Samarium–neodymium dating

Last updated

Samarium–neodymium dating is a radiometric dating method useful for determining the ages of rocks and meteorites, based on the radioactive decay of a long-lived samarium isotope (147Sm) to a radiogenic neodymium isotope (143Nd). Neodymium isotope ratios together with samarium-neodymium ratios are used to provide information on age information and the source of igneous melts. It is sometimes assumed that at the moment when crustal material is formed from the mantle the neodymium isotope ratio depends only on the time when this event occurred, but thereafter it evolves in a way that depends on the new ratio of samarium to neodymium in the crustal material, which will be different from the ratio in the mantle material. Samarium–neodymium dating allows us to determine when the crustal material was formed.

Contents

The usefulness of Sm–Nd dating stems from the fact that these two elements are rare earth elements and are thus, theoretically, not particularly susceptible to partitioning during sedimentation and diagenesis. [1] Fractional crystallisation of felsic minerals changes the Sm/Nd ratio of the resultant materials. This, in turn, influences the rate at which the 143Nd/144Nd ratio increases due to production of radiogenic 143Nd.

In many cases, Sm–Nd and Rb–Sr isotope data are used together.

Sm–Nd radiometric dating

Samarium has five naturally occurring isotopes, and neodymium has seven. The two elements are joined in a parent–daughter relationship by the alpha decay of parent 147Sm to radiogenic daughter 143Nd with a half-life of 1.06×1011 years and by the alpha decay of 146Sm (an almost-extinct nuclide with a half-life of 1.08×108 years) to produce 142Nd. (Some of the 146Sm may itself have originally been produced through alpha-decay from 150 Gd, which has a half-life of 1.79×106 years.)

To find the date at which a rock (or group of rocks) formed one can use the method of isochron dating. [2] The Sm-Nd isochron plots the ratio of radiogenic 143Nd to non-radiogenic 144Nd against the ratio of the parent isotope 147Sm to the non-radiogenic isotope 144Nd. 144Nd is used to normalize the radiogenic isotope in the isochron because it is a stable and relatively abundant neodymium isotope.

The Sm-Nd isochron is defined by the following equation:

where:

t is the age of the sample,
λ is the decay constant of 147Sm,
(eλt-1) is the slope of the isochron which defines the age of the system.


Alternatively, one can assume that the material formed from mantle material which was following the same path of evolution of these ratios as chondrites, and then again the time of formation can be calculated (see #The CHUR model). [2] [1]

Sm and Nd geochemistry

The concentration of Sm and Nd in silicate minerals increase with the order in which they crystallise from a magma according to Bowen's reaction series. Samarium is accommodated more easily into mafic minerals, so a mafic rock which crystallises mafic minerals will concentrate neodymium in the melt phase relative to samarium. Thus, as a melt undergoes fractional crystallization from a mafic to a more felsic composition, the abundance of Sm and Nd changes, as does the ratio between Sm and Nd.

Thus, ultramafic rocks have high Sm and low Nd and therefore high Sm/Nd ratios. Felsic rocks have low concentrations of Sm and high Nd and therefore low Sm/Nd ratios (for example komatiite has 1.14 parts per million (ppm) Sm and 3.59 ppm Nd versus 4.65 ppm Sm and 21.6 ppm Nd in rhyolite).

The importance of this process is apparent in modeling the age of continental crust formation.

The CHUR model

Through the analysis of isotopic compositions of neodymium, DePaolo and Wasserburg (1976 [2] ) discovered that terrestrial igneous rocks at the time of their formation from melts closely followed the "chondritic uniform reservoir" or "chondritic unifractionated reservoir" (CHUR) line – the way the 143Nd:144Nd ratio increased with time in chondrites. Chondritic meteorites are thought to represent the earliest (unsorted) material that formed in the Solar system before planets formed. They have relatively homogeneous trace-element signatures, and therefore their isotopic evolution can model the evolution of the whole Solar system and of the "bulk Earth". After plotting the ages and initial 143Nd/144Nd ratios of terrestrial igneous rocks on a Nd evolution vs. time diagram, DePaolo and Wasserburg determined that Archean rocks had initial Nd isotope ratios very similar to that defined by the CHUR evolution line.

Epsilon notation

Since 143Nd/144Nd departures from the CHUR evolution line are very small, DePaolo and Wasserburg argued that it would be useful to create a form of notation that described 143Nd/144Nd in terms of their deviations from the CHUR evolution line. This is called the epsilon notation, whereby one epsilon unit represents a one part per 10,000 deviation from the CHUR composition. [3] Algebraically, epsilon units can be defined by the equation

Since epsilon units are finer and therefore a more tangible representation of the initial Nd isotope ratio, by using these instead of the initial isotopic ratios, it is easier to comprehend and therefore compare initial ratios of crust with different ages. In addition, epsilon units will normalize the initial ratios to CHUR, thus eliminating any effects caused by various analytical mass fractionation correction methods applied. [3]

Nd model ages

Since CHUR defines initial ratios of continental rocks through time, it was deduced that measurements of 143Nd/144Nd and 147Sm/144Nd, with the use of CHUR, could produce model ages for the segregation from the mantle of the melt that formed any crustal rock. This has been termed TCHUR. [1] In order for a TCHUR age to be calculated, fractionation between Nd/Sm would have to have occurred during magma extraction from the mantle to produce a continental rock. This fractionation would then cause a deviation between the crustal and mantle isotopic evolution lines. The intersection between these two evolution lines then indicates the crustal formation age. The TCHUR age is defined by the following equation:

The TCHUR age of a rock can yield a formation age for the crust as a whole if the sample has not suffered disturbance after its formation. Since Sm/Nd are rare-earth elements (REE), their characterisity enables theitic immobile ratios to resist partitioning during metamorphism and melting of silicate rocks. This therefore allows crustal formation ages to be calculated, despite any metamorphism the sample has undergone.

The depleted-mantle model

Graph to show the depleted-mantle model of DePaolo (1981) Depleted mantle model.jpg
Graph to show the depleted-mantle model of DePaolo (1981)

Despite the good fit of Archean plutons to the CHUR Nd isotope evolution line, DePaolo and Wasserburg (1976) observed that the majority of young oceanic volcanics (Mid Ocean Ridge basalts and Island Arc basalts) lay +7 to +12 ɛ units above the CHUR line (see figure). This led to the realization that Archean continental igneous rocks that plotted within the error of the CHUR line could instead lie on a depleted-mantle evolution line characterized by increasing Sm/Nd and 143Nd/144Nd ratios over time. To further analyze this gap between the Archean CHUR data and the young volcanic samples, a study was conducted on the Proterozoic metamorphic basement of the Colorado Front Ranges (the Idaho Springs Formation). [4] The initial 143Nd/144Nd ratios of the samples analyzed are plotted on a ɛNd versus time diagram shown in the figure. DePaolo (1981) fitted a quadratic curve to the Idaho Springs and average ɛNd for the modern oceanic island arc data, thus representing the neodymium isotope evolution of a depleted reservoir. The composition of the depleted reservoir relative to the CHUR evolution line, at time T, is given by the equation

ɛNd(T) = 0.25 T2 – 3 T + 8.5.

Sm-Nd model ages calculated using this curve are denoted as TDM ages. DePaolo (1981) argued that these TDM model ages would yield a more accurate age for crustal formation ages than TCHUR model ages – for example, an anomalously low TCHUR model age of 0.8  Gy from McCulloch and Wasserburg's Grenville composite was revised to a TDM age of 1.3 Gy, typical for juvenile crust formation during the Grenville orogeny.

Related Research Articles

Promethium Chemical element with atomic number 61

Promethium is a chemical element with the symbol Pm and atomic number 61. All of its isotopes are radioactive; it is extremely rare, with only about 500–600 grams naturally occurring in Earth's crust at any given time. Promethium is one of only two radioactive elements that are followed in the periodic table by elements with stable forms, the other being technetium. Chemically, promethium is a lanthanide. Promethium shows only one stable oxidation state of +3.

Radiometric dating, radioactive dating or radioisotope dating is a technique which is used to date materials such as rocks or carbon, in which trace radioactive impurities were selectively incorporated when they were formed. The method compares the abundance of a naturally occurring radioactive isotope within the material to the abundance of its decay products, which form at a known constant rate of decay. The use of radiometric dating was first published in 1907 by Bertram Boltwood and is now the principal source of information about the absolute age of rocks and other geological features, including the age of fossilized life forms or the age of the Earth itself, and can also be used to date a wide range of natural and man-made materials.

Samarium Chemical element with atomic number 62

Samarium is a chemical element with the symbol Sm and atomic number 62. It is a moderately hard silvery metal that slowly oxidizes in air. Being a typical member of the lanthanide series, samarium usually assumes the oxidation state +3. Compounds of samarium(II) are also known, most notably the monoxide SmO, monochalcogenides SmS, SmSe and SmTe, as well as samarium(II) iodide. The last compound is a common reducing agent in chemical synthesis. Samarium has no significant biological role but is only slightly toxic.

The rubidium-strontium dating method is a radiometric dating technique used by scientists to determine the age of rocks and minerals from the quantities they contain of specific isotopes of rubidium (87Rb) and strontium.

Isochron dating

Isochron dating is a common technique of radiometric dating and is applied to date certain events, such as crystallization, metamorphism, shock events, and differentiation of precursor melts, in the history of rocks. Isochron dating can be further separated into mineral isochron dating and whole rock isochron dating; both techniques are applied frequently to date terrestrial and also extraterrestrial rocks (meteorites). The advantage of isochron dating as compared to simple radiometric dating techniques is that no assumptions are needed about the initial amount of the daughter nuclide in the radioactive decay sequence. Indeed, the initial amount of the daughter product can be determined using isochron dating. This technique can be applied if the daughter element has at least one stable isotope other than the daughter isotope into which the parent nuclide decays.

Isotope geochemistry is an aspect of geology based upon the study of natural variations in the relative abundances of isotopes of various elements. Variations in isotopic abundance are measured by isotope ratio mass spectrometry, and can reveal information about the ages and origins of rock, air or water bodies, or processes of mixing between them.

Uranium–lead dating, abbreviated U–Pb dating, is one of the oldest and most refined of the radiometric dating schemes. It can be used to date rocks that formed and crystallised from about 1 million years to over 4.5 billion years ago with routine precisions in the 0.1–1 percent range.

Naturally occurring samarium (62Sm) is composed of five stable isotopes, 144Sm, 149Sm, 150Sm, 152Sm and 154Sm, and two extremely long-lived radioisotopes, 147Sm (half life: 1.06×1011 y) and 148Sm (7×1015 y), with 152Sm being the most abundant (26.75% natural abundance). 146Sm is also fairly long-lived (6.8×107 y), but is not long-lived enough to have survived in significant quantities from the formation of the Solar System on Earth, although it remains useful in radiometric dating in the Solar System as an extinct radionuclide.

The environmental isotopes are a subset of the isotopes, both stable and radioactive, which are the object of isotope geochemistry. They are primarily used as tracers to see how things move around within the ocean-atmosphere system, within terrestrial biomes, within the Earth's surface, and between these broad domains.

Lead–lead dating is a method for dating geological samples, normally based on 'whole-rock' samples of material such as granite. For most dating requirements it has been superseded by uranium–lead dating, but in certain specialized situations it is more important than U–Pb dating.

Rhenium-Osmium dating is a form of radiometric dating based on the beta decay of the isotope 187Re to 187Os. This normally occurs with a half-life of 41.6 × 109 y, but studies using fully ionised 187Re atoms have found that this can decrease to only 33 y. Both rhenium and osmium are strongly siderophilic (iron loving), while Re is also chalcophilic (sulfur loving) making it useful in dating sulfide ores such as gold and Cu-Ni deposits.

Primordial nuclide nuclides predating the Earths formation (found on Earth)

In geochemistry, geophysics and geonuclear physics, primordial nuclides, also known as primordial isotopes, are nuclides found on Earth that have existed in their current form since before Earth was formed. Primordial nuclides were present in the interstellar medium from which the solar system was formed, and were formed in, or after, the Big Bang, by nucleosynthesis in stars and supernovae followed by mass ejection, by cosmic ray spallation, and potentially from other processes. They are the stable nuclides plus the long-lived fraction of radionuclides surviving in the primordial solar nebula through planet accretion until the present. Only 286 such nuclides are known.

Ocean island basalt

Ocean island basalt (OIB) is a volcanic rock, usually basaltic in composition, erupted in oceans away from tectonic plate boundaries. Although ocean island basaltic magma is mainly erupted as basalt lava, the basaltic magma is sometimes modified by igneous differentiation to produce a range of other volcanic rock types, for example, rhyolite in Iceland, and phonolite and trachyte at the intraplate volcano Fernando de Noronha. Unlike mid-ocean ridge basalts (MORBs), which erupt at spreading centers, and volcanic arc lavas, which erupt at subduction zones, ocean island basalts are the result of intraplate volcanism. However, some ocean island basalt locations coincide with plate boundaries like Iceland, which sits on top of a mid-ocean ridge, and Samoa, which is located near a subduction zone.

Donald J. DePaolo American geochemist

Donald J. DePaolo is an American professor of geochemistry in the Department of Earth and Planetary Science at the University of California, Berkeley and Associate Laboratory Director for Energy and Environmental Sciences at the Lawrence Berkeley National Laboratory.

Grouse Creek block An accreted terrane west of the Wyoming craton

The Grouse Creek block is a Precambrian basement province of 2.45 to 2.70 billion year old orthogneisses. The Grouse Creek block is one of several Proterozoic and Archean accreted terranes that lie to the north and west of the Wyoming craton, including the Farmington Canyon Complex, the Selway terrane, the Medicine Hat block and the Priest River complex. Together, these terranes comprise part of the basement rock of the North American continent and have been critical to studies of crustal accretion in the Precambrian. Ongoing study of the Grouse Creek block will contribute to understanding the paleogeography of the Wyoming craton prior to its incorporation into the supercontinent Laurentia approximately 1.86 billion years ago. The name was proposed by David Foster and others.

Earths internal heat budget

Earth's internal heat budget is fundamental to the thermal history of the Earth. The flow of heat from Earth's interior to the surface is estimated at terawatts (TW) and comes from two main sources in roughly equal amounts: the radiogenic heat produced by the radioactive decay of isotopes in the mantle and crust, and the primordial heat left over from the formation of the Earth.

Provenance in geology, is the reconstruction of the origin of sediments. The Earth is a dynamic planet, and all rocks are subject to transition between the three main rock types: sedimentary, metamorphic, and igneous rocks. Rocks exposed to the surface are sooner or later broken down into sediments. Sediments are expected to be able to provide evidence of the erosional history of their parent source rocks. The purpose of provenance study is to restore the tectonic, paleo-geographic and paleo-climatic history.

Potassium–calcium dating, abbreviated K–Ca dating, is a radiometric dating method used in geochronology. It is based upon measuring the ratio of a parent isotope of potassium (40K) to a daughter isotope of calcium (40Ca). This form of radioactive decay is accomplished through beta decay.

Lutetium–hafnium dating

Lutetium–hafnium dating is a geochronological dating method utilizing the radioactive decay system of lutetium–176 to hafnium–176. With a commonly accepted half-life of 37.1 billion years, the long-living Lu–Hf decay pair survives through geological time scales, thus is useful in geological studies. Due to chemical properties of the two elements, namely their valences and ionic radii, Lu is usually found in trace amount in rare-earth element loving minerals, such as garnet and phosphates, while Hf is usually found in trace amount in zirconium-rich minerals, such as zircon, baddeleyite and zirkelite.

Earths crustal evolution

Earth's crustal evolution involves the formation, destruction and renewal of the rocky outer shell at that planet's surface.

References

  1. 1 2 3 McCulloch, M. T.; Wasserburg, G. J. (1978). "Sm-Nd and Rb-Sr Chronology of Continental Crust Formation". Science. 200 (4345): 1003–11. Bibcode:1978Sci...200.1003M. doi:10.1126/science.200.4345.1003. PMID   17740673.
  2. 1 2 3 Depaolo, D. J.; Wasserburg, G. J. (1976). "Nd isotopic variations and petrogenetic models" (PDF). Geophysical Research Letters. 3 (5): 249. Bibcode:1976GeoRL...3..249D. doi:10.1029/GL003i005p00249.
  3. 1 2 Dickin, A. P., 2005. Radiogenic Isotope Geology, 2nd ed. Cambridge: Cambridge University Press. ISBN   0-521-82316-1 pp. 76–77.
  4. DePaolo, D. J. (1981). Neodymium isotopes in the Colorado Front Range and crust – mantle evolution in the Proterozoic. Nature 291, 193–197.