant state spaces are finite-dimensional.

The criterion reads as follows: If ρ is a separable mixed state acting on H, then the range of ρ is spanned by a set of product vectors.

Proof

In general, if a matrix M is of the form , the range of M, Ran(M), is contained in the linear span of . On the other hand, we can also show lies in Ran(M), for all i. Assume without loss of generality i = 1. We can write , where T is Hermitian and positive semidefinite. There are two possibilities:

1) spanKer(T). Clearly, in this case, Ran(M).

2) Notice 1) is true if and only if Ker(T)span, where denotes orthogonal complement. By Hermiticity of T, this is the same as Ran(T)span. So if 1) does not hold, the intersection Ran(T)span is nonempty, i.e. there exists some complex number α such that . So

Therefore lies in Ran(M).

Thus Ran(M) coincides with the linear span of . The range criterion is a special case of this fact.

A density matrix ρ acting on H is separable if and only if it can be written as

where is a (un-normalized) pure state on the j-th subsystem. This is also

But this is exactly the same form as M from above, with the vectorial product state replacing . It then immediately follows that the range of ρ is the linear span of these product states. This proves the criterion.

Related Research Articles

In quantum mechanics, bra–ket notation is a standard notation for describing quantum states. It can also be used to denote abstract vectors and linear functionals in mathematics. The notation uses angle brackets and a vertical bar, to denote the scalar product of vectors or the action of a linear functional on a vector in a complex vector space. The scalar product or action is written as

In mathematics, any vector space V has a corresponding dual vector space consisting of all linear functionals on V, together with the vector space structure of pointwise addition and scalar multiplication by constants.

A density matrix is a matrix that describes the statistical state of a system in quantum mechanics. The density matrix is especially helpful for dealing with mixed states, which consist of a statistical ensemble of several different quantum systems. The opposite of a mixed state is a pure state. State vectors, also called kets, describe only pure states, whereas a density matrix can describe both pure and mixed states.

Quantum decoherence loss of quantum coherence

Quantum decoherence is the loss of quantum coherence. In quantum mechanics, particles such as electrons are described by a wave function, a mathematical representation of the quantum state of a system; a probabilistic interpretation of the wave function is used to explain various quantum effects. As long as there exists a definite phase relation between different states, the system is said to be coherent. Coherence is preserved under the laws of quantum physics, and this is necessary for the functioning of quantum computers. If a quantum system is perfectly isolated, it would be impossible to manipulate or investigate it. If it is not perfectly isolated, for example during a measurement, coherence is shared with the environment and appears to be lost with time, a process called quantum decoherence. As a result of this process, quantum behavior is apparently lost, just as energy appears to be lost by friction in classical mechanics.

Second quantization Formulation of the quantum many-body problem

Second quantization, also referred to as occupation number representation, is a formalism used to describe and analyze quantum many-body systems. In quantum field theory, it is known as canonical quantization, in which the fields are thought of as field operators, in a manner similar to how the physical quantities are thought of as operators in first quantization. The key ideas of this method were introduced in 1927 by Paul Dirac, and were developed, most notably, by Vladimir Fock and Pascual Jordan later.

In quantum information theory, a quantum channel is a communication channel which can transmit quantum information, as well as classical information. An example of quantum information is the state of a qubit. An example of classical information is a text document transmitted over the Internet.

A locally compact quantum group is a relatively new C*-algebraic approach toward quantum groups that generalizes the Kac algebra, compact-quantum-group and Hopf-algebra approaches. Earlier attempts at a unifying definition of quantum groups using, for example, multiplicative unitaries have enjoyed some success but have also encountered several technical problems.

In mathematics, the Fubini–Study metric is a Kähler metric on projective Hilbert space, that is, on a complex projective space CPn endowed with a Hermitian form. This metric was originally described in 1904 and 1905 by Guido Fubini and Eduard Study.

In quantum mechanics, separable quantum states are states without quantum entanglement.

In linear algebra, the Schmidt decomposition refers to a particular way of expressing a vector in the tensor product of two inner product spaces. It has numerous applications in quantum information theory, for example in entanglement characterization and in state purification, and plasticity.

In quantum mechanics, especially quantum information, purification refers to the fact that every mixed state acting on finite-dimensional Hilbert spaces can be viewed as the reduced state of some pure state.

The time-evolving block decimation (TEBD) algorithm is a numerical scheme used to simulate one-dimensional quantum many-body systems, characterized by at most nearest-neighbour interactions. It is dubbed Time-evolving Block Decimation because it dynamically identifies the relevant low-dimensional Hilbert subspaces of an exponentially larger original Hilbert space. The algorithm, based on the Matrix Product States formalism, is highly efficient when the amount of entanglement in the system is limited, a requirement fulfilled by a large class of quantum many-body systems in one dimension.

In the case of systems composed of subsystems, the classification of quantum-entangledstates is richer than in the bipartite case. Indeed, in multipartite entanglement apart from fully separable states and fully entangled states, there also exists the notion of partially separable states.

A decoherence-free subspace (DFS) is a subspace of a system's Hilbert space that is invariant to non-unitary dynamics. Alternatively stated, they are a small section of the system Hilbert space where the system is decoupled from the environment and thus its evolution is completely unitary. DFSs can also be characterized as a special class of quantum error correcting codes. In this representation they are passive error-preventing codes since these subspaces are encoded with information that (possibly) won't require any active stabilization methods. These subspaces prevent destructive environmental interactions by isolating quantum information. As such, they are an important subject in quantum computing, where (coherent) control of quantum systems is the desired goal. Decoherence creates problems in this regard by causing loss of coherence between the quantum states of a system and therefore the decay of their interference terms, thus leading to loss of information from the (open) quantum system to the surrounding environment. Since quantum computers cannot be isolated from their environment and information can be lost, the study of DFSs is important for the implementation of quantum computers into the real world.

A quantum t-design is a probability distribution over either pure quantum states or unitary operators which can duplicate properties of the probability distribution over the Haar measure for polynomials of degree t or less. Specifically, the average of any polynomial function of degree t over the design is exactly the same as the average over Haar measure. Here the Haar measure is a uniform probability distribution over all quantum states or over all unitary operators. Quantum t-designs are so called because they are analogous to t-designs in classical statistics, which arose historically in connection with the problem of design of experiments. Two particularly important types of t-designs in quantum mechanics are spherical and unitary t-designs.

Entanglement distillation is the transformation of N copies of an arbitrary entangled state into some number of approximately pure Bell pairs, using only local operations and classical communication (LOCC).

In quantum mechanics, and especially quantum information theory, the purity of a normalized quantum state is a scalar defined as

In quantum physics, quantum state refers to the state of an isolated quantum system. A quantum state provides a probability distribution for the value of each observable, i.e. for the outcome of each possible measurement on the system. Knowledge of the quantum state together with the rules for the system's evolution in time exhausts all that can be predicted about the system's behavior.

This is a glossary for the terminology often encountered in undergraduate quantum mechanics courses.

Causal fermion system

The theory of causal fermion systems is an approach to describe fundamental physics. Its proponents claim it gives quantum mechanics, general relativity and quantum field theory as limiting cases and is therefore a candidate for a unified physical theory.

References