Last updated
SCART 20050724 002.jpg
A male SCART connector (21-pin)
Type Analogue audio and video connector
Designer CENELEC
Designed 1976
Superseded RCA, DIN (in Europe)
Superseded by HDMI, DisplayPort
Audio signal Bi-directional Stereo
Video signal Composite (bi-directional),
RGB (uni-directional),
S-Video (sometimes bi-directional), or
YPbPr (Component)
Pins 21 (21 wires:RGB/10 wires:CVBS)
10 (10 wires:CVBS)
Data signal D²B and widescreen switching
SCART Connector Pinout Color.svg
Female connector seen from the front
Pin 1 Audio output (right)
Pin 2 Audio input (right)
Pin 3 Audio output (left/mono)
Pin 4 Audio ground (pins 1, 2, 3 & 6 ground)
Pin 5 RGB Blue ground (pin 7 ground)
Pin 6 Audio input (left/mono)
Pin 7 RGB Blue up
S-Video C down [a]
Component PB up [b]
Pin 8

Status & Aspect Ratio up [c]

  • 0–2 V  off
  • +5–8 V  on/16:9
  • +9.5–12 V  on/4:3
Pin 9 RGB Green ground (pin 11 ground)
Pin 10 Clock / Data 2 [d]
Control bus (
Pin 11 RGB Green up
Component Y up [b]
Pin 12 Reserved / Data 1 [d]
Pin 13 RGB Red ground (pin 15 ground)
Pin 14 Usually Data signal ground (pins 8, 10 & 12 ground)
Pin 15 RGB Red up
S-Video C up
Component PR up [b]
Pin 16

Blanking signal up
RGB-selection voltage up

  • 0–0.4 V → composite
  • 1–3 V → RGB
Pin 17 Composite video ground (pin 19 & 20 ground)
Pin 18 Blanking signal ground (pin 16 ground)
Pin 19 Composite video output
S-Video Y output
Pin 20 Composite video input
S-Video Y input
Pin 21 Shell/Chassis [e]

output/input denotes symmetrical links
up/down denotes links to/from the TV set

^ a rarely supported.
^ b non-standard extension.
^ cfrom STB to VCR when used for unattended recording; 12V forces tv-set to AV-channel
^ d protocol not standardised, e.g. D²B.


^ e This pin is part of the shell/surround of the male connector. It is often connected to the overall screen in a cheap cable. In equipment, Pin 21 should be connected separately to the chassis, but often it is merely connected to all the other ground pins.

SCART (also known as Péritel or Péritélévision, especially in France, 21-pin EuroSCART in marketing by Sharp in Asia, Euroconector in Spain, [1] EuroAV or EXT, or EIA Multiport in the United States, as an EIA interface) is a French-originated standard and associated 21-pin connector for connecting audio-visual (AV) equipment. The name SCART comes from Syndicat des Constructeurs d'Appareils Radiorécepteurs et Téléviseurs, "Radio and Television Receiver Manufacturers' Association", the French organisation that created the connector in the mid-1970s. The related European standard EN 50049 has been then refined and published in 1978 by CENELEC, calling it peritelevision, but it is commonly called by the abbreviation péritel in French.

The signals carried by SCART include both composite and RGB (with composite synchronisation) video, stereo audio input/output and digital signalling. The standard was extended at the end of the 1980s to support the new S-Video signals. A TV can be awakened from standby mode, and it can automatically switch to appropriate AV channel, when the device attached to it through a SCART connector is turned on. SCART connection was also used for high definition signals like 720i, 720p, 1080i, 1080p with YPbPr connection by some manufacturers, but to the present day this connection is very scarce due to the advent of HDMI.

In Europe, SCART was the most common method of connecting AV equipment, and was a standard connector for such devices; it was far less common elsewhere.

The official standard for SCART is CENELEC document number EN 50049-1. SCART is sometimes referred to as the IEC 933-1 standard.


Before SCART was introduced, TVs did not offer a standardised way of inputting signals other than RF antenna connectors, and these differed between countries. Assuming other connectors even existed, devices made by various companies could have different and incompatible standards. For example, a domestic VCR could output a composite video signal through a German-originated DIN-style connector, an American-originated RCA connector, an SO239 connector or a BNC connector.

The SCART connector first appeared on TVs in 1977. It became compulsory on new TVs sold in France from January 1980, [2] [3] and since 1989/1990 in eastern Europe, such as Poland. The actual French legal decree was adopted on 7 February 1980 and revoked on 3 July 2015. [4]

The standard was subject to several amendments and at least 2 major revisions, approved by CENELEC on 13 November 1988 (EN 50049-1:1989) and 1 July 1997 (EN 50049-1:1997). [5]


The SCART system was intended to simplify connecting AV equipment (including TVs, VCRs, DVD players and games consoles). To achieve this it gathered all of the analogue signal connections into a single cable with a unique connector that made incorrect connections nearly impossible.

The signals carried by SCART include both composite and RGB (with composite synchronisation) video, stereo audio input/output and digital signalling. The standard was extended at the end of the 1980s to support the new S-Video signals. A TV can be awakened from standby mode, and it can automatically switch to appropriate AV channel, when the device attached to it through a SCART connector is turned on. SCART connection was also used for high definition signals like 720i, 720p, 1080i, 1080p with YPbPr connection by some manufacturers, but to the present day this connection is very scarce due to the advent of HDMI.

Daisy chaining

Typical SCART sockets on a set-top box Scartsocks.jpg
Typical SCART sockets on a set-top box

SCART is bi-directional regarding standard composite video and analogue audio. A TV will typically send the antenna audio and video signals to the SCART sockets all the time and watch for returned signals, to display and reproduce them. This allows "transparent" set-top boxes, without any tuner, which just "hook" and pre-process the TV signals. This feature is used for analogue pay TV like Canal Plus and was used for decoding teletext.

A VCR will often have two SCART sockets, to connect it to the TV ("up", "primary" or "1"), and for video input from a set-top box or other device ("down", "secondary" or "2"). When idle or powered off, VCRs will usually forward the signals from the TV to the set-top decoder and send the processed result back to the TV. When a scrambled show is recorded, the VCR will drive the set-top box from its own tuner and send the unscrambled signals to the TV for viewing or simple recording control. Alternatively, the VCR could use the signals from the TV, in which case it would be inadvisable to change channels on the TV during the recording.

The "down" socket can also be used to connect other devices, such as DVD players or game consoles. As long as all devices have at least one "up" and "down" socket, this allows for connecting a virtually unlimited number of devices to a single SCART socket on the TV. While audio and video signals can travel both "up" to the TV and "down" to devices farther away from the TV, this is not true for RGB (and non-standard YPBPR) signals, which can only travel towards the TV.

"Up" and "down" are conventional. Logically the TV is the last device of the "up" chain-path (stream) and the first device in the "down" chain path. Physically the TV is under the device which sits on its top, hence the name set-top box for the device. Moreover, some sockets' relative position may enforce the belief that the TV is physically the last in the down direction.

Logically, the TV is on top and ends the "up" chain-path, translating the electrical info into an image and sound. From the same logical point of view the info stream, wherever it originates, may need processing such as decrypting (decoding, descrambling) or adding captioning/subtitles. In this case the info stream is sent logically "down" to dedicated function devices. From the last processing device the info stream is sent logically "up" to the TV, through all the chain-path. Another case is when the info stream is sent "down" and not expected to be sent back "up", for example when sent to a recorder.

Closing a loop on either the "up" or "down" chain-path may not have useful effects and may create instability.

Direct connections

As audio and (composite) video use the same pins on "up" and "down" connectors (and require a crosslinked cable), it is also possible to connect two devices directly to each other without paying attention to the type of the socket.

However, this no longer works when S-Video signals are used. As straight links (RGB red and blue up) were re-purposed to carry chrominance information, the S-Video pinouts are different for "up" and "down" SCART connectors. [6] Further, they are often not fully implemented.

Paying attention to the type of socket is essential when handling component RGB/YPBPR/S-video. Damage can be caused to devices incorrectly connected as follows:

Damaging pins 7, 11 or 15 may result in yellow, purple or blue/green images, due to the missing blue, green or red components respectively. When using S-video, damaging pin 7 or 15 may result in black-white images due to the missing chroma component ("down" and "up" respectively). Similarly, damaging pins 7 and 15 (PB and PR) while leaving pin 11 (Y) undamaged may result in black-white images when using YPBPR. Damaging more than one of these pins may result in combined effects.

RGB overlays

SCART enables a device to command the TV to very quickly switch between signals, in order to create overlays in the image. In order to implement captioning or subtitles, a SCART set-top box does not have to process and send back a complete new video signal, which would require full decoding and re-encoding of the color information, a signal-degrading and costly process, especially given the presence of different standards in Europe. The box can instead ask the TV to stop displaying the normal signal and display a signal it generates internally for selected image areas, with pixel-level granularity. This can also be driven by the use of a "transparent" color in a teletext page.

Device control

SCART allows a connected device to bring it in and out of standby mode or to switch it to the AV channel. A VCR or other playback device will optimally power on when a cassette is inserted, power on the TV (or switch it to video mode) and then start playing immediately if the cassette's write protection tab is absent. When turned off, the VCR will ask the TV to power off, which it will do if it had been powered on by the VCR's request and if it remained in video mode. Only some TVs will do this—most only implement automatic switching to and from the SCART input.

The same signal can be used by a satellite receiver or set-top box to signal a VCR that it is supposed to start and stop recording ("pin 8 recording"). This configuration usually requires that the VCR be farther from the TV than the source, so the signal usually travels "down".

SCART also supports automatic widescreen switching. This is an extension of the functionality of a pin which previously only indicated to the TV that an external signal should be displayed. Ideally, a widescreen source should offer three operating modes in order to deal with widescreen signals:

In the first case, the widescreen pin allows to indicate the current signal format, which allows widescreen TVs to adjust the image width, and widescreen-capable standard TVs to compress the scan lines of the 576i image vertically to a letterbox shape portion of the picture tube. In the second case, the widescreen SCART signal is never active and the signal source performs the adaptations itself so that the image has always a standard format as a result. Some sources assume that the TV is always capable of widescreen functionality and hence never perform the adaptations. Some sources will not even issue the widescreen signal or maintain it at the same level all the time. Other sources might offer the option of truncating the sides, but not of letterboxing, which requires significantly more processing. Notably, the circuitry of the early widescreen MAC standard decoders (e.g. the Visiopass) could not letterbox. The limitations apply mostly to satellite TVs, while DVD players can always at least letterbox and often zoom.



EIA interface on a 1987 RCA Dimensia Dimensia EIA.jpg
EIA interface on a 1987 RCA Dimensia

The cables for connecting equipment together have a male plug at each end. Some of the wires such as ground, data, switching and RGB connect to the identical pin number at each end. Others such as audio and video are swapped so that an output signal at one end of the cable connects to an input signal at the other end. The complete list of wires that are swapped are: pins 1 and 2, pins 3 and 6, pins 17 and 18, pins 19 and 20.

The original SCART specification provided for different cable (cordset) types denoted by a key color, but color-coding is rarely used and cables often use different, non-standard configurations.

TypeRing colorPinsDescriptionSymmetric
UUniversalblack1–20, 21Fully wired
VVideo onlywhite17–20, 21Only composite wires.yes
CCombinedgrey1–4, 6, 17–20, 21Composite Video and Audioyes
AAudio onlyyellow1–4, 6, 21Audioyes
BBusgreen10, 12, 21Only data connections1 [7]

Maximum SCART cable length is estimated to be about 10 to 15 metres without amplification.[ citation needed ]

Due to the relatively high signal voltages used in SCART, "hot plugging" (connecting or disconnecting devices while they are on) is not recommended. Although there is no risk of personal injury, there is the possibility of damaging electronics within the devices if the connector is inserted improperly.[ citation needed ] Also, since many TVs are Class II (double-insulated) rather than earthed, the large exposed shield on the SCART connector will be held at approximately half mains voltage if it is plugged into a powered TV with the other end unplugged. If the cable is then plugged into an earthed device with a metal case, inadvertent contact with the SCART cable shield while the earthed device is touched with the other hand can cause a painful electric shock. For this reason the device end of the cable should always be plugged in first and the TV end plugged in last. [8] [9] [10]

Quality differences exist in SCART cables. While a proper SCART cable uses miniature coaxial cables for the video signals, cheap SCART cables often use plain wires for all signals, resulting in a loss of image quality and greatly reducing the maximum cable length. A common problem on a cheap SCART cable is that a TV outputs a composite video signal from its internal tuner and this is induced or cross-talked onto an incoming video signal due to inadequate or non-existent screening; the result is ghostly images or shimmering superimposed on the incoming signal. To non-destructively verify if a SCART cable uses coaxial cables, unscrew the strain relief at the SCART connector and fold open the plastic shell.

Using higher-quality cables such as those with ribbon cords that have properly shielded coaxial cables inside might help in reducing a 'ghosting' effect, but it does not always completely eliminate it due to various factors. A more permanent method is to remove pin 19 (Video Out) from the SCART plug that is put into the TV, preventing a signal from being broadcast by the TV into the cable, so it cannot cross-talk with the incoming signal.

Blanking and switching

Two pins provide switching signals.

Pin 8, the switch signal pin, carries a DC voltage from the source that indicates the type of video present.

Pin 16, the blanking signal pin, carries a signal from the source that indicates that the signal is either RGB or composite.

The original specification defined pin 16 as a high frequency (up to 3 MHz) signal that blanked the composite video. The RGB inputs were always active and the signal 'punches holes' in the composite video. This could be used to overlay subtitles from an external Teletext decoder.

There is no switching signal to indicate S-Video. Some TVs can auto-detect the presence of the S-Video signal but more commonly the S-Video input needs to be manually selected. The same for the rare component YPbPr, which is in many cases implemented over a composite or rgb scart.

Non-standard extensions

RGB-capable SCART (gold plated) SCART gold plate peritel.jpg
RGB-capable SCART (gold plated)
Non-RGB SCART male connector. Only 10 pins (2, 6, 7, 8, 11, 15, 16, 17, 18, 20) are available. Some cheap cables or devices (DVD players, TVs) have a 21-pin SCART connector or socket that actually have 10 wires connected and are thus not RGB / S-Video capable, but only CVBS. Fake-scart-brkn.jpg
Non-RGB SCART male connector. Only 10 pins (2, 6, 7, 8, 11, 15, 16, 17, 18, 20) are available. Some cheap cables or devices (DVD players, TVs) have a 21-pin SCART connector or socket that actually have 10 wires connected and are thus not RGB / S-Video capable, but only CVBS.

The use of the data pins was not standardised in the original SCART specification, resulting in the use of several different protocols, both proprietary protocols and semi-proprietary protocols based on standards such as D²B.

Some of the most creative usages appeared in analogue satellite receivers. The function of decoding hybrid, time-compressed analogue-digital MAC transmissions into RGB and analogue audio was akin to making a digital receiver out of an analogue one. The D²B pins (10 and 12) were used for communicating with satellite dish positioners and for driving magnetic polarisers, before these became incorporated into LNBs. The daisy-chaining features were used to connect both a Pay TV decoder and a dish positioner/polariser to a single Decoder socket on the receiver. [11]

CENELEC EN 50157-1 introduced as a standardised protocol to carry advanced control information between devices. It is a single-wire serial data bus and allows carrying remote control information and to negotiate analogue signal types (e.g. RGB). is also known as nexTViewLink or trade names such as SmartLink, Q-Link or EasyLink. It appears as the Consumer Electronics Control channel in HDMI.

The data pins, 10, 12, 14, were used by some manufacturers for DOLBY ProLogic, surround and multichannel on their TV sets (some high end models with built in Dolby decoders, and external surround speakers, both CRT, LCD and plasma sets, and only in Europe (and European versions of Japanese TV Sets and DVD players), and mainly on S/PDIF), in order to connect a DVD player to the TV set and stream the Dolby and DTS to the surround of the TV set. However, this protocol was rarely used, as it was limited only to a certain manufacturer, and the connections were different from a manufacturer to another, and in some cases, it was only commanded by the pin 8. In this case, it was unusable with RCA to SCART adapters. Also, if a Compatible TV with such connection and a compatible DVD with such connection, but from different manufacturers were interconnected, the surround might not work, and only the stereo sound from the DVD player was available to the TV, because some manufacturers did not use SPDIF, but an own protocol. Also, this connection might be also lost, if the connection of the DVD with the TV was made indirectly (through a VCR in daisy chaining mode, for example), however, some VCR allowed the pass-through of these signals. Some DVD player manufacturers on some models offered SPDIF only on SCART, and an adapter in order to extract the digital audio signal to send it to a home cinema. To the present day this connection remains rare, as HDMI, S/PDIF, and TOSLINK can provide multichannel audio, also some TV sets with Surround built in may have an Optical or S/PDIF INPUT, beside Output.

SCART connection was also used, in limited cases, as a high definition connection by using an YPbPr connection over scart by some television and audio video equipment (set top boxes, DVD players, Blu-ray players, etc.) manufacturers. By using an YPbPr connection, SCART could be used for high definition signals, like 720i, 720p, 1080i, 1080p. Some manufacturers were using as Y the video composite connection, while others were using the green connection as Y. With the advent of HDMI, and because of the fact that the connection was not standardized (as was S-video) and limited only to a certain manufacturer, devices supporting high definition channels over SCART with YPbPr connection became scarce, if not extinct. In many cases, it was implemented over a RGB SCART or CVBS SCART and the YPbPr mode of SCART was manually switched. YPbPr became used as an independent connection, and SCART was left only for standard definition content.


Multi-AV (2-channel audio, S-Video and CVBS) SCART adaptors with input/output signal switch Multiconnector-scart-chti.jpg
Multi-AV (2-channel audio, S-Video and CVBS) SCART adaptors with input/output signal switch

Nearly all modern DVD players and set-top boxes with SCART sockets can output RGB signal, which offers superior picture quality to composite signal. However, many devices do not have RGB output turned on by default, instead defaulting to composite video: RGB often has to be set up manually in the menu or via switches on the back of the device.[ citation needed ]

The Nintendo GameCube, Wii, Neo-Geo, Dreamcast, PlayStation, PlayStation 2, PlayStation 3, Xbox and Xbox 360 can output RGB, component video, S-Video, or composite video. These consoles come with the standard composite video connector, but the manufacturers and third parties sell connectors for component video hookup and for RGB SCART hookup. Where the Nintendo GameCube and Xbox automatically switch to the proper mode, the PlayStation 2 must be told via a selection in the system menu whether it is to use YPBPR or RGB video. RGB is only available on PAL region GameCube and Wii consoles, while S-Video is only available on NTSC consoles. [12]

Some versions of legacy consoles such as Sega's Master System, Mega Drive/Genesis and Nintendo's SNES are capable of outputting RGB signals, and many older home computers (Amstrad CPC, later ZX Spectrum models, MSX, Commodore Amiga, Atari ST, BBC Micro and Acorn Archimedes, etc.) output RGB with composite sync suitable for SCART use, but most used varying non-standard DIN plugs. Standard-resolution arcade monitors use RGB signals with a composite sync, which is SCART-compatible.

Japanese RGB 21-pin connector

Alternative Japanese JP21 pinout Japanese SCART Connector Pinout Color.svg
Alternative Japanese JP21 pinout

There is also a Japanese version of the SCART connector, which is referred to as the Japanese RGB-21 connector, EIAJ TTC-003, [13] or simply JP-21. This version of SCART uses similar signals and the same connector, but it has a different pinout. In Japan and Korea, it is commonly called RGB-21 while it is more generally called JP-21 in the English-speaking world.

JP-21 was standardised in January 1983 with the norm TTC-0003 [14] published by EIAJ, which was superseded in March 1993 by the norm CPR-1201 [15] to include S-Video. CPR-1201 was withdrawn in March 2003 to be replaced by the equivalent norm CPR-1205, representing Japan's transition from analogue to digital, and thus antiquating analogue connectors.

It was adopted in Japan for the connector's ability to support RGB output format (no compression nor deterioration of original video signals) but, contrary to SCART in Europe, it never saw widespread use on the consumer market.

When using RGB video, the red channel uses the same pins in both standards, so red video with no audio is indicative of mismatching JP-21 SCART with EuroSCART. [16]

JP21 pinout
1Audio left channel input2Audio left channel output3Audio ground4Audio ground
5Audio right channel input6Audio right channel output7Video ground8Video ground
9CVBS input10CVBS output11AV control input12Ym input
13Red signal ground14Ground15Red signal I/O16Ys input
17Green signal ground18Blue signal ground19Green signal I/O20Blue signal I/O
21Plug shield


Newer standards

As it was designed to carry analog standard-definition content, the use of SCART has declined with the introduction of new digital standards such as HDMI and DisplayPort, which can carry high-definition content and multichannel audio, though it remains commonly used. HDMI-CEC is derived from SCART's[ citation needed ] However, SCART Connection can also support HD signals like 480p, 720p, 1080i, 1080p, if the SCART connection of a device is designed to support YPbPr connection, but this configuration is rare. The same for multichannel audio, but even this configuration remains rare, as it is not standardized.

See also

Related Research Articles

Set-top box Information appliance device (cable box)

A set-top box (STB), also colloquially known as a cable box, is an information appliance device that generally contains a TV-tuner input and displays output to a television set and an external source of signal, turning the source signal into content in a form that can then be displayed on the television screen or other display device. They are used in cable television, satellite television, and over-the-air television systems as well as other uses.

RF modulator

An RF modulator is an electronic device whose input is a baseband signal which is used to modulate a radio frequency source.

Composite video Analog video signal format

Composite video is an analog video signal format that carries standard-definition video as a single channel. Video information is encoded on one channel, unlike the higher-quality S-video and the even higher-quality component video. In all of these video formats, audio is carried on a separate connection.

RCA connector Electrical connector used for analog audio and video

An RCA connector, sometimes called a phono connector or Cinch connector, is a type of electrical connector commonly used to carry audio and video signals. The name RCA derives from the Radio Corporation of America, which introduced the design by the early 1940s for internal connection of the pickup to the chassis in home radio-phonograph consoles. It was originally a low-cost, simple design, intended only for mating and disconnection when servicing the console. Refinement came with later designs, although they remained compatible.

S-Video signaling standard for SD video

S-Video is a signaling standard for standard definition video, typically 480i or 576i. By separating the black-and-white and coloring signals, it achieves better image quality than composite video, but has lower color resolution than component video.

DVD player device playing DVD discs

A DVD player is a device that plays DVDs produced under both the DVD-Video and DVD-Audio technical standards, two different and incompatible standards. Some DVD players will also play audio CDs. DVD players are connected to a television to watch the DVD content, which could be a movie, a recorded TV show, or other content.

Component video Video signal that has been split into component channels

Component video is a video signal that has been split into two or more component channels. In popular use, it refers to a type of component analog video (CAV) information that is transmitted or stored as three separate signals. Component video can be contrasted with composite video in which all the video information is combined into a single line level signal that is used in analog television. Like composite, component-video cables do not carry audio and are often paired with audio cables.

HDMI Proprietary interface for transmitting digital audio and video data

HDMI is a proprietary audio/video interface for transmitting uncompressed video data and compressed or uncompressed digital audio data from an HDMI-compliant source device, such as a display controller, to a compatible computer monitor, video projector, digital television, or digital audio device. HDMI is a digital replacement for analog video standards.

VGA connector three-row 15-pin DE-15 connector

A Video Graphics Array (VGA) connector is a three-row 15-pin DE-15 connector. The 15-pin VGA connector was provided on many video cards, computer monitors, laptop computers, projectors, and high definition television sets. On laptop computers or other small devices, a mini-VGA port was sometimes used in place of the full-sized VGA connector.


YPbPr or Y'PbPr, also written as YPBPR, is a color space used in video electronics, in particular in reference to component video cables. YPbPr is the analog version of the YCbCr color space; the two are numerically equivalent but YPbPr is designed for use in analog systems while YCbCr is intended for digital video.

Composite monitor

A composite monitor is any analog video display that receives input in the form of an analog composite video signal to a defined specification. A composite video signal encodes all information on a single conductor; a composite cable has a single live conductor plus earth. Other equipment with display functionality includes monitors with more advanced interfaces and connectors giving a better picture, including analog VGA, and digital DVI, HDMI, and DisplayPort; and television (TV) receivers which are self-contained, receiving and displaying video RF broadcasts received with an internal tuner. Video monitors are used for displaying computer output, closed-circuit television and other applications requiring a two-dimensional monochrome or colour image.

The Hauppauge MediaMVP is a network media player. It consists of a hardware unit with remote control, along with software for a Windows PC. Out of the box, it is capable of playing video and audio, displaying pictures, and "tuning in" to Internet radio stations. Alternative software is also available to extend its capabilities. It can be used as a front-end for various PVR projects.

AV receiver Electronics component used in home theater systems

An audio/video receiver (AVR) is a consumer electronics component used in a home theater. Its purpose is to receive audio and video signals from a number of sources, and to process them and provide power amplifiers to drive loudspeakers and route the video to displays such as a television, monitor or video projector. Inputs may come from a satellite receiver, radio, DVD players, Blu-ray Disc players, VCRs or video game consoles, among others. The AVR source selection and settings such as volume, are typically set by a remote controller.

Component video requires an extra synchronization signal to be sent along with the video. Component video sync signals can be sent in several different ways:

Dreamcast VGA

The Dreamcast VGA Box is an accessory for Sega's Dreamcast video game console that allows it to connect to a video display such as a computer monitor or an HDTV set through a VGA port. Because the Dreamcast hardware can produce a VGA-compatible video signal natively, this connection provides improved picture quality compared to standard composite video or S-Video connections, along with support for progressive scan video.

This is a list of GameCube accessories.

Analog passthrough is a feature found on some digital-to-analog television converter boxes. Boxes without analog passthrough only allow digital TV to be viewed on older, analog-only TVs. Those with analog passthrough allow both digital and analog television to be viewed on older TVs.

Amiga video connector

The Amiga video connector is a 23-pin male D-subminiature connector fitted to all personal computers in the Amiga range produced by Commodore International from 1985 to 1994, and by Escom from 1995 to 1996. The connector carries signals for analogue and digital RGB, RGB intensity, and genlocking as well as power. Default Amiga screenmodes are directly compatible with TVs in the region in which the computer was sold, so that the user could connect the computer to a common TV if no monitor was available. In the PAL region, the Amiga could be connected directly to the standardized SCART RGB connector on the TV via an adapter cable sold by Commodore, providing superior image quality. Alternatively, Commodore sold an adapter, that attached to the Amiga video connector and provided composite and RF outputs appropriate to the region in which it was sold. Commodore also sold a range of monitors, which were compatible with the TV signals of the region in which they were sold, and in the PAL region many even had SCART inputs so that not only Amigas, but also other SCART-compatible equipment could be attached to them.

Audio connectors and video connectors are electrical or optical connectors for carrying audio and video signals. Audio interfaces and video interfaces define physical parameters and interpretation of signals. For digital audio and digital video, this can be thought of as defining the physical layer, data link layer, and most or all of the application layer. For analog audio and analog video these functions are all represented in a single signal specification like NTSC or the direct speaker-driving signal of analog audio. Physical characteristics of the electrical or optical equipment includes the types and numbers of wires required, voltages, frequencies, optical intensity, and the physical design of the connectors. Any data link layer details define how application data is encapsulated. Application layer details define the actual audio or video format being transmitted, often incorporating a codecs not specific to the interface, such as PCM, MPEG-2, or the DTS Coherent Acoustics codec. In some cases, the application layer is left open; for example, HDMI contains an Ethernet channel for general data transmission.

Various accessories for the PlayStation 2 video game console have been produced by Sony, as well as third parties. These include controllers, audio and video input devices like microphones and video cameras, and cables for better sound and picture quality.


  1. "Conector SCART (Euroconector)". Retrieved 17 November 2016.
  2. "La télé des années 80". Archived from the original on April 3, 2009.
  3. "Le TI-99/4A et la Presse Informatique". Archived from the original on October 14, 2007.
  4. "Arrêté du 3 juillet 2015 abrogeant l'arrêté du 7 février 1980 portant homologation et mise en application obligatoire de la norme française NF C 92-250". Legifrance.
  5. "Domestic and similar electronic equipment interconnection requirements: Peritelevision connector" (PDF). British Standards Institution. 15 June 1998. ISBN   0580298604.
  6. "S-Video to SCART signal conversion guide". Archived from the original on October 8, 2011.
  7. depends on protocol used
  8. "Electric shock off aerial coax". Retrieved 2012-06-15.
  9. "Guide to preventing shocks from entertainment systems" (PDF). Digital TV Group. Archived from the original (pdf) on March 6, 2016. Retrieved 15 June 2012.
  10. ":: EPE Chat Zone :: Radio Bygones Message Board ::: SCART Shock". Archived from the original on April 16, 2016. Retrieved 2012-06-15.
  11. Based on a Pace Micro Technology Prima analogue receiver manual and a DATCOM AP-500/AP-700 dish positioner manual.
  12. "Game Console RGB SCART Cable Diagrams". Retrieved 2012-06-15.
  13. 1 2 "av:japanese_rgb-21 [NFG Games + GameSX]".
  14. "Television receiver measurement" (PDF).
  15. "JEITA 電子情報技術産業協会 /".
  16. "EuroSCART versus JP21".