# Scalar (physics)

Last updated

In physics, scalars (or scalar quantities) are physical quantities that are unaffected by changes to a vector space basis (i.e., a coordinate system transformation). Scalars are often accompanied by units of measurement, as in "10  cm". A change of a vector space basis changes the description of a vector in terms of the basis used but does not change the vector itself, while a scalar has nothing to do with this change. This physical definition of scalars, in classical theories, like Newtonian mechanics, means that rotations or reflections preserve scalars, while in relativistic theories, Lorentz transformations or space-time translations preserve scalars. They are called scalars because multiplication of vectors by a unitless scalar is a uniform scaling transformation.

## Contents

A scalar in physics is also a scalar in mathematics (as an element of a field used to define a vector space). The magnitude (or length) of an electric field vector is calculated as the square root of the inner product of the electric field with itself and the outcome of the inner product is an element of the field for the vector space in which the electric field is described. As the field for the vector space in this example and usual cases in physics is the field of real numbers or complex numbers, the square root of the inner product is also an element of the field so it is mathematically scalar. Since the inner product is independent of any vector space basis, the electric field magnitude is also physically scalar. For a mass of an object that is unaffected by a change of a vector space basis so is a physically scalar, it is described by a real number as an element of the real number field. Since a field F is a vector space F over a field F, where addition defined on F is vector addition and multiplication defined on F is scalar multiplication, the mass is also a mathematically scalar. Other quantities such as a distance, charge, volume, time, speed (the magnitude of a velocity vector) [1] are also mathematically and physically scalars in similar senses.

## Scalar field

Since scalars mostly may be treated as special cases of multi-dimensional quantities such as vectors and tensors, physical scalar fields might be regarded as a special case of more general fields, like vector fields, spinor fields, and tensor fields.

## Physical quantity

Like other physical quantities, a physical quantity of scalar is also typically expressed by a numerical value and a physical unit, not merely a number, to provide its physical meaning. It may be regarded as the product of the number and the unit (e.g., 1 km as a physical distance is the same as 1,000 m). A physical distance does not depend on the length of each base vector of the coordinate system where the base vector length corresponds to the physical distance unit in use. (E.g., 1 m base vector length means the meter unit is used.) A physical distance differs from a metric in the sense that it is not just a real number while the metric is calculated to a real number, but the metric can be converted to the physical distance by converting each base vector length to the corresponding physical unit.

Any change of a coordinate system may affect the formula for computing scalars (for example, the Euclidean formula for distance in terms of coordinates relies on the basis being orthonormal), but not the scalars themselves. Vectors themselves also do not change by a change of a coordinate system, but their descriptions changes (e.g., a change of numbers representing a position vector by rotating a coordinate system in use).

## Non-relativistic scalars

### Temperature

An example of a scalar quantity is temperature: The temperature at a given point is a single number. Velocity, on the other hand, is a vector quantity.

### Other examples

Some examples of scalar quantities in physics are mass, charge, volume, time, speed, [1] pressure, and electric potential at a point inside a medium. The distance between two points in three-dimensional space is a scalar, but the direction from one of those points to the other is not, since describing a direction requires two physical quantities such as the angle on the horizontal plane and the angle away from that plane. Force cannot be described using a scalar, since force has both direction and magnitude; however, the magnitude of a force alone can be described with a scalar, for instance the gravitational force acting on a particle is not a scalar, but its magnitude is. The speed of an object is a scalar (e.g., 180 km/h), while its velocity is not (e.g. 108 km/h northward and 144 km/h westward). Some other examples of scalar quantities in Newtonian mechanics are electric charge and charge density.

## Relativistic scalars

In the theory of relativity, one considers changes of coordinate systems that trade space for time. As a consequence, several physical quantities that are scalars in "classical" (non-relativistic) physics need to be combined with other quantities and treated as four-vectors or tensors. For example, the charge density at a point in a medium, which is a scalar in classical physics, must be combined with the local current density (a 3-vector) to comprise a relativistic 4-vector. Similarly, energy density must be combined with momentum density and pressure into the stress–energy tensor.

Examples of scalar quantities in relativity include electric charge, spacetime interval (e.g., proper time and proper length), and invariant mass.

## Notes

1. Feynman, Leighton & Sands 1963

## Related Research Articles

In physics, a force is an influence that can change the motion of an object. A force can cause an object with mass to change its velocity, i.e., to accelerate. Force can also be described intuitively as a push or a pull. A force has both magnitude and direction, making it a vector quantity. It is measured in the SI unit of newton (N). Force is represented by the symbol F.

In physics, the Lorentz transformations are a six-parameter family of linear transformations from a coordinate frame in spacetime to another frame that moves at a constant velocity relative to the former. The respective inverse transformation is then parameterized by the negative of this velocity. The transformations are named after the Dutch physicist Hendrik Lorentz.

In Newtonian mechanics, linear momentum, translational momentum, or simply momentum is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. If m is an object's mass and v is its velocity, then the object's momentum p is :

A physical quantity is a physical property of a material or system that can be quantified by measurement. A physical quantity can be expressed as a value, which is the algebraic multiplication of a ' Numerical value ' and a ' Unit '. For example, the physical quantity of mass can be quantified as '32.3 kg ', where '32.3' is the numerical value and 'kg' is the Unit.

In mathematics, a tensor is an algebraic object that describes a multilinear relationship between sets of algebraic objects related to a vector space. Objects that tensors may map between include vectors and scalars, and even other tensors. There are many types of tensors, including scalars and vectors, dual vectors, multilinear maps between vector spaces, and even some operations such as the dot product. Tensors are defined independent of any basis, although they are often referred to by their components in a basis related to a particular coordinate system.

In mathematics, physics and engineering, a Euclidean vector or simply a vector is a geometric object that has magnitude and direction. Vectors can be added to other vectors according to vector algebra. A Euclidean vector is frequently represented by a directed line segment, or graphically as an arrow connecting an initial pointA with a terminal pointB, and denoted by .

Flux describes any effect that appears to pass or travel through a surface or substance. Flux is a concept in applied mathematics and vector calculus which has many applications to physics. For transport phenomena, flux is a vector quantity, describing the magnitude and direction of the flow of a substance or property. In vector calculus flux is a scalar quantity, defined as the surface integral of the perpendicular component of a vector field over a surface.

In mathematics and physics, a scalar field is a function associating a single number to every point in a space – possibly physical space. The scalar may either be a pure mathematical number (dimensionless) or a physical quantity.

In physics and mathematics, a pseudovector is a quantity that is defined as a function of some vectors or other geometric shapes, that resembles a vector, and behaves like a vector in many situations, but is changed into its opposite if the orientation of the space is changed, or an improper rigid transformation such as a reflection is applied to the whole figure. Geometrically, the direction of a reflected pseudovector is opposite to its mirror image, but with equal magnitude. In contrast, the reflection of a true vector is exactly the same as its mirror image.

In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols , , or . In a Cartesian coordinate system, the Laplacian is given by the sum of second partial derivatives of the function with respect to each independent variable. In other coordinate systems, such as cylindrical and spherical coordinates, the Laplacian also has a useful form. Informally, the Laplacian Δf (p) of a function f at a point p measures by how much the average value of f over small spheres or balls centered at p deviates from f (p).

In mathematics and physics, a tensor field assigns a tensor to each point of a mathematical space. Tensor fields are used in differential geometry, algebraic geometry, general relativity, in the analysis of stress and strain in materials, and in numerous applications in the physical sciences. As a tensor is a generalization of a scalar and a vector, a tensor field is a generalization of a scalar field or vector field that assigns, respectively, a scalar or vector to each point of space.

A geometrized unit system, geometric unit system or geometrodynamic unit system is a system of natural units in which the base physical units are chosen so that the speed of light in vacuum, c, and the gravitational constant, G, are set equal to unity.

Classical electromagnetism or classical electrodynamics is a branch of theoretical physics that studies the interactions between electric charges and currents using an extension of the classical Newtonian model. The theory provides a description of electromagnetic phenomena whenever the relevant length scales and field strengths are large enough that quantum mechanical effects are negligible. For small distances and low field strengths, such interactions are better described by quantum electrodynamics.

In linear algebra, a pseudoscalar is a quantity that behaves like a scalar, except that it changes sign under a parity inversion while a true scalar does not.

In classical electromagnetism, magnetic vector potential is the vector quantity defined so that its curl is equal to the magnetic field: . Together with the electric potential φ, the magnetic vector potential can be used to specify the electric field E as well. Therefore, many equations of electromagnetism can be written either in terms of the fields E and B, or equivalently in terms of the potentials φ and A. In more advanced theories such as quantum mechanics, most equations use potentials rather than fields.

A scalar is an element of a field which is used to define a vector space. In linear algebra, real numbers or generally elements of a field are called scalars and relate to vectors in an associated vector space through the operation of scalar multiplication, in which a vector can be multiplied by a scalar in the defined way to produce another vector. Generally speaking, a vector space may be defined by using any field instead of real numbers. Then scalars of that vector space will be elements of the associated field.

The mathematics of general relativity is complex. In Newton's theories of motion, an object's length and the rate at which time passes remain constant while the object accelerates, meaning that many problems in Newtonian mechanics may be solved by algebra alone. In relativity, however, an object's length and the rate at which time passes both change appreciably as the object's speed approaches the speed of light, meaning that more variables and more complicated mathematics are required to calculate the object's motion. As a result, relativity requires the use of concepts such as vectors, tensors, pseudotensors and curvilinear coordinates.

In mathematics and physics, vector is a term that refers colloquially to some quantities that cannot be expressed by a single number, or to elements of some vector spaces.

In physics, a field is a physical quantity, represented by a scalar, vector, or tensor, that has a value for each point in space and time. For example, on a weather map, the surface temperature is described by assigning a number to each point on the map; the temperature can be considered at a certain point in time or over some interval of time, to study the dynamics of temperature change. A surface wind map, assigning an arrow to each point on a map that describes the wind speed and direction at that point, is an example of a vector field, i.e. a 1-dimensional (rank-1) tensor field. Field theories, mathematical descriptions of how field values change in space and time, are ubiquitous in physics. For instance, the electric field is another rank-1 tensor field, while electrodynamics can be formulated in terms of two interacting vector fields at each point in spacetime, or as a single-rank 2-tensor field.

The Feynman Lectures on Physics is a physics textbook based on some lectures by Richard Feynman, a Nobel laureate who has sometimes been called "The Great Explainer". The lectures were presented before undergraduate students at the California Institute of Technology (Caltech), during 1961–1963. The book's co-authors are Feynman, Robert B. Leighton, and Matthew Sands.

## References

• Feynman, Leighton & Sands 1963.
• Arfken, George (1985). (third ed.). Academic press. ISBN   0-12-059820-5.
• Feynman, Richard P.; Leighton, Robert B.; Sands, Matthew (2006). The Feynman Lectures on Physics . Vol. 1. ISBN   0-8053-9045-6.