STS-74

Last updated

STS-74
Shuttle-Mir Approach (29053887780).jpg
Atlantis approaches Mir with the station's Docking Module in its payload bay
Names Space Transportation System-74
Mission type Shuttle-Mir
Operator NASA
COSPAR ID 1995-061A OOjs UI icon edit-ltr-progressive.svg
SATCAT no. 23714
Mission duration8 days, 04 hours, 31 minutes, 42 seconds
Distance travelled5,500,000 kilometres (3,400,000 mi)
Orbits completed128
Spacecraft properties
Spacecraft Space Shuttle Atlantis
Launch mass112,358 kilograms (247,707 lb)
Landing mass92,701 kilograms (204,371 lb)
Payload mass6,134 kilograms (13,523 lb)
Crew
Crew size5
Members
Start of mission
Launch date12 November 1995, 12:30:43.071 (1995-11-12UTC12:30:43Z) UTC
Launch site Kennedy LC-39A
End of mission
Landing date20 November 1995, 17:01:27 (1995-11-20UTC17:01:28Z) UTC
Landing site Kennedy SLF Runway 33
Orbital parameters
Reference system Geocentric
Regime Low Earth
Perigee altitude 391 kilometres (243 mi)
Apogee altitude 396 kilometres (246 mi)
Inclination 51.6 degrees
Period 92.4 min
Docking with Mir
Docking port SO  starboard
Docking date15 November 1995, 06:27:38 UTC
Undocking date18 November 1995, 08:15:44 UTC
Time docked3 days, 1 hours, 48 minutes 6 seconds
Sts-74-patch.png
STS-74 mission patch
STS-74 crew.jpg
Left to right: Halsell, Cameron; Standing: McArthur, Ross, Hadfield
  STS-73 (72)
STS-72 (74) 
 

STS-74 was the fourth mission of the US/Russian Shuttle-Mir Program, and the second docking of the Space Shuttle with Mir . Space Shuttle Atlantis lifted off from Kennedy Space Center launch pad 39A on 12 November 1995. The mission ended 8 days later with the landing of Atlantis back at Kennedy. It was the second in a series of seven straight missions to the station flown by Atlantis.

Contents

The shuttle delivered a pair of solar arrays along with the Russian-built Mir Docking Module to allow docking with the station by the space shuttle without moving Mir's Kristall module. During the three-day docking, the Russian, Canadian, and American crew transferred supplies and equipment between Atlantis and Mir, moved several long-term experiments, and upgraded the station with new equipment, particularly during the installation of the docking module.

Crew

Position Astronaut
Commander Flag of the United States.svg Kenneth D. Cameron
Third and last spaceflight
Pilot Flag of the United States.svg James D. Halsell
Second spaceflight
Mission Specialist 1 Flag of Canada (Pantone).svg Chris A. Hadfield, CSA
First spaceflight
Mission Specialist 2 Flag of the United States.svg Jerry L. Ross
Fifth spaceflight
Mission Specialist 3 Flag of the United States.svg William S. McArthur Jr.
Second spaceflight

Mission background

The crew's preparation for the mission had begun some thirteen months earlier in 1994, with the crew being trained in the operation of the space shuttle, the mating and docking procedures that would be required as Atlantis approached Mir later in the mission, and the management of the various scientific experiments being carried on the orbiter during the mission. [1]

Preparation of Atlantis itself for mission STS-74 began with the replacement of three thrusters in Atlantis's right-hand Orbital Maneuvering System pod in bay 2 of the Orbiter Processing Facility on 25 August 1995. Installation of the three Space Shuttle Main Engines (SSMEs) on Atlantis was completed on 5 September 1995, as were closeout operations on the Russian docking module.

On 7 November, engineers determined that there was no additional work needed to verify the solid rocket boosters for flight, following discovery of small cracks in the hold-down posts attached to boosters that had flown earlier that year. Close inspections of the STS-74 stack determined that no such cracks were present on the boosters to be used for the mission.

Pad 39A was cleared on 9 November in preparation for loading of the onboard cryogenic tanks with the cryogenic oxygen and hydrogen reactants that provided electricity through the three onboard fuel cells, and water for the flight as a by-product.

The initial launch attempt, scheduled for 11 November 1995 at 7:56 am EST (12:56  UTC) was postponed due to poor weather at the Transatlantic Abort (TAL) site. The original launch window was 6 min 57 secs and the countdown had begun on schedule. The crew was on board when the postponement was called at the T-minus 5 minute mark at approximately 7:51 am EST (12:51 UTC). [2]

Mission timeline

12 November (launch and flight day 1)

Atlantis launches from pad 39A at the start of STS-74 STS-74 Launch.jpg
Atlantis launches from pad 39A at the start of STS-74

Following a poll of the mission management team at 7:12 am EST in which all stations (with the exception of the Shuttle Range Officer) returned a "go for launch" and the eventual clearance of the range for launch at 7:20 am EST, Atlantis raced into the sky at the beginning of a 10-minute, 9-second launch window following a flawless countdown with no unscheduled holds. The shuttle lifted off the pad at 7:30:43 am EST; the main engines were shut down at 7:39 am EST.

About 43 minutes after launch, a 2-minute and 13 second engine firing changed the shuttle's path into a 162 nautical mile circular orbit. Once on orbit, the five crew members began configuring Atlantis for on-orbit operations. Atlantis's payload bay doors were opened about 90 minutes into the flight, followed by a "go" for on-orbit operations.

Approximately three hours into the flight, Commander Ken Cameron and Pilot Jim Halsell fired the orbiter's reaction control thrusters in the first of a series of rendezvous burns that refined Atlantis's path towards Mir. Shortly after the burn, the first Canadian mission specialist, Chris Hadfield, activated the Russian-built docking module, housed in the shuttle's payload bay, ready for the docking of the module with Atlantis's Orbiter Docking System on flight day 2. [3]

13 November (flight day 2)

The five-member crew aboard the Space Shuttle Atlantis spent the bulk of their first full day in space readying the orbiter and its payloads for the 14 November mating of the Russian docking module to the Orbiter Docking System in advance of the 15 November docking to Mir. Both the module and the docking system were located in Atlantis's payload bay.

Mission specialists Jerry Ross and Bill McArthur inspected the spacesuits they would don should a spacewalk become necessary during the mating or docking operations. Following the space suit inspection, Mission Specialist Chris Hadfield powered up the orbiter's robot arm in preparation for the next day's transfer of the docking module over to Atlantis's docking system. All systems affiliated with the robot arm operated as expected and were ready to support the mating.

The crew members also checked out the Advanced Space Vision System, a precise alignment system for the robot arm that was tested on STS-74. The OSVS, which was used during the mating operation, consisted of a series of large dots placed on the exterior of the docking module and the docking system.

The day's schedule also included the installation and alignment of the centerline camera in the centre of the Orbiter Docking System. The camera later assisted Commander Ken Cameron in final piloting tasks as Atlantis moved towards and docked with Mir. At 5:00 am CST (11:00 UTC) on day 2, Atlantis was about 4,000 statute miles behind Mir, and was closing in to the space station at a rate of about 380 statute miles per orbit.

Cameron, Hadfield and other available crew members also spent the morning answering questions posed by Canadian reporters located in Montreal and Toronto. Hadfield, a Canadian Space Agency astronaut, was the fourth Canadian astronaut to fly on the shuttle.

With all of the systems that were to put the Russian Docking Module in place for a flight day 4 link-up with Mir checked out and ready to go, the STS-74 crew settled down for 8 hours of sleep that afternoon. [4]

14 November (flight day 3)

The Mir Docking Module, positioned in Atlantis's payload bay, ready to be docked to the Kristall module of space station Mir Docking Module (STS-74).jpg
The Mir Docking Module, positioned in Atlantis's payload bay, ready to be docked to the Kristall module of space station Mir

On flight day 3, the STS-74 crew members successfully mated the 15-foot Russian built docking module with the shuttle's Orbiter Docking System. No problems were reported during the mating operation.

Chris Hadfield, a Canadian Space Agency astronaut and STS-74 mission specialist, used the shuttle's robot arm to hoist the docking module out of the aft portion of the payload bay, rotated it to a vertical position, and moved it to within five inches of the Orbiter Docking System. At that point, the shuttle fired its downward steering jets and moved the shuttle toward the docking module. Once the two spacecraft were locked together, the docking ring on the Orbiter Docking System retracted, and a series of hooks and latches were engaged to ensure an airtight seal between the two spacecraft.

The mating was confirmed at 1:17 am CST, with Atlantis over eastern Europe on its 30th orbit. Shortly after the capture, Commander Ken Cameron expressed the crew's appreciation for the training that prepared them for the docking module installation.

At about 3:00 am CST, the crew received a go from ground flight controllers to ungrapple the robot arm from the docking module. Shortly after that, crew members raised the orbiter's cabin pressure from 10.2 pounds per square inch to 14.7 psi. The cabin's pressure was lowered in the event that a problem during the mating process necessitated an emergency spacewalk.

Crew members also mounted a centerline camera into the top hatch of the docking module. The camera later provided the primary visual cue for Cameron as he maneuvered Atlantis to its docking with Mir on flight day four.

By 5:00 am EST, Atlantis was trailing Mir by about 1,450 statute miles and closing at a rate of about 180 statute miles every orbit. A series of rendezvous jet firings later further refined the closing rate, leading up to a docking with Mir at 06:27:38 UTC on 15 November. [5]

15 November (flight day 4 and docking)

The final configuration of Mir, showing the Docking Module with a docked Space Shuttle. Mir-Shuttle diagram.svg
The final configuration of Mir, showing the Docking Module with a docked Space Shuttle.

Atlantis finally docked to Mir'sKristall module using the docking module's top androgynous unit on flight day 4. The tension was high aboard Atlantis as Cameron maneuvered the shuttle towards Mir using the orbiter's thrusters. Atlantis docked with Mir at 06:27:38 UTC following a faultless set of orbital maneuvers. After all the required checks had been completed and the hatches had been opened, the five shuttle astronauts moved into Mir, ready to carry out three days of combined operations with Mir's resident crew, Russian cosmonauts Yuri Gidzenko and Sergei Avdeyev (carrying out the Mir EO-20 expedition) and ESA astronaut Thomas Reiter (flying on the Euromir 95 expedition). [6] The two crews greeted each other with handshakes and hugs before carrying out a traditional gift exchange, with flowers and chocolates being swapped between the crews. [1]

16–19 November (flight days 5–8)

During the three days of combined Shuttle-Mir operations, Atlantis's crew transferred various items from the shuttle to the space station, including water, supplies, and equipment, along with two new solar arrays (one Russian and one jointly-developed) to upgrade Mir. [7]

The crew also transferred various experiment samples, equipment for repair and analysis and products manufactured on Mir back to Atlantis for transfer back to Earth, along with the University of California Berkeley Trek Experiment which had been flying on orbit aboard Mir for the previous four years.

Meanwhile, flying aboard Atlantis was the GPP payload which consisted of two experiments – the GPP experiment and the Photogrammetric Appendage Structural Dynamics Experiment (PASDE). The payload was managed by Goddard Space Flight Center's Special Payloads Division. The GPP studied the Earth's thermosphere, ionosphere and mesosphere energetics and dynamics using broadband spectroscopy. GPP also studied spacecraft interactions with the atmosphere by observing shuttle and Mir glow, shuttle engine firings, water dumps and fuel cell purges.

Three PASDE canisters, located throughout the cargo bay, also photogrammetrically recorded structural response data of the Mir solar arrays during the docked phase of the mission. This data was later analyzed on the ground to verify the use of photogrammetric techniques to characterize the structural dynamics of the array, thus demonstrating that this technology would result in cost and risk reduction for the International Space Station.

At 08:15:44 UTC on 18 November, Atlantis undocked from the docking module's bottom androgynous unit, leaving the docking module permanently attached to the Kristall module, where it provided clearance between the shuttle and Mir's solar arrays during subsequent dockings. [2]

20 November (flight day 9 and landing)

Flight day 9 consisted primarily of preparations for landing, and the landing itself. Atlantis's deorbit burn was performed on orbit 128 at around 11:00 am EST (16:00 UTC), leading to a landing at Kennedy Space Center (KSC), Florida, on Runway 33 of the Shuttle Landing Facility.

Atlantis touches down at the Shuttle Landing Facility at the end of STS-74 STS-74 Landing.jpg
Atlantis touches down at the Shuttle Landing Facility at the end of STS-74

The main landing gear touched down at 12:01:27 pm EST (17:01:27 UTC) on 20 November, a mission elapsed time (MET) of 8 days 4 hours 30 minutes and 44 seconds. Nose gear touched down at 8 days 4 hours 30 minutes 54 seconds (12:01:37 pm EST – 17:01:37 UTC) and Atlantis' wheels stopped at a MET of 8 days 4 hours 31 minutes 42 seconds (12:02:24 pm EST – 17:02:24 UTC), bringing the 73rd space shuttle mission to a close. [8]

A second landing opportunity had been planned in case of bad weather, for a KSC landing at 1:37 pm EST with a deorbit burn at 12:36 pm on orbit 129, but it was not required. [9]

See also

Related Research Articles

<span class="mw-page-title-main">Jerry L. Ross</span> NASA astronaut and flight test engineer

Jerry Lynn Ross is a retired United States Air Force officer, engineer, and a former NASA astronaut. Ross is a veteran of 7 Space Shuttle missions, making him the joint record holder for most spaceflights.

<span class="mw-page-title-main">Marsha Ivins</span> American astronaut

Marsha Sue Ivins is an American retired astronaut and a veteran of five Space Shuttle missions.

<span class="mw-page-title-main">STS-71</span> 1995 American crewed spaceflight to Mir

STS-71 was the third mission of the US/Russian Shuttle-Mir Program and the first Space Shuttle docking to Russian space station Mir. It started on June 27, 1995, with the launch of Space Shuttle Atlantis from launchpad 39A at the Kennedy Space Center in Florida. The Shuttle delivered a relief crew of two cosmonauts Anatoly Solovyev and Nikolai Budarin to the station and recovered Increment astronaut Norman Thagard. Atlantis returned to Earth on July 7 with a crew of eight. It was the first of seven straight missions to Mir flown by Atlantis, and the second Shuttle mission to land with an eight-person crew after STS-61-A in 1985.

<span class="mw-page-title-main">STS-76</span> 1996 American crewed spaceflight to Mir

STS-76 was NASA's 76th Space Shuttle mission, and the 16th mission for Atlantis. STS-76 launched on 22 March 1996 at 08:13:04 UTC from Kennedy Space Center, launch pad 39B. STS-76 lasted over 9 days, traveled about 6,100,000 km (3,800,000 mi) while orbiting Earth an estimated 145 times, and landing at 13:28:57 UTC on 31 March 1996 at Edwards Air Force Base, runway 22.

<span class="mw-page-title-main">STS-79</span> 1996 American crewed spaceflight to Mir

STS-79 was the 17th flight of Space Shuttle Atlantis, and the 79th mission of the Space Shuttle program. The flight saw Atlantis dock with the Russian space station Mir to deliver equipment, supplies and relief personnel. A variety of scientific experiments were also conducted aboard Atlantis by her crew. It was the first shuttle mission to rendezvous with a fully assembled Mir, and the fourth rendezvous of a shuttle to the space station.

<span class="mw-page-title-main">STS-81</span> 1997 American crewed spaceflight to Mir

STS-81 was a January 1997 Space Shuttle Atlantis mission to the Mir space station.

<span class="mw-page-title-main">STS-84</span> 1997 American crewed spaceflight to Mir

STS-84 was a crewed spaceflight mission by Space Shuttle Atlantis to the Mir space station.

<span class="mw-page-title-main">STS-86</span> 1997 American crewed spaceflight to Mir

STS-86 was a Space Shuttle Atlantis mission to the Mir space station. This was the last Atlantis mission before it was taken out of service temporarily for maintenance and upgrades, including the glass cockpit.

<span class="mw-page-title-main">STS-88</span> First Space Shuttle mission to the International Space Station

STS-88 was the first Space Shuttle mission to the International Space Station (ISS). It was flown by Space Shuttle Endeavour, and took the first American module, the Unity node, to the station.

<span class="mw-page-title-main">STS-106</span> 2000 American crewed spaceflight to the ISS

STS-106 was a 2000 Space Shuttle mission to the International Space Station (ISS) flown by Space Shuttle Atlantis.

<span class="mw-page-title-main">Linda M. Godwin</span> American astronaut

Linda Maxine Godwin is an American scientist and retired NASA astronaut. Godwin joined NASA in 1980 and became an astronaut in July 1986. She retired in 2010. During her career, Godwin completed four space flights and logged over 38 days in space. Godwin also served as the assistant to the director for exploration, Flight Crew Operations Directorate at the Johnson Space Center. Since retiring from NASA, she accepted the position of professor in the Department of Physics and Astronomy at the University of Missouri.

<span class="mw-page-title-main">Yuri Usachov</span> Former Russian cosmonaut

Yury Vladimirovich Usachov is a former cosmonaut who resides in Star City, Moscow. Usachov is a veteran of four spaceflights, including two long-duration missions on board the Mir Space Station and another on board the International Space Station. During his career, he also conducted seven spacewalks before his retirement on April 5, 2004.

<span class="mw-page-title-main">Soyuz TM-22</span> 1995 Russian crewed spaceflight to Mir

Soyuz TM-22 was a Soyuz spaceflight to the Soviet space station Mir. It launched from Baikonur Cosmodrome Launch Pad 1 on September 3, 1995. After two days of free flight, the crew docked with Mir to become Mir Principal Expedition 20 and Euromir 95. Mir 20 was a harbinger of the multinational missions that would be typical of the International Space Station. After 179 days, 1 hour and 42 minutes on orbit, Reiter obtained the record for spaceflight duration by a Western European.

<span class="mw-page-title-main">Soyuz TM-23</span> 1996 Russian crewed spaceflight to Mir

Soyuz TM-23 was a Soyuz spaceflight which launched on February 21, 1996, to Mir. The spacecraft launched from Baikonur Cosmodrome, and after two days of flight, Yuri Onufrienko and Yury Usachov docked with Mir and became the 21st resident crew of the Station. On September 2, 1996, after 191 days docked with Mir, the ship undocked with the launch crew and Claudie André-Deshays onboard, before eventually landing 107 km (66 mi) south west of Akmola, Kazakhstan.

Shuttle–<i>Mir</i> program 1993–1998 collaborative Russia–US space program

The Shuttle–Mir program was a collaborative 11-mission space program between Russia and the United States that involved American Space Shuttles visiting the Russian space station Mir, Russian cosmonauts flying on the Shuttle, and an American astronaut flying aboard a Soyuz spacecraft to engage in long-duration expeditions aboard Mir.

<span class="mw-page-title-main">STS-117</span> 2007 American crewed spaceflight to the ISS

STS-117 was a Space Shuttle mission flown by Space Shuttle Atlantis, launched from pad 39A of the Kennedy Space Center on June 8, 2007. Atlantis lifted off from the launch pad at 19:38 EDT. Damage from a hail storm on February 26, 2007, had previously caused the launch to be postponed from an originally-planned launch date of March 15, 2007. The launch of STS-117 marked the 250th orbital human spaceflight. It was also the heaviest flight of the Space Shuttle.

<span class="mw-page-title-main">STS-122</span> 2008 American crewed spaceflight to the ISS

STS-122 was a NASA Space Shuttle mission to the International Space Station (ISS), flown by the Space ShuttleAtlantis. STS-122 marked the 24th shuttle mission to the ISS, and the 121st Space Shuttle flight overall.

<span class="mw-page-title-main">STS-129</span> 2009 American crewed spaceflight to the ISS

STS-129 was a NASA Space Shuttle mission to the International Space Station (ISS). Atlantis was launched on November 16, 2009, at 14:28 EST, and landed at 09:44 EST on November 27, 2009, on runway 33 at the Kennedy Space Center's Shuttle Landing Facility. It was also the last Shuttle mission of the 2000s.

<span class="mw-page-title-main">STS-132</span> 2010 American crewed spaceflight to the ISS

STS-132 was a NASA Space Shuttle mission, during which Space Shuttle Atlantis docked with the International Space Station on May 16, 2010. STS-132 was launched from the Kennedy Space Center on May 14, 2010. The primary payload was the Russian Rassvet Mini-Research Module, along with an Integrated Cargo Carrier-Vertical Light Deployable (ICC-VLD). Atlantis landed at the Kennedy Space Center on May 26, 2010.

<span class="mw-page-title-main">STS-135</span> 2011 American crewed spaceflight to the ISS and final flight of the Space Shuttle program

STS-135 was the 135th and final mission of the American Space Shuttle program. It used the orbiter Atlantis and hardware originally processed for the STS-335 contingency mission, which was not flown. STS-135 launched on July 8, 2011, and landed on July 21, 2011, following a one-day mission extension. The four-person crew was the smallest of any shuttle mission since STS-6 in April 1983. The mission's primary cargo was the Multi-Purpose Logistics Module (MPLM) Raffaello and a Lightweight Multi-Purpose Carrier (LMC), which were delivered to the International Space Station (ISS). The flight of Raffaello marked the only time that Atlantis carried an MPLM.

References

PD-icon.svg This article incorporates public domain material from websites or documents of the National Aeronautics and Space Administration .

  1. 1 2 "CSA – STS-74 – Daily Reports". CSA. Archived from the original on 5 December 2004.
  2. 1 2 "STS-74". NASA.
  3. "STS-74 Day 1 Highlights". NASA.
  4. "STS-74 Day 2 Highlights". NASA.
  5. "STS-74 Day 3 Highlights". NASA.
  6. List of Mir Expeditions
  7. Due to a furlough of US government workers from 14–19 November 1995, mission status reports between those dates are not currently available, and as such specific information from NASA for flight days 4–8 is inaccessible.
  8. "November 20, 1995 Shuttle Status Report". Archived from the original on 27 September 2013. Retrieved 20 July 2013.
  9. "STS-74 Day 9 Highlights". NASA.