Last updated
Colors and porous surface texture of rust Rust on iron.jpg
Colors and porous surface texture of rust

Rust is an iron oxide, a usually reddish-brown oxide formed by the reaction of iron and oxygen in the catalytic presence of water or air moisture. Rust consists of hydrous iron(III) oxides (Fe2O3·nH2O) and iron(III) oxide-hydroxide (FeO(OH), Fe(OH)3), and is typically associated with the corrosion of refined iron.


Given sufficient time, any iron mass, in the presence of water and oxygen, could eventually convert entirely to rust. Surface rust is commonly flaky and friable, and provides no passivational protection to the underlying iron, unlike the formation of patina on copper surfaces. Rusting is the common term for corrosion of elemental iron and its alloys such as steel. Many other metals undergo similar corrosion, but the resulting oxides are not commonly called "rust". [1]

Several forms of rust are distinguishable both visually and by spectroscopy, and form under different circumstances. [2] Other forms of rust include the result of reactions between iron and chloride in an environment deprived of oxygen. Rebar used in underwater concrete pillars, which generates green rust, is an example. Although rusting is generally a negative aspect of iron, a particular form of rusting, known as stable rust, causes the object to have a thin coating of rust over the top. If kept in low relative humidity, it makes the "stable" layer protective to the iron below, but not to the extent of other oxides such as aluminium oxide on aluminium. [3]

Chemical reactions

Heavy rust on the links of a chain near the Golden Gate Bridge in San Francisco; it was continuously exposed to moisture and salt spray, causing surface breakdown, cracking, and flaking of the metal RustyChainEdit1.jpg
Heavy rust on the links of a chain near the Golden Gate Bridge in San Francisco; it was continuously exposed to moisture and salt spray, causing surface breakdown, cracking, and flaking of the metal
Rust scale forming and flaking off from a steel bar heated to its forging temperature of 1200degC. Rapid oxidation occurs when heated steel is exposed to air Trabajando una pieza de metal al rojo sobre un yunque.jpg
Rust scale forming and flaking off from a steel bar heated to its forging temperature of 1200°C. Rapid oxidation occurs when heated steel is exposed to air

Rust is a general name for a complex of oxides and hydroxides of iron, [4] which occur when iron or some alloys that contain iron are exposed to oxygen and moisture for a long period of time. Over time, the oxygen combines with the metal, forming new compounds collectively called rust, in a process called rusting. Rusting is an oxidation reaction specifically occurring with iron. Other metals also corrode via similar oxidation, but such corrosion is not called rusting.

The main catalyst for the rusting process is water. Iron or steel structures might appear to be solid, but water molecules can penetrate the microscopic pits and cracks in any exposed metal. The hydrogen atoms present in water molecules can combine with other elements to form acids, which will eventually cause more metal to be exposed. If chloride ions are present, as is the case with saltwater, the corrosion is likely to occur more quickly. Meanwhile, the oxygen atoms combine with metallic atoms to form the destructive oxide compound. These iron compounds are brittle and crumbly and replace strong metallic iron, reducing the strength of the object.

Oxidation of iron

When iron is in contact with water and oxygen, it rusts. [5] If salt is present, for example in seawater or salt spray, the iron tends to rust more quickly, as a result of chemical reactions. Iron metal is relatively unaffected by pure water or by dry oxygen. As with other metals, like aluminium, a tightly adhering oxide coating, a passivation layer, protects the bulk iron from further oxidation. The conversion of the passivating ferrous oxide layer to rust results from the combined action of two agents, usually oxygen and water.

Other degrading solutions are sulfur dioxide in water and carbon dioxide in water. Under these corrosive conditions, iron hydroxide species are formed. Unlike ferrous oxides, the hydroxides do not adhere to the bulk metal. As they form and flake off from the surface, fresh iron is exposed, and the corrosion process continues until either all of the iron is consumed or all of the oxygen, water, carbon dioxide or sulfur dioxide in the system are removed or consumed. [6]

When iron rusts, the oxides take up more volume than the original metal; this expansion can generate enormous forces, damaging structures made with iron. See economic effect for more details.

Associated reactions

The rusting of iron is an electrochemical process that begins with the transfer of electrons from iron to oxygen. [7] The iron is the reducing agent (gives up electrons) while the oxygen is the oxidizing agent (gains electrons). The rate of corrosion is affected by water and accelerated by electrolytes, as illustrated by the effects of road salt on the corrosion of automobiles. The key reaction is the reduction of oxygen:

O2 + 4 e + 2  H2O → 4  OH

Because it forms hydroxide ions, this process is strongly affected by the presence of acid. Likewise, the corrosion of most metals by oxygen is accelerated at low pH. Providing the electrons for the above reaction is the oxidation of iron that may be described as follows:

Fe → Fe2+ + 2 e

The following redox reaction also occurs in the presence of water and is crucial to the formation of rust:

4 Fe2+ + O2 → 4 Fe3+ + 2 O2−

In addition, the following multistep acid–base reactions affect the course of rust formation:

Fe2+ + 2 H2O ⇌ Fe(OH)2 + 2  H+
Fe3+ + 3 H2O ⇌ Fe(OH)3 + 3  H+

as do the following dehydration equilibria:

Fe(OH)2 ⇌ FeO + H2O
Fe(OH)3 ⇌ FeO(OH) + H2O
2 FeO(OH) ⇌ Fe2O3 + H2O

From the above equations, it is also seen that the corrosion products are dictated by the availability of water and oxygen. With limited dissolved oxygen, iron(II)-containing materials are favoured, including FeO and black lodestone or magnetite (Fe3O4). High oxygen concentrations favour ferric materials with the nominal formulae Fe(OH)3−xOx2. The nature of rust changes with time, reflecting the slow rates of the reactions of solids. [5]

Furthermore, these complex processes are affected by the presence of other ions, such as Ca2+, which serve as electrolytes which accelerate rust formation, or combine with the hydroxides and oxides of iron to precipitate a variety of Ca, Fe, O, OH species.

The onset of rusting can also be detected in the laboratory with the use of ferroxyl indicator solution. The solution detects both Fe2+ ions and hydroxyl ions. Formation of Fe2+ ions and hydroxyl ions are indicated by blue and pink patches respectively.


Cor-Ten is a group of steel alloys which were developed to eliminate the need for painting, and form a stable rust-like appearance after several years' exposure to weather. Uithuizermeeden de Boer 02.JPG
Cor-Ten is a group of steel alloys which were developed to eliminate the need for painting, and form a stable rust-like appearance after several years' exposure to weather.

Because of the widespread use and importance of iron and steel products, the prevention or slowing of rust is the basis of major economic activities in a number of specialized technologies. A brief overview of methods is presented here; for detailed coverage, see the cross-referenced articles.

Rust is permeable to air and water, therefore the interior metallic iron beneath a rust layer continues to corrode. Rust prevention thus requires coatings that preclude rust formation.

Rust-resistant alloys

Cor-Ten sheet with rust coating Rust-AH-2022.jpg
Cor-Ten sheet with rust coating

Stainless steel forms a passivation layer of chromium(III) oxide. [8] [9] Similar passivation behavior occurs with magnesium, titanium, zinc, zinc oxides, aluminium, polyaniline, and other electroactive conductive polymers. [10]

Special "weathering steel" alloys such as Cor-Ten rust at a much slower rate than normal, because the rust adheres to the surface of the metal in a protective layer. Designs using this material must include measures that avoid worst-case exposures since the material still continues to rust slowly even under near-ideal conditions. [11]


Interior rust in old galvanized iron water pipes can result in brown and black water Rust from bathtub in Kyiv.jpg
Interior rust in old galvanized iron water pipes can result in brown and black water

Galvanization consists of an application on the object to be protected of a layer of metallic zinc by either hot-dip galvanizing or electroplating. Zinc is traditionally used because it is cheap, adheres well to steel, and provides cathodic protection to the steel surface in case of damage of the zinc layer. In more corrosive environments (such as salt water), cadmium plating is preferred instead of the underlying protected metal. The protective zinc layer is consumed by this action, and thus galvanization provides protection only for a limited period of time.

More modern coatings add aluminium to the coating as zinc-alume; aluminium will migrate to cover scratches and thus provide protection for a longer period. These approaches rely on the aluminium and zinc oxides protecting a once-scratched surface, rather than oxidizing as a sacrificial anode as in traditional galvanized coatings. In some cases, such as very aggressive environments or long design life, both zinc and a coating are applied to provide enhanced corrosion protection.

Typical galvanization of steel products that are to be subjected to normal day-to-day weathering in an outside environment consists of a hot-dipped 85  μm zinc coating. Under normal weather conditions, this will deteriorate at a rate of 1 μm per year, giving approximately 85 years of protection. [12]

Cathodic protection

Cathodic protection is a technique used to inhibit corrosion on buried or immersed structures by supplying an electrical charge that suppresses the electrochemical reaction. If correctly applied, corrosion can be stopped completely. In its simplest form, it is achieved by attaching a sacrificial anode, thereby making the iron or steel the cathode in the cell formed. The sacrificial anode must be made from something with a more negative electrode potential than the iron or steel, commonly zinc, aluminium, or magnesium. The sacrificial anode will eventually corrode away, ceasing its protective action unless it is replaced in a timely manner.

Cathodic protection can also be provided by using an applied electrical current. This would then be known as ICCP Impressed Current Cathodic Protection. [13]

Coatings and painting

Flaking paint, exposing a patch of surface rust on sheet metal Love by SillyPuttyEnemies.jpg
Flaking paint, exposing a patch of surface rust on sheet metal

Rust formation can be controlled with coatings, such as paint, lacquer, varnish, or wax tapes [14] that isolate the iron from the environment. [15] Large structures with enclosed box sections, such as ships and modern automobiles, often have a wax-based product (technically a "slushing oil") injected into these sections. Such treatments usually also contain rust inhibitors. Covering steel with concrete can provide some protection to steel because of the alkaline pH environment at the steel–concrete interface. However, rusting of steel in concrete can still be a problem, as expanding rust can fracture concrete from within. [16] [17]

As a closely related example, iron clamps were used to join marble blocks during a restoration attempt of the Parthenon in Athens, Greece, in 1898, but caused extensive damage to the marble by the rusting and swelling of unprotected iron. The ancient Greek builders had used a similar fastening system for the marble blocks during construction, however, they also poured molten lead over the iron joints for protection from seismic shocks as well as from corrosion. This method was successful for the 2500-year-old structure, but in less than a century the crude repairs were in imminent danger of collapse. [18] When only temporary protection is needed for storage or transport, a thin layer of oil, grease or a special mixture such as Cosmoline can be applied to an iron surface. Such treatments are extensively used when "mothballing" a steel ship, automobile, or other equipment for long-term storage.

Special anti-seize lubricant mixtures are available and are applied to metallic threads and other precision machined surfaces to protect them from rust. These compounds usually contain grease mixed with copper, zinc, or aluminium powder, and other proprietary ingredients. [19]


Bluing is a technique that can provide limited [ citation needed ] resistance to rusting for small steel items, such as firearms; for it to be successful, a water-displacing oil is rubbed onto the blued steel and other steel [ citation needed ].


Corrosion inhibitors, such as gas-phase or volatile inhibitors, can be used to prevent corrosion inside sealed systems. They are not effective when air circulation disperses them, and brings in fresh oxygen and moisture.

Humidity control

Rust can be avoided by controlling the moisture in the atmosphere. [20] An example of this is the use of silica gel packets to control humidity in equipment shipped by sea.


Rust removal from small iron or steel objects by electrolysis can be done in a home workshop using simple materials such as a plastic bucket filled with an electrolyte consisting of washing soda dissolved in tap water, a length of rebar suspended vertically in the solution to act as an anode, another laid across the top of the bucket to act as a support for suspending the object, baling wire to suspend the object in the solution from the horizontal rebar, and a battery charger as a power source in which the positive terminal is clamped to the anode and the negative terminal is clamped to the object to be treated which becomes the cathode. [21] Hydrogen and oxygen gases are produced at the cathode and annode respectively. This mixture is flammable/explosive. [22] Care should also be taken to avoid hydrogen embrittlement. Overvoltage also produces small amounts of ozone, which is highly toxic, so a low voltage phone charger is a far safer source of DC current. The effects of hydrogen on global warming have also recently come under scrutiny. [23]

Rust may be treated with commercial products known as rust converter which contain tannic acid or phosphoric acid which combines with rust; removed with organic acids like citric acid and vinegar or the stronger hydrochloric acid; or removed with chelating agents as in some commercial formulations or even a solution of molasses. [24]

Economic effect

Outdoor Rust Wedge at the Exploratorium showing the expansion of rusting iron Rust wedge.jpg
Outdoor Rust Wedge at the Exploratorium showing the expansion of rusting iron

Rust is associated with the degradation of iron-based tools and structures. As rust has a much higher volume than the originating mass of iron, its buildup can also cause failure by forcing apart adjacent parts — a phenomenon sometimes known as "rust packing". It was the cause of the collapse of the Mianus river bridge in 1983, when the bearings rusted internally and pushed one corner of the road slab off its support.

Rust was an important factor in the Silver Bridge disaster of 1967 in West Virginia, when a steel suspension bridge collapsed in less than a minute, killing 46 drivers and passengers on the bridge at the time. The Kinzua Bridge in Pennsylvania was blown down by a tornado in 2003, largely because the central base bolts holding the structure to the ground had rusted away, leaving the bridge anchored by gravity alone.

Reinforced concrete is also vulnerable to rust damage. Internal pressure caused by expanding corrosion of concrete-covered steel and iron can cause the concrete to spall, creating severe structural problems. It is one of the most common failure modes of reinforced concrete bridges and buildings.

Cultural symbolism

Rust is a commonly used metaphor for slow decay due to neglect, since it gradually converts robust iron and steel metal into a soft crumbling powder. A wide section of the industrialized American Midwest and American Northeast, once dominated by steel foundries, the automotive industry, and other manufacturers, has experienced harsh economic cutbacks that have caused the region to be dubbed the "Rust Belt".

In music, literature, and art, rust is associated with images of faded glory, neglect, decay, and ruin.

See also

Related Research Articles

<span class="mw-page-title-main">Electrochemistry</span> Branch of chemistry

Electrochemistry is the branch of physical chemistry concerned with the relationship between electrical potential difference and identifiable chemical change. These reactions involve electrons moving via an electronically-conducting phase between electrodes separated by an ionically conducting and electronically insulating electrolyte.

<span class="mw-page-title-main">Galvanization</span> Process of coating steel or iron with zinc to prevent rusting

Galvanization or galvanizing is the process of applying a protective zinc coating to steel or iron, to prevent rusting. The most common method is hot-dip galvanizing, in which the parts are coated by submerging them in a bath of hot, molten zinc.

<span class="mw-page-title-main">Electrolysis</span> Technique in chemistry and manufacturing

In chemistry and manufacturing, electrolysis is a technique that uses direct electric current (DC) to drive an otherwise non-spontaneous chemical reaction. Electrolysis is commercially important as a stage in the separation of elements from naturally occurring sources such as ores using an electrolytic cell. The voltage that is needed for electrolysis to occur is called the decomposition potential. The word "lysis" means to separate or break, so in terms, electrolysis would mean "breakdown via electricity."

<span class="mw-page-title-main">Redox</span> Chemical reaction in which oxidation states of atoms are changed

Redox is a type of chemical reaction in which the oxidation states of the reactants change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is the gain of electrons or a decrease in the oxidation state. The oxidation and reduction processes occur simultaneously in the chemical reaction.

<span class="mw-page-title-main">Aluminium oxide</span> Chemical compound with formula Al2O3

Aluminium oxide (or aluminium(III) oxide) is a chemical compound of aluminium and oxygen with the chemical formula Al2O3. It is the most commonly occurring of several aluminium oxides, and specifically identified as aluminium oxide. It is commonly called alumina and may also be called aloxide, aloxite, or alundum in various forms and applications. It occurs naturally in its crystalline polymorphic phase α-Al2O3 as the mineral corundum, varieties of which form the precious gemstones ruby and sapphire. Al2O3 is used to produce aluminium metal, as an abrasive owing to its hardness, and as a refractory material owing to its high melting point.

<span class="mw-page-title-main">Corrosion</span> Gradual destruction of materials by chemical reaction with its environment

Corrosion is a natural process that converts a refined metal into a more chemically stable oxide. It is the gradual deterioration of materials by chemical or electrochemical reaction with their environment. Corrosion engineering is the field dedicated to controlling and preventing corrosion.

In physical chemistry and engineering, passivation is coating a material so that it becomes "passive", that is, less readily affected or corroded by the environment. Passivation involves creation of an outer layer of shield material that is applied as a microcoating, created by chemical reaction with the base material, or allowed to build by spontaneous oxidation in the air. As a technique, passivation is the use of a light coat of a protective material, such as metal oxide, to create a shield against corrosion. Passivation of silicon is used during fabrication of microelectronic devices. Undesired passivation of electrodes, called "fouling", increases the circuit resistance so it interferes with some electrochemical applications such as electrocoagulation for wastewater treatment, amperometric chemical sensing, and electrochemical synthesis.

<span class="mw-page-title-main">Galvanic anode</span> Main component of cathodic protection

A galvanic anode, or sacrificial anode, is the main component of a galvanic cathodic protection system used to protect buried or submerged metal structures from corrosion.

<span class="mw-page-title-main">Cathodic protection</span> Corrosion prevention technique

Cathodic protection is a technique used to control the corrosion of a metal surface by making it the cathode of an electrochemical cell. A simple method of protection connects the metal to be protected to a more easily corroded "sacrificial metal" to act as the anode. The sacrificial metal then corrodes instead of the protected metal. For structures such as long pipelines, where passive galvanic cathodic protection is not adequate, an external DC electrical power source is used to provide sufficient current.

<span class="mw-page-title-main">Anodizing</span> Metal treatment process

Anodizing is an electrolytic passivation process used to increase the thickness of the natural oxide layer on the surface of metal parts.

<span class="mw-page-title-main">Pitting corrosion</span> Form of insidious localized corrosion in which a pit develops at the anode site

Pitting corrosion, or pitting, is a form of extremely localized corrosion that leads to the random creation of small holes in metal. The driving power for pitting corrosion is the depassivation of a small area, which becomes anodic while an unknown but potentially vast area becomes cathodic, leading to very localized galvanic corrosion. The corrosion penetrates the mass of the metal, with a limited diffusion of ions.

A corrosion inhibitor or anti-corrosive is a chemical compound added to a liquid or gas to decrease the corrosion rate of a metal that comes into contact with the fluid. The effectiveness of a corrosion inhibitor depends on fluid composition and dynamics. Corrosion inhibitors are common in industry, and also found in over-the-counter products, typically in spray form in combination with a lubricant and sometimes a penetrating oil. They may be added to water to prevent leaching of lead or copper from pipes.

<span class="mw-page-title-main">Iron(II) hydroxide</span> Chemical compound

Iron(II) hydroxide or ferrous hydroxide is an inorganic compound with the formula Fe(OH)2. It is produced when iron(II) salts, from a compound such as iron(II) sulfate, are treated with hydroxide ions. Iron(II) hydroxide is a white solid, but even traces of oxygen impart a greenish tinge. The air-oxidised solid is sometimes known as "green rust".

<span class="mw-page-title-main">Chromate conversion coating</span> Chemical treatment of metals

Chromate conversion coating or alodine coating is a type of conversion coating used to passivate steel, aluminium, zinc, cadmium, copper, silver, titanium, magnesium, and tin alloys. The coating serves as a corrosion inhibitor, as a primer to improve the adherence of paints and adhesives, as a decorative finish, or to preserve electrical conductivity. It also provides some resistance to abrasion and light chemical attack on soft metals.

Electrogalvanizing is a process in which a layer of zinc is bonded to steel in order to protect against corrosion. The process involves electroplating, running a current of electricity through a saline/zinc solution with a zinc anode and steel conductor. Such Zinc electroplating or Zinc alloy electroplating maintains a dominant position among other electroplating process options, based upon electroplated tonnage per annum. According to the International Zinc Association, more than 5 million tons are used yearly for both hot dip galvanizing and electroplating. The plating of zinc was developed at the beginning of the 20th century. At that time, the electrolyte was cyanide based. A significant innovation occurred in the 1960s, with the introduction of the first acid chloride based electrolyte. The 1980s saw a return to alkaline electrolytes, only this time, without the use of cyanide. The most commonly used electrogalvanized cold rolled steel is SECC, acronym of "Steel, Electrogalvanized, Cold-rolled, Commercial quality". Compared to hot dip galvanizing, electroplated zinc offers these significant advantages:

<span class="mw-page-title-main">Bacterial anaerobic corrosion</span>

Bacterial anaerobic corrosion is the bacterially-induced oxidation of metals. Corrosion of metals typically alters the metal to a form that is more stable. Thus, bacterial anaerobic corrosion typically occurs in conditions favorable to the corrosion of the underlying substrate. In humid, anoxic conditions the corrosion of metals occurs as a result of a redox reaction. This redox reaction generates molecular hydrogen from local hydrogen ions. Conversely, anaerobic corrosion occurs spontaneously. Anaerobic corrosion primarily occurs on metallic substrates but may also occur on concrete.

<span class="mw-page-title-main">Concrete degradation</span> Damage to concrete affecting its mechanical strength and its durability

Concrete degradation may have many different causes. Concrete is mostly damaged by the corrosion of reinforcement bars due to the carbonatation of hardened cement paste or chloride attack under wet conditions. Chemical damage is caused by the formation of expansive products produced by chemical reactions, by aggressive chemical species present in groundwater and seawater, or by microorganisms Other damaging processes can also involve calcium leaching by water infiltration, physical phenomena initiating cracks formation and propagation, fire or radiant heat, aggregate expansion, sea water effects, leaching, and erosion by fast-flowing water.

<span class="mw-page-title-main">Schikorr reaction</span> Transformation of Fe(OH)2 into Fe3O4 with hydrogen release

The Schikorr reaction formally describes the conversion of the iron(II) hydroxide (Fe(OH)2) into iron(II,III) oxide (Fe3O4). This transformation reaction was first studied by Gerhard Schikorr. The global reaction follows:

A sacrificial metal is a metal used as a sacrificial anode in cathodic protection that corrodes to prevent a primary metal from corrosion or rusting. It may also be used for galvanization.

<span class="mw-page-title-main">Galvanic corrosion</span> Electrochemical process

Galvanic corrosion is an electrochemical process in which one metal corrodes preferentially when it is in electrical contact with another, in the presence of an electrolyte. A similar galvanic reaction is exploited in primary cells to generate a useful electrical voltage to power portable devices. This phenomenon is named after Italian physician Luigi Galvani (1737–1798).


  1. "Rust, n.1 and adj". OED Online. Oxford University Press. June 2018. Retrieved 7 July 2018.
  2. "Interview, David Des Marais". NASA. 2003. Archived from the original on 2007-11-13.
  3. Ankersmit, Bart; Griesser-Stermscheg, Martina; Selwyn, Lindsie; Sutherland, Susanne. "Rust Never Sleeps: Recognizing Metals and Their Corrosion Products" (PDF). depotwijzer. Parks Canada. Archived (PDF) from the original on 9 August 2016. Retrieved 23 July 2016.
  4. Sund, Robert B.; Bishop, Jeanne (1980). Accent on science. C.E. Merrill. ISBN   9780675075695. Archived from the original on 2017-11-30.
  5. 1 2 "Oxidation Reduction Reactions". Bodner Research Web. Retrieved 28 April 2020.
  6. Holleman, A. F.; Wiberg, E. (2001). Inorganic Chemistry. San Diego: Academic Press. ISBN   0-12-352651-5.
  7. Gräfen, H.; Horn, E. M.; Schlecker, H.; Schindler, H. (2000). "Corrosion". Ullmann's Encyclopedia of Industrial Chemistry. Wiley-VCH. doi:10.1002/14356007.b01_08. ISBN   3527306730.
  8. Ramaswamy, Hosahalli S.; Marcotte, Michele; Sastry, Sudhir; Abdelrahim, Khalid (2014-02-14). Ohmic Heating in Food Processing. CRC Press. ISBN   9781420071092. Archived from the original on 2018-05-02.
  9. Heinz, Norbert. "Corrosion prevention - HomoFaciens". Archived from the original on 2017-12-01. Retrieved 2017-11-30.
  10. "Formation of stable passive film on stainless steel by electrochemical deposition of polypyrrole". Electrochimica Acta.
  11. "Weathering Steel". AZoM. 28 June 2016. Retrieved 2022-09-13. The steel is allowed to rust and because of its alloy composition rusts more slowly than conventional steel and the rust forms a protective coating slowing the rate of future corrosion
  12. "Steel corrosion protection - Durability - Structural steel". greenspec. Retrieved 2022-09-13. For atmospheric corrosion, refer to the Galvanizers Association Millennium Map of average zinc corrosion rates. About 50% of England and Wales has a rate of under 1 μm/year
  13. "Cathodic Protection Systems - Matcor, Inc". Matcor, Inc. Archived from the original on 2017-03-30. Retrieved 2017-03-29.
  14. "Wax-Tape Anticorrosion Wrap Systems" (PDF). Trenton Corporation. Archived from the original (PDF) on 2018-03-23. Retrieved 2018-03-22.
  15. Schweitzer, Philip A (2007). Corrosion engineering handbook. Boca Raton: CRC Press. ISBN   978-0-8493-8246-8. OCLC   137248977.
  16. "Corrosion of Embedded Metals". Portland Cement Association. Retrieved 9 July 2021.
  17. "Rust Wedge: Expanding rust is a force strong enough to shatter concrete". 17 April 2018. Retrieved 9 July 2021.
  18. Hadingham, Evan. "Unlocking Mysteries of the Parthenon". Retrieved 9 July 2021.
  19. "Anti-seize Compounds Information". Engineering 360. Retrieved 9 July 2021.
  20. Mirza, Lorraine; Gupta, Krishnakali. Young Scientist Series ICSE Chemistry 7. Pearson Education India. ISBN   9788131756591. Archived from the original on 2017-11-30.
  21. "Rust Removal using Electrolysis". Archived from the original on March 30, 2015. Retrieved April 1, 2015.
  22. Smith, Paul. "Exploding Hydrogen Balloons with Different Amounts of Oxygen". Youtube. Retrieved 2023-12-29.
  23. Derwent, Richard. "Global warming potential (GWP) for hydrogen: Sensitivities, uncertainties and meta-analysis". Science Direct. Science Direct. Retrieved December 9, 2023.
  24. "Rust Removal with Molasses". 6 July 2005. Archived from the original on September 25, 2016. Retrieved November 29, 2017.

Further reading