Ruthenium(III) chloride

Last updated
Ruthenium(III) chloride
Ruthenium Chloride Hydrate.jpg
3D model (JSmol)
ECHA InfoCard 100.030.139 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
RTECS number
  • VM2650000
  • InChI=1S/3ClH.Ru/h3*1H;/q;;;+3/p-3 Yes check.svgY
  • InChI=1/3ClH.Ru/h3*1H;/q;;;+3/p-3
  • Cl[Ru](Cl)Cl
  • [Cl-].[Cl-].[Cl-].[Ru+3]
Molar mass 207.43 g/mol
Melting point >500 °C (932 °F; 773 K) (decomposes)
Soluble, Anhydrous is insoluble
+1998.0·10−6 cm3/mol
trigonal (RuCl3), hP8
P3c1, No. 158
Flash point Non-flammable
Related compounds
Other anions
Ruthenium(III) bromide
Other cations
Rhodium(III) chloride
Iron(III) chloride
Related compounds
Ruthenium tetroxide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Ruthenium(III) chloride is the chemical compound with the formula RuCl3. "Ruthenium(III) chloride" more commonly refers to the hydrate RuCl3·xH2O. Both the anhydrous and hydrated species are dark brown or black solids. The hydrate, with a varying proportion of water of crystallization, often approximating to a trihydrate, is a commonly used starting material in ruthenium chemistry.


Preparation and properties

Anhydrous ruthenium(III) chloride is usually prepared by heating powdered ruthenium metal with chlorine. In the original synthesis, the chlorination was conducted in the presence of carbon monoxide, the product being carried by the gas stream and crystallising upon cooling. [1] [2] Two allotropes of RuCl3 are known. The black α-form adopts the CrCl3-type structure with long Ru-Ru contacts of 346 pm. This allotrope has honeycomb layers of Ru3+ which are surrounded with an octahedral cage of Cl anions. The ruthenium cations are magnetic residing in a low-spin J~1/2 ground state with net angular momentum L=1. [3] [4] Layers of α-RuCl3 are stacked on top of each other with weak Van-der-Waals forces. These can be cleaved to form mono-layers using scotch tape. [5]

The dark brown metastable β-form crystallizes in a hexagonal cell; this form consists of infinite chains of face-sharing octahedra with Ru-Ru contacts of 283 pm, similar to the structure of zirconium trichloride. The β-form is irreversibly converted to the α-form at 450–600 °C. The β-form is diamagnetic, whereas α-RuCl3 is paramagnetic at room temperature. [6]

RuCl3 vapour decomposes into the elements at high temperatures ; the enthalpy change at 750 °C (1020 K), ΔdissH1020 has been estimated as +240 kJ/mol.

Solid state physics

α-RuCl3 was proposed as a candidate for a Kitaev quantum spin liquid state [7] when neutron scattering revealed an unusual magnetic spectrum, [8] [9] [10] and thermal transport revealed chiral Majorana Fermions when subject to a magnetic field. [11]

Coordination chemistry of hydrated ruthenium trichloride

As the most commonly available ruthenium compound, RuCl3·xH2O is the precursor to many hundreds of chemical compounds. The noteworthy property of ruthenium complexes, chlorides and otherwise, is the existence of more than one oxidation state, several of which are kinetically inert. All second and third-row transition metals form exclusively low spin complexes, whereas ruthenium is special in the stability of adjacent oxidation states, especially Ru(II), Ru(III) (as in the parent RuCl3·xH2O) and Ru(IV).

Illustrative complexes derived from "ruthenium trichloride"

2 RuCl3·xH2O + 7 PPh3 → 2 RuCl2(PPh3)3 + OPPh3 + 5 H2O + 2 HCl
2 RuCl3·xH2O + 2 C6H8 → [RuCl2(C6H6)]2 + 6 H2O + 2 HCl + H2
RuCl3·xH2O + 3 bipy + 0.5 CH3CH2OH → [Ru(bipy)3]Cl2 + 3 H2O + 0.5 CH3CHO + HCl

This reaction proceeds via the intermediate cis-Ru(bipy)2Cl2. [15]

2 RuCl3·xH2O + 2 C5Me5H → [RuCl2(C5Me5)]2 + 6 H2O + 2 HCl

[RuCl2(C5Me5)]2 can be further reduced to [RuCl(C5Me5)]4.

RuCl3·xH2O + 3 C5H8O2 → Ru(C5H7O2)3 + 3 H2O + 3 HCl

Some of these compounds were utilized in the research related to two Nobel Prizes. Noyori was awarded the Nobel Prize in Chemistry in 2001 for the development of practical asymmetric hydrogenation catalysts based on ruthenium. Robert H. Grubbs was awarded the Nobel Prize in Chemistry in 2005 for the development of practical alkene metathesis catalysts based on ruthenium alkylidene derivatives.

Carbon monoxide derivatives

RuCl3(H2O)x reacts with carbon monoxide under mild conditions. [18] In contrast, iron chlorides do not react with CO. CO reduces the red-brown trichloride to yellowish Ru(II) species. Specifically, exposure of an ethanol solution of RuCl3(H2O)x to 1 atm of CO gives, depending on the specific conditions, [Ru2Cl4(CO)4], [Ru2Cl4(CO)4]2−, and [RuCl3(CO)3]. Addition of ligands (L) to such solutions gives Ru-Cl-CO-L compounds (L = PR3). Reduction of these carbonylated solutions with Zn affords the orange triangular cluster Ru3(CO)12.

3 RuCl3·xH2O + 4.5 Zn + 12 CO (high pressure) → Ru3(CO)12 + 3x H2O + 4.5 ZnCl2


Related Research Articles

<span class="mw-page-title-main">Samarium(III) chloride</span> Chemical compound

Samarium(III) chloride, also known as samarium trichloride, is an inorganic compound of samarium and chloride. It is a pale yellow salt that rapidly absorbs water to form a hexahydrate, SmCl3.6H2O. The compound has few practical applications but is used in laboratories for research on new compounds of samarium.

<span class="mw-page-title-main">Aluminium chloride</span> Chemical compound

Aluminium chloride, also known as aluminium trichloride, is an inorganic compound with the formula AlCl3. It forms hexahydrate with the formula [Al(H2O)6]Cl3, containing six water molecules of hydration. Both are colourless crystals, but samples are often contaminated with iron(III) chloride, giving a yellow color.

<span class="mw-page-title-main">Iron(II) chloride</span> Chemical compound

Iron(II) chloride, also known as ferrous chloride, is the chemical compound of formula FeCl2. It is a paramagnetic solid with a high melting point. The compound is white, but typical samples are often off-white. FeCl2 crystallizes from water as the greenish tetrahydrate, which is the form that is most commonly encountered in commerce and the laboratory. There is also a dihydrate. The compound is highly soluble in water, giving pale green solutions.

<span class="mw-page-title-main">Phosphorus trichloride</span> Chemical compound

Phosphorus trichloride is an inorganic compound with the chemical formula PCl3. A colorless liquid when pure, it is an important industrial chemical, being used for the manufacture of phosphites and other organophosphorus compounds. It is toxic and reacts readily with water to release hydrogen chloride.

<span class="mw-page-title-main">Rhodium(III) chloride</span> Chemical compound

Rhodium(III) chloride refers to inorganic compounds with the formula RhCl3(H2O)n, where n varies from 0 to 3. These are diamagnetic solids featuring octahedral Rh(III) centres. Depending on the value of n, the material is either a dense brown solid or a soluble reddish salt. The soluble trihydrated (n = 3) salt is widely used to prepare compounds used in homogeneous catalysis, notably for the industrial production of acetic acid and hydroformylation.

<span class="mw-page-title-main">Gadolinium(III) chloride</span> Chemical compound

Gadolinium(III) chloride, also known as gadolinium trichloride, is GdCl3. It is a colorless, hygroscopic, water-soluble solid. The hexahydrate GdCl3∙6H2O is commonly encountered and is sometimes also called gadolinium trichloride. Gd3+ species are of special interest because the ion has the maximum number of unpaired spins possible, at least for known elements. With seven valence electrons and seven available f-orbitals, all seven electrons are unpaired and symmetrically arranged around the metal. The high magnetism and high symmetry combine to make Gd3+ a useful component in NMR spectroscopy and MRI.

Titanium(III) chloride is the inorganic compound with the formula TiCl3. At least four distinct species have this formula; additionally hydrated derivatives are known. TiCl3 is one of the most common halides of titanium and is an important catalyst for the manufacture of polyolefins.

<span class="mw-page-title-main">Molybdenum(V) chloride</span> Chemical compound

Molybdenum(V) chloride is the inorganic compound with the empirical formula MoCl5. This dark volatile solid is used in research to prepare other molybdenum compounds. It is moisture-sensitive and soluble in chlorinated solvents.

<span class="mw-page-title-main">Arsenic trichloride</span> Chemical compound

Arsenic trichloride is an inorganic compound with the formula AsCl3, also known as arsenous chloride or butter of arsenic. This poisonous oil is colourless, although impure samples may appear yellow. It is an intermediate in the manufacture of organoarsenic compounds.

<span class="mw-page-title-main">Ruthenium(IV) oxide</span> Chemical compound

Ruthenium(IV) oxide is the inorganic compound with the formula RuO2. This black solid is the most common oxide of ruthenium. It is widely used as an electrocatalyst for producing chlorine, chlorine oxides, and O2. Like many dioxides, RuO2 adopts the rutile structure.

<span class="mw-page-title-main">Hexachlorophosphazene</span> Chemical compound

Hexachlorophosphazene is an inorganic compound with the formula (NPCl2)3. The molecule has a cyclic, unsaturated backbone consisting of alternating phosphorus and nitrogen centers, and can be viewed as a trimer of the hypothetical compound N≡PCl2. Its classification as a phosphazene highlights its relationship to benzene. There is large academic interest in the compound relating to the phosphorus-nitrogen bonding and phosphorus reactivity.

<span class="mw-page-title-main">Tris(bipyridine)ruthenium(II) chloride</span> Chemical compound

Tris(bipyridine)ruthenium(II) chloride is the chloride salt coordination complex with the formula [Ru(bpy)3]2+ 2Cl. This polypyridine complex is a red crystalline salt obtained as the hexahydrate, although all of the properties of interest are in the cation [Ru(bpy)3]2+, which has received much attention because of its distinctive optical properties. The chlorides can be replaced with other anions, such as PF6.

<span class="mw-page-title-main">Chloro(cyclopentadienyl)bis(triphenylphosphine)ruthenium</span> Chemical compound

Chloro(cyclopentadienyl)bis(triphenylphosphine)ruthenium is the organoruthenium half-sandwich compound with formula RuCl(PPh3)2(C5H5). It as an air-stable orange crystalline solid that is used in a variety of organometallic synthetic and catalytic transformations. The compound has idealized Cs symmetry. It is soluble in chloroform, dichloromethane, and acetone.

<span class="mw-page-title-main">Sulfenyl chloride</span> Chemical group (R–S–Cl)

In organosulfur chemistry, a sulfenyl chloride is a functional group with the connectivity R−S−Cl, where R is alkyl or aryl. Sulfenyl chlorides are reactive compounds that behave as sources of RS+. They are used in the formation of RS−N and RS−O bonds. According to IUPAC nomenclature they are named as alkyl thiohypochlorites, i.e. esters of thiohypochlorous acid.

<span class="mw-page-title-main">Dichlorotris(triphenylphosphine)ruthenium(II)</span> Chemical compound

Dichlorotris(triphenylphosphine)ruthenium(II) is a coordination complex of ruthenium. It is a chocolate brown solid that is soluble in organic solvents such as benzene. The compound is used as a precursor to other complexes including those used in homogeneous catalysis.

<span class="mw-page-title-main">Molybdenum(III) chloride</span> Chemical compound

Molybdenum(III) chloride is the inorganic compound with the formula MoCl3. It forms purple crystals.

<span class="mw-page-title-main">Pentamethylcyclopentadienyl ruthenium dichloride dimer</span> Chemical compound

Pentamethylcyclopentadienyl ruthenium dichloride is an organoruthenium chemistry with the formula [(C5(CH3)5)RuCl2]2, commonly abbreviated [Cp*RuCl2]2. This brown paramagnetic solid is a reagent in organometallic chemistry. It is an unusual example of a compound that exists as isomers that differ in the intermetallic separation, a difference that is manifested in a number of physical properties.

<span class="mw-page-title-main">Pentamethylcyclopentadienyl rhodium dichloride dimer</span> Chemical compound

Pentamethylcyclopentadienyl rhodium dichloride dimer is an organometallic compound with the formula [(C5(CH3)5RhCl2)]2, commonly abbreviated [Cp*RhCl2]2 This dark red air-stable diamagnetic solid is a reagent in organometallic chemistry.

<span class="mw-page-title-main">(Benzene)ruthenium dichloride dimer</span> Chemical compound

(Benzene)ruthenium dichloride dimer is the organoruthenium compound with the formula [(C6H6)RuCl2]2. This red-coloured, diamagnetic solid is a reagent in organometallic chemistry and homogeneous catalysis.

<i>cis</i>-Dichlorobis(bipyridine)ruthenium(II) Chemical compound

cis-Dichlorobis(bipyridine)ruthenium(II) is the coordination complex with the formula RuCl2(bipy)2, where bipy is 2,2'-bipyridine. It is a dark green diamagnetic solid that is a precursor to many other complexes of ruthenium, mainly by substitution of the two chloride ligands. The compound has been crystallized as diverse hydrates.


  1. Remy, H.; Kühn, M. (1924). "Beiträge zur Chemie der Platinmetalle. V. Thermischer Abbau des Ruthentrichlorids und des Ruthendioxyds". Z. Anorg. Allg. Chem. 137 (1): 365–388. doi:10.1002/zaac.19241370127.
  2. Bublitz, D. E; McEwen, W. E.; Kleinberg, J. (1961). "Ruthenocene". Organic Syntheses. 41: 96. doi:10.15227/orgsyn.041.0096.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  3. Fletcher, J. M.; Gardner, W. E.; Hooper, E. W.; Hyde, K. R.; Moore, F. H.; Woodhead, J. L. (September 1963). "Anhydrous Ruthenium Chlorides". Nature. 199 (4898): 1089–1090. Bibcode:1963Natur.199.1089F. doi:10.1038/1991089a0. ISSN   0028-0836. S2CID   4179795.
  4. Plumb, K. W.; Clancy, J. P.; Sandilands, L. J.; Shankar, V. Vijay; Hu, Y. F.; Burch, K. S.; Kee, Hae-Young; Kim, Young-June (2014-07-29). "α−RuCl3: A Spin-Orbit Assisted Mott Insulator on a Honeycomb Lattice". Physical Review B. 90 (4): 041112. arXiv: 1403.0883 . Bibcode:2014PhRvB..90d1112P. doi:10.1103/physrevb.90.041112. ISSN   1098-0121. S2CID   29688091.
  5. Zhou, Boyi; Wang, Yiping; Osterhoudt, Gavin B.; Lampen-Kelley, Paula; Mandrus, David; He, Rui; Burch, Kenneth S.; Henriksen, Erik A. (2019). "Possible Structural Transformation and Enhanced Magnetic Fluctuations in Exfoliated αRuCl3". Journal of Physics and Chemistry of Solids. 128: 291–295. arXiv: 1709.00431 . Bibcode:2019JPCS..128..291Z. doi:10.1016/j.jpcs.2018.01.026. ISSN   0022-3697. S2CID   103743571.
  6. Fletcher, J. M.; Gardner, W. E.; Fox, A. C.; Topping, G. (1967). "X-Ray, infrared, and magnetic studies of α- and β-ruthenium trichloride". Journal of the Chemical Society A: Inorganic, Physical, Theoretical: 1038–1045. doi:10.1039/J19670001038.
  7. Banerjee, A.; Bridges, C. A.; Yan, J.-Q.; Aczel, A. A.; Li, L.; Stone, M. B.; Granroth, G. E.; Lumsden, M. D.; Yiu, Y. (2016-04-04). "Proximate Kitaev quantum spin liquid behaviour in a honeycomb magnet". Nature Materials. 15 (7): 733–740. arXiv: 1504.08037 . Bibcode:2016NatMa..15..733B. doi:10.1038/nmat4604. ISSN   1476-1122. PMID   27043779. S2CID   3406627.
  8. Banerjee, Arnab; Yan, Jiaqiang; Knolle, Johannes; Bridges, Craig A.; Stone, Matthew B.; Lumsden, Mark D.; Mandrus, David G.; Tennant, David A.; Moessner, Roderich (2017-06-09). "Neutron scattering in the proximate quantum spin liquid α-RuCl 3". Science. 356 (6342): 1055–1059. arXiv: 1609.00103 . Bibcode:2017Sci...356.1055B. doi:10.1126/science.aah6015. ISSN   0036-8075. PMID   28596361. S2CID   206652434.
  9. Do, Seung-Hwan; Park, Sang-Youn; Yoshitake, Junki; Nasu, Joji; Motome, Yukitoshi; Kwon, Yong Seung; Adroja, D. T.; Voneshen, D. J.; Kim, Kyoo (2017-09-18). "Majorana fermions in the Kitaev quantum spin system α-RuCl3". Nature Physics. 13 (11): 1079–1084. Bibcode:2017NatPh..13.1079D. doi:10.1038/nphys4264. ISSN   1745-2473.
  10. Banerjee, Arnab; Lampen-Kelley, Paula; Knolle, Johannes; Balz, Christian; Aczel, Adam Anthony; Winn, Barry; Liu, Yaohua; Pajerowski, Daniel; Yan, Jiaqiang; Bridges, Craig A.; Savici, Andrei T.; Chakoumakos, Bryan C.; Lumsden, Mark D.; Tennant, David Alan; Moessner, Roderich; Mandrus, David G.; Nagler, Stephen E. (2018-02-20). "Excitations in the field-induced quantum spin liquid state of α-RuCl 3". NPJ Quantum Materials. 3 (1): 8. arXiv: 1706.07003 . Bibcode:2018npjQM...3....8B. doi:10.1038/s41535-018-0079-2. ISSN   2397-4648. S2CID   55484993.
  11. Kasahara, Y.; Ohnishi, T.; Mizukami, Y.; Tanaka, O.; Ma, Sixiao; Sugii, K.; Kurita, N.; Tanaka, H.; Nasu, J. (July 2018). "Majorana quantization and half-integer thermal quantum Hall effect in a Kitaev spin liquid". Nature. 559 (7713): 227–231. arXiv: 1805.05022 . Bibcode:2018Natur.559..227K. doi:10.1038/s41586-018-0274-0. ISSN   0028-0836. PMID   29995863. S2CID   49664700.
  12. P. S. Hallman, T. A. Stephenson, G. Wilkinson "Tetrakis(Triphenylphosphine)Dichloro-Ruthenium(II) and Tris(Triphenylphosphine)-Dichlororuthenium(II)" Inorganic Syntheses, 1970 Volume 12, . doi : 10.1002/9780470132432.ch40
  13. Bennett, Martin A.; Smith, Anthony K. (1974-01-01). "Arene ruthenium(II) complexes formed by dehydrogenation of cyclohexadienes with ruthenium(III) trichloride". Journal of the Chemical Society, Dalton Transactions (2): 233–241. doi:10.1039/dt9740000233. ISSN   1364-5447.
  14. Bennett, M. A.; Huang, T. N.; Matheson, T. W. & Smith, A. K. (1982). 6-Hexamethylbenzene)ruthenium Complexes. Inorg. Synth. Inorganic Syntheses. Vol. 21. pp. 74–8. doi:10.1002/9780470132524.ch16. ISBN   9780470132524.
  15. 1 2 Broomhead, J. A.; Young, C. G. (1990). Tris(2,2'-bipyridine)Ruthenium(II) Dichloride Hexahydrate. Inorganic Syntheses. Vol. 28. pp. 338–340. doi:10.1002/9780470132593.ch86. ISBN   9780470132593.
  16. Kölle, Urich; Kossakowski, Janusz (1992). "Di-μ-Chloro-Bis[(η5 -Pentamethylcyclopentadienyl) Chlororuthenium(III)], [Cp* RuCl2 ]2 and Di-μ-methoxo-Bis(η5 -Pentamethylcyclopentadienyl)diruthenium(II), [Cp* RuOMe]2". Di-μ-Chloro-Bis[(η5-Pentamethylcyclopentadienyl) Chlororuthenium(III)], [Cp*RuCl2]2 and Di-μ-methoxo-Bis(η5-Pentamethylcyclopentadienyl)diruthenium(II), [Cp*RuOMe]2. Inorganic Syntheses. Vol. 29. pp. 225–228. doi:10.1002/9780470132609.ch52. ISBN   9780470132609.
  17. Gupta, A. (2000). "Improved synthesis and reactivity of tris(acetylacetonato)ruthenium(III)". Indian Journal of Chemistry, Section A. 39A (4): 457. ISSN   0376-4710.
  18. Hill, A. F. (2000). ""Simple" Ruthenium Carbonyls of Ruthenium: New Avenues from the Hieber Base Reaction". Angew. Chem. Int. Ed. 39 (1): 130–134. doi:10.1002/(SICI)1521-3773(20000103)39:1<130::AID-ANIE130>3.0.CO;2-6. PMID   10649352.

Further reading