Scrub typhus

Last updated
Scrub typhus
SynonymsBush typhus
Orientia tsutsugamushi.JPG
Orientia tsutsugamushi
Specialty Infectious disease

Scrub typhus or bush typhus is a form of typhus caused by the intracellular parasite Orientia tsutsugamushi , a Gram-negative α-proteobacterium of family Rickettsiaceae first isolated and identified in 1930 in Japan. [1] [2]

Typhus group of infectious diseases

Typhus, also known as typhus fever, is a group of infectious diseases that include epidemic typhus, scrub typhus and murine typhus. Common symptoms include fever, headache, and a rash. Typically these begin one to two weeks after exposure.

Intracellular parasites are microparasites that are capable of growing and reproducing inside the cells of a host. Some parasites can cause disease.

<i>Orientia tsutsugamushi</i> species of prokaryote

Orientia tsutsugamushi is a mite-borne bacterium belonging to the family Rickettsiaceae and is responsible for a disease called scrub typhus in humans. It is a natural and an obligate intracellular parasite of mites belonging to the family Trombiculidae. With a genome of only 2.4–2.7 Mb, it has the most repeated DNA sequences among bacterial genomes sequenced so far. The disease, scrub typhus, occurs when infected mite larvae accidentally bite humans. Primarily indicated by undifferentiated febrile illnesses, the infection can be complicated and often fatal.


Although the disease is similar in presentation to other forms of typhus, its pathogen is no longer included in genus Rickettsia with the typhus bacteria proper, but in Orientia . The disease is thus frequently classified separately from the other typhi.

In biology, a pathogen is also known as an infectious agent, or a germ. In the oldest and broadest sense, a pathogen is anything that can produce disease; the term came into use in the 1880s. Typically the term pathogen is used to describe an infectious microorganism or agent, such as a virus, bacterium, protozoan, prion, viroid, or fungus. Small animals, such as certain kinds of worms and insect larvae, can also produce disease but such animals are usually, in common parlance, referred to as parasites rather than pathogens. The scientific study of microscopic, pathogenic organisms is called microbiology, while the study of disease that may include these pathogens is called pathology. Parasitology, meanwhile, is the scientific study of parasites and the organisms that host them.

A genus is a taxonomic rank used in the biological classification of living and fossil organisms, as well as viruses, in biology. In the hierarchy of biological classification, genus comes above species and below family. In binomial nomenclature, the genus name forms the first part of the binomial species name for each species within the genus.

<i>Rickettsia</i> type of bacteria that causes typhus, among other diseases

Rickettsia is a genus of nonmotile, Gram-negative, nonspore-forming, highly pleomorphic bacteria that may occur in the forms of cocci 0.1 μm in diameter, rods 1–4 μm long, or threads of up to about 10 μm long. The term "rickettsia" has nothing to do with rickets, which is a deficiency disease resulting from lack of vitamin D; the bacterial genus Rickettsia was named after Howard Taylor Ricketts, in honour of his pioneering work on tick-borne spotted fever.

Signs and symptoms

Signs and symptoms include fever, headache, muscle pain, cough, and gastrointestinal symptoms. More virulent strains of O. tsutsugamushi can cause hemorrhaging and intravascular coagulation. Morbilliform rash, eschar, splenomegaly, and lymphadenopathies are typical signs. Leukopenia and abnormal liver function tests are commonly seen in the early phase of the illness. Pneumonitis, encephalitis, and myocarditis occur in the late phase of illness. It has particularly been shown to be the most common cause of acute encephalitis syndrome in Bihar, India. [3]

Fever common medical sign characterized by elevated body temperature

Fever, also known as pyrexia and febrile response, is defined as having a temperature above the normal range due to an increase in the body's temperature set point. There is not a single agreed-upon upper limit for normal temperature with sources using values between 37.5 and 38.3 °C. The increase in set point triggers increased muscle contractions and causes a feeling of cold. This results in greater heat production and efforts to conserve heat. When the set point temperature returns to normal, a person feels hot, becomes flushed, and may begin to sweat. Rarely a fever may trigger a febrile seizure. This is more common in young children. Fevers do not typically go higher than 41 to 42 °C.

Headache pain in the head or neck

Headache is the symptom of pain anywhere in the region of the head or neck. It occurs in migraines, tension-type headaches, and cluster headaches. Frequent headaches can affect relationships and employment. There is also an increased risk of depression in those with severe headaches.

Cough medical symptom, reflex to clear large breathing passages

A cough is a sudden, and often repetitively occurring, protective reflex which helps to clear the large breathing passages from fluids, irritants, foreign particles and microbes. The cough reflex consists of three phases: an inhalation, a forced exhalation against a closed glottis, and a violent release of air from the lungs following opening of the glottis, usually accompanied by a distinctive sound.


Scrub typhus is transmitted by some species of trombiculid mites ("chiggers", particularly Leptotrombidium deliense ), [4] which are found in areas of heavy scrub vegetation. The bite of this mite leaves a characteristic black eschar that is useful to the doctor for making the diagnosis.

Leptotrombidium deliense is a species of mite.

Eschar slough or piece of dead tissue that is cast off from the surface of the skin

An eschar is a slough or piece of dead tissue that is cast off from the surface of the skin, particularly after a burn injury, but also seen in gangrene, ulcer, fungal infections, necrotizing spider bite wounds, spotted fevers and exposure to cutaneous anthrax. The term "eschar" is not interchangeable with "scab". An eschar contains necrotic tissue, whereas a scab is composed of dried blood and exudate.

Scrub typhus is endemic to a part of the world known as the tsutsugamushi triangle (after O. tsutsugamushi ). [2] This extends from northern Japan and far-eastern Russia in the north, to the territories around the Solomon Sea into northern Australia in the south, and to Pakistan and Afghanistan in the west. [5] It may also be endemic in parts of South America. [6]

Solomon Sea A sea in the Pacific Ocean between Papua New Guinea and the Solomon Islands

The Solomon Sea is a sea located within the Pacific Ocean. It lies between Papua New Guinea and the Solomon Islands. Many major battles were fought there during World War II.

The precise incidence of the disease is unknown, as diagnostic facilities are not available in much of its large native range which spans vast regions of equatorial jungle to the subtropics. In rural Thailand and Laos, murine and scrub typhus account for around a quarter of all adults presenting to hospital with fever and negative blood cultures. [7] [8] The incidence in Japan has fallen over the past few decades, probably due to land development driving decreasing exposure, and many prefectures report fewer than 50 cases per year. [9] [10]

It affects females more than males in Korea, but not in Japan, [11] and which may be because sex-differentiated cultural roles have women tending garden plots more often, thus being exposed to vegetation inhabited by chiggers. The incidence is increasing in the southern part of the Indian subcontinent and in northern areas around Darjeeling.[ citation needed ]


In endemic areas, diagnosis is generally made on clinical grounds alone. However, overshadowing of the diagnosis is quite often as the clinical symptoms overlap with other infectious diseases such as dengue fever, paratyphoid, and pyrexia of unknown origin (PUO). If the eschar can be identified, it is quite diagnostic of scrub typhus, but this is very unreliable in the native population who have dark skin, and moreover, the site of eschar which is usually where the mite bites is often located in covered areas. Unless it is actively searched for, the eschar most likely would be missed. History of mite bite is often absent since the bite does not inflict pain and the mites are almost too small to be seen by the naked eye. Usually, scrub typhus is often labelled as PUO in remote endemic areas, since blood culture is often negative, yet it can be treated effectively with chloramphenicol. Where doubt exists, the diagnosis may be confirmed by a laboratory test such as serology. Again, this is often unavailable in most endemic areas, since the serological test involved is not included in the routine screening tests for PUO, especially in Burma (Myanmar).[ citation needed ]

The choice of laboratory test is not straightforward, and all currently available tests have their limitations. [12] The cheapest and most easily available serological test is the Weil-Felix test, but this is notoriously unreliable. [13] The gold standard is indirect immunofluorescence, [14] but the main limitation of this method is the availability of fluorescent microscopes, which are not often available in resource-poor settings where scrub typhus is endemic. Indirect immunoperoxidase, a modification of the standard IFA method, can be used with a light microscope, [15] and the results of these tests are comparable to those from IFA. [13] [16] Rapid bedside kits have been described that produce a result within one hour, but the availability of these tests is severely limited by their cost. [13] Serological methods are most reliable when a four-fold rise in antibody titre is found. If the patient is from a nonendemic area, then diagnosis can be made from a single acute serum sample. [17] In patients from endemic areas, this is not possible because antibodies may be found in up to 18% of healthy individuals. [18]

Other methods include culture and polymerase chain reaction, but these are not routinely available [19] and the results do not always correlate with serological testing, [20] [21] [22] and are affected by prior antibiotic treatment. [23] The currently available diagnostic methods have been summarised. [12]


Without treatment, the disease is often fatal. Since the use of antibiotics, case fatalities have decreased from 4–40% to less than 2%.

The drug most commonly used is doxycycline or tetracycline, but chloramphenicol is an alternative. Strains that are resistant to doxycycline and chloramphenicol have been reported in northern Thailand. [24] [25] Rifampicin [26] and azithromycin [27] are alternatives. Azithromycin is an alternative in children [28] and pregnant women with scrub typhus, [29] [30] [31] and when doxycycline resistance is suspected. [32] Ciprofloxacin cannot be used safely in pregnancy and is associated with stillbirths and miscarriage. [31] [33] Combination therapy with doxycycline and rifampicin is not recommended due to possible antagonism. [34]


No licensed vaccines are available. [35]

An early attempt to create a scrub typhus vaccine occurred in the United Kingdom in 1937 (with the Wellcome Foundation infecting around 300,000 cotton rats in a classified project called "Operation Tyburn"), but the vaccine was not used. [36] The first known batch of scrub typhus vaccine actually used to inoculate human subjects was dispatched to India for use by Allied Land Forces, South-East Asia Command in June 1945. By December 1945, 268,000 cc had been dispatched. [37] The vaccine was produced at Wellcome′s laboratory at Ely Grange, Frant, Sussex. An attempt to verify the efficacy of the vaccine by using a placebo group for comparison was vetoed by the military commanders, who objected to the experiment. [38]

Enormous antigenic variation in Orientia tsutsugamushi strains is now recognized, [39] [40] and immunity to one strain does not confer immunity to another. Any scrub typhus vaccine should give protection to all the strains present locally, to give an acceptable level of protection. A vaccine developed for one locality may not be protective in another, because of antigenic variation. This complexity continues to hamper efforts to produce a viable vaccine. [41]


An Australian soldier, Private George "Dick" Whittington, is aided by Papuan orderly Raphael Oimbari, near Buna on 25 December 1942. Whittington died in February 1943 from the effects of bush typhus. (Picture by Life photographer George Silk) Wounded Australian soldier led by a Papuan orderly at Buna.jpg
An Australian soldier, Private George "Dick" Whittington, is aided by Papuan orderly Raphael Oimbari, near Buna on 25 December 1942. Whittington died in February 1943 from the effects of bush typhus. (Picture by Life photographer George Silk)

Severe epidemics of the disease occurred among troops in Burma and Ceylon during World War II. [42] Several members of the U.S. Army's 5307th Composite Unit (Merrill's Marauders) died of the disease, and before 1944, no effective antibiotics or vaccines were available. [43] [44]

World War II provides some indicators that the disease is endemic to undeveloped areas in all of Oceania in the Pacific theater, although war records frequently lack definitive diagnoses, and many records of "high fever" evacuations were also likely to be other tropical illnesses. In the chapter entitled "The Green War", General MacArthur's biographer William Manchester identifies that the disease was one of a number of debilitating afflictions affecting both sides on New Guinea [45] in the running bloody Kokoda battles over extremely harsh terrains under intense hardships fought during a six-month span [46] all along the Kokoda Track in 1942-43, and mentions that to be hospital-evacuated, Allied soldiers (who cycled forces) had to run a fever of 102 °F, and that sickness casualties outnumbered weapons-inflicted casualties 5:1. [45] Similarly, the illness was a casualty producer in all the jungle fighting of the land battles of the New Guinea campaign and the Guadalcanal campaign. Where the Allies had bases, they could remove and cut back vegetation, or use DDT as a prophylaxis area barrier treatment, so mite- and tick-induced sickness rates in forces off the front lines were diminished.

The disease was also a problem for US troops stationed in Japan after WWII, and was variously known as "Shichitō fever" (by troops stationed in the Izu Seven Islands) or "Hatsuka fever" (Chiba prefecture). [47]

See also

Related Research Articles

Trench fever is a moderately serious disease transmitted by body lice. It infected armies in Flanders, France, Poland, Galicia, Italy, Salonika, Macedonia, Mesopotamia, Russia and Egypt in World War I. Three noted sufferers during WWI were the authors J. R. R. Tolkien, A. A. Milne, and C. S. Lewis. From 1915 to 1918 between one-fifth and one-third of all British troops reported ill had trench fever while about one-fifth of ill German and Austrian troops had the disease. The disease persists among the homeless. Outbreaks have been documented, for example, in Seattle and Baltimore in the United States among injection drug users and in Marseille, France, and Burundi.

Onchocerciasis Human helminthiasis

Onchocerciasis, also known as river blindness, is a disease caused by infection with the parasitic worm Onchocerca volvulus. Symptoms include severe itching, bumps under the skin, and blindness. It is the second-most common cause of blindness due to infection, after trachoma.

<i>Wuchereria bancrofti</i> species of worm

Wuchereria bancrofti is a human parasitic roundworm that is the major cause of lymphatic filariasis. It is one of the three parasitic worms, together with Brugia malayi and B. timori, that infect the lymphatic system to cause lymphatic filariasis. These filarial worms are spread by a variety of mosquito vector species. W. bancrofti is the most prevalent of the three and affects over 120 million people, primarily in Central Africa and the Nile delta, South and Central America, the tropical regions of Asia including southern China, and the Pacific islands. If left untreated, the infection can develop into a chronic disease called elephantiasis. In rare conditions, it also causes tropical eosinophilia, an asthmatic disease. No vaccine is commercially available, but high rates of cure have been achieved with various antifilarial regimens and lymphatic filariasis is the target of the WHO Global Program to Eliminate Lymphatic Filariasis with the aim to eradicate the disease as a public-health problem by 2020.

Melioidosis Human disease

Melioidosis is an infectious disease caused by a Gram-negative bacterium, Burkholderia pseudomallei, found in soil and water. It is of public health importance in endemic areas, particularly in northeast Thailand, Vietnam, and northern Australia. It exists in acute and chronic forms. Signs and symptoms may include pain in chest, bones, or joints; cough; skin infections, lung nodules, and pneumonia.

Buruli ulcer tropical disease

Buruli ulcer is an infectious disease caused by Mycobacterium ulcerans. The early stage of the infection is characterised by a painless nodule or area of swelling. This nodule can turn into an ulcer. The ulcer may be larger inside than at the surface of the skin, and can be surrounded by swelling. As the disease worsens, bone can be infected. Buruli ulcers most commonly affect the arms or legs; fever is uncommon.

Murine typhus typhus transmitted by fleas (Xenopsylla cheopis), usually on rats

Murine typhus is a form of typhus transmitted by fleas, usually on rats. Murine typhus is an under-recognized entity, as it is often confused with viral illnesses. Most people who are infected do not realize that they have been bitten by fleas.

The Weil–Felix test is an agglutination test for the diagnosis of rickettsial infections. It was first described in 1916. By virtue of its long history and of its simplicity, it has been one of the most widely employed tests for rickettsia on a global scale, despite being superseded in many settings by more sensitive and specific diagnostic tests.

Ehrlichiosis is a tickborne bacterial infection, caused by bacteria of the family Anaplasmataceae, genera Ehrlichia and Anaplasma. These obligate intracellular bacteria infect and kill white blood cells.

A rickettsiosis is a disease caused by intracellular bacteria.

Bartonella bacilliformis is a proteobacterium, Gram negative aerobic, pleomorphic, flagellated, motile, coccobacillary, 2–3 μm long, 0.2–0.5 μm wide, and a facultative intracellular bacterium.

Deer tick virus (DTV) is a flavivirus causing tick-borne encephalitis.

African tick bite fever spotted fever that has material basis in Rickettsia africae, which is transmitted by ticks

African tick bite fever (ATBF) is a bacterial infection spread by the bite of a tick. Symptoms may include fever, headache, muscles pains, and a rash. At the site of the bite there is typically a red skin sore with a dark center. Onset usually occur 4–10 days after the bite. Complications are rare, however may include joint inflammation. Some people do not develop symptoms.

Rickettsia felis is a species of bacterium, the pathogen that causes cat-flea typhus in humans. In cats the disease is known as flea-borne spotted fever. Rickettsia felis also is regarded as the causative organism of many cases of illnesses generally classed as fevers of unknown origin in humans in Africa.

Choclo virus (CHOV) is a single-stranded, negative-sense RNA zoonotic New World hantavirus. It was first isolated in 1999 in western Panama. The finding marked the first time Hantavirus pulmonary syndrome (HPS) was found in Central America.

Cryptosporidium muris is a species of coccidium, first isolated from the gastric glands of the common mouse. Cryptosporidium does originate in common mice, specifically laboratory mice. However, it also has infected cows, dogs, cats, rats, rabbits, lambs, and humans and other primates.

Tensaw virus is a virus in the genus Orthobunyavirus of the Bunyamwera arbovirus group, order Bunyavirales. It is named for the river bordering the area in south Alabama where the prototype strain was discovered. It is abbreviated TEN, TENV, and TSV in the scientific literature.


  1. Tseng BY, Yang HH, Liou JH, Chen LK, Hsu YH (February 2008). "Immunohistochemical study of scrub typhus: a report of two cases". Kaohsiung J. Med. Sci. 24 (2): 92–8. doi:10.1016/S1607-551X(08)70103-7. PMID   18281226.
  2. 1 2 Pediatric Scrub Typhus, accessdate: 16 October 2011
  3. Jain P, Prakash S, Tripathi PK, et al. (2018). "Emergence of Orientia tsutsugamushi as an important cause of acute encephalitis syndrome in India". PLoS Negl Trop Dis. 12 (3): e0006346. doi:10.1371/journal.pntd.0006346. PMC   5891077 . PMID   29590177.
  4. Pham XD, Otsuka Y, Suzuki H, Takaoka H (2001). "Detection of Orientia tsutsugamushi (Rickettsiales: Rickettsiaceae) in unengorged chiggers (Acari: Trombiculidae) from Oita Prefecture, Japan, by nested polymerase chain reaction". J Med Entomol. 38 (2): 308–311. doi:10.1603/0022-2585-38.2.308. PMID   11296840.
  5. Seong SY, Choi MS, Kim IS (January 2001). "Orientia tsutsugamushi infection: overview and immune responses". Microbes Infect. 3 (1): 11–21. PMID   11226850.
  6. Deadly scrub typhus bacteria confirmed in South America. ScienMag (September 8, 2016)
  7. Phongmany S, Rolain JM, Phetsouvanh R, et al. (February 2006). "Rickettsial infections and fever, Vientiane, Laos". Emerging Infect. Dis. 12 (2): 256–62. doi:10.3201/eid1202.050900. PMC   3373100 . PMID   16494751.
  8. Suttinont C, Losuwanaluk K, Niwatayakul K, et al. (June 2006). "Causes of acute, undifferentiated, febrile illness in rural Thailand: results of a prospective observational study". Ann Trop Med Parasitol. 100 (4): 363–70. doi:10.1179/136485906X112158. PMID   16762116.
  9. Katayama T, Hara M, Furuya Y, Nikkawa T, Ogasawara H (June 2006). "Scrub typhus (tsutsugamushi disease) in Kanagawa Prefecture in 2001–2005". Jpn J Infect Dis. 59 (3): 207–8. PMID   16785710. Archived from the original on 2010-05-25.
  10. Yamamoto S, Ganmyo H, Iwakiri A, Suzuki S (December 2006). "Annual incidence of tsutsugamushi disease in Miyazaki prefecture, Japan in 2001-2005". Jpn J Infect Dis. 59 (6): 404–5. PMID   17186964. Archived from the original on 2009-08-15.
  11. Bang HA, Lee MJ, Lee WC (2008). "Comparative research on epidemiological aspects of tsutsugamushi disease (scrub typhus) between Korea and Japan". Jpn J Infect Dis. 61 (2): 148–50. PMID   18362409. Archived from the original on 2008-09-27.
  12. 1 2 Koh GC, Maude RJ, Paris DH, Newton PN, Blacksell SD (March 2010). "Diagnosis of scrub typhus". Am. J. Trop. Med. Hyg. 82 (3): 368–70. doi:10.4269/ajtmh.2010.09-0233. PMC   2829893 . PMID   20207857.
  13. 1 2 3 Pradutkanchana J, Silpapojakul K, Paxton H, et al. (1997). "Comparative evaluation of four serodiagnostic tests for scrub typhus in Thailand". Trans R Soc Trop Med Hyg. 91 (4): 425–8. doi:10.1016/S0035-9203(97)90266-2. PMID   9373640.
  14. Bozeman FM & Elisberg BL (1963). "Serological diagnosis of scrub typhus by indirect immunofluorescence". Proc Soc Exp Biol Med. 112 (3): 568–73. doi:10.3181/00379727-112-28107. PMID   14014756.
  15. Yamamoto S & Minamishima Y (1982). "Serodiagnosis of tsutsugamushi fever (scrub typhus) by the indirect immunoperoxidase technique". J Clin Microbiol. 15 (6): 1128–l. PMC   272264 . PMID   6809786.
  16. Kelly DJ, Wong PW, Gan E, Lewis GE Jr (1988). "Comparative evaluation of the indirect immunoperoxidase test for the serodiagnosis of rickettsial disease". Am J Trop Med Hyg. 38 (2): 400–6. PMID   3128129.
  17. Blacksell SD, Bryant NJ, Paris, DH, et al. (2007). "Scrub typhus serologic testing with the indirect immunofluorescence method as a diagnostic gold standard: a lack of consensus leads to a lot of confusion". Clin Infect Dis. 44 (3): 391–401. doi:10.1086/510585. PMID   17205447.
  18. Eamsila C, Singsawat P, Duangvaraporn A, et al. (1996). "Antibodies to Orientia tsutsugamushi in Thai soldiers". Am J Trop Med Hyg. 55 (5): 556–9. PMID   8940989.
  19. Watt G, Parola P (2003). "Scrub typhus and tropical rickettsioses". Curr Opin Infect Dis. 16 (5): 429–436. doi:10.1097/00001432-200310000-00009. PMID   14501995.
  20. Tay ST, Nazma S, Rohani MY (1996). "Diagnosis of scrub typhus in Malaysian aborigines using nested polymerase chain reaction". Southeast Asian J Trop Med Public Health. 27 (3): 580–3. PMID   9185274.
  21. Kim, DM; Yun, NR; Yang, TY; Lee, JH; Yang, JT; Shim, SK; Choi, EN; Park, MY; Lee, SH (2006). "Usefulness of nested PCR for the diagnosis of scrub typhus in clinical practice: A prospective study". Am J Trop Med Hyg. 75 (3): 542–545. PMID   16968938.
  22. Sonthayanon P, Chierakul W, Wuthiekanun V, et al. (December 2006). "Rapid diagnosis of scrub typhus in rural Thailand using polymerase chain reaction". Am. J. Trop. Med. Hyg. 75 (6): 1099–102. PMID   17172374.
  23. Kim DM, Byun JN (2008). "Effects of Antibiotic Treatment on the Results of Nested PCRs for Scrub Typhus". J Clin Microbiol. 46 (10): 3465–. doi:10.1128/JCM.00634-08. PMC   2566087 . PMID   18716229.
  24. Watt G, Chouriyagune C, Ruangweerayud R, et al. (1996). "Scrub typhus infections poorly responsive to antibiotics in northern Thailand". Lancet. 348 (9020): 86–89. doi:10.1016/S0140-6736(96)02501-9. PMID   8676722.
  25. Kollars TM, Bodhidatta D, Phulsuksombati D, et al. (2003). "Short report: variation in the 56-kD type-specific antigen gene of Orientia tsutsugamushi isolated from patients in Thailand". Am J Trop Med Hyg. 68 (3): 299–300. PMID   12685633.
  26. Panpanich, R.; Garner, P. (2002). "Antibiotics for treating scrub typhus". The Cochrane Database of Systematic Reviews (3): CD002150. doi:10.1002/14651858.CD002150. ISSN   1469-493X. PMID   12137646.
  27. Phimda K, Hoontrakul S, Suttinont C, et al. (2007). "Doxycycline versus Azithromycin for Treatment of Leptospirosis and Scrub Typhus". Antimicrob Agents Chemother. 51 (9): 3259–63. doi:10.1128/AAC.00508-07. PMC   2043199 . PMID   17638700.
  28. Mahajan SK, Rolain JM, Sankhyan N, Kaushal RK, Raoult D (2008). "Pediatric scrub typhus in Indian Himalayas". Indian Journal of Pediatrics. 75 (9): 947–9. doi:10.1007/s12098-008-0198-z. PMID   19011809.
  29. Watt, G; Kantipong, P; Jongsakul, K; Watcharapichat, P; Phulsuksombati, D (1999). "Azithromycin Activities against Orientia tsutsugamushi Strains Isolated in Cases of Scrub Typhus in Northern Thailand". Antimicrob Agents Chemother. 43 (11): 2817–2818. PMC   89570 . PMID   10543774.
  30. Choi EK, Pai H (1998). "Azithromycin therapy for scrub typhus during pregnancy". Clin Infect Dis. 27 (6): 1538–9. doi:10.1086/517742. PMID   9868680.
  31. 1 2 Kim YS, Lee HJ, Chang M, Son SK, Rhee YE, Shim SK (2006). "Scrub typhus during pregnancy and its treatment: a case series and review of the literature". Am J Trop Med Hyg. 75 (5): 955–9. PMID   17123995.
  32. <Please add first missing authors to populate metadata.> (2003). "Efficacy of azithromycin for treatment of mild scrub-typhus infections in South Korea". Abstr Intersci Conf Antimicrob Agents Chemother. 43: abstract no. L–182.
  33. Mathai E, Rolain JM, Verghese L, Mathai M, Jasper P, Verghese G, Raoult D (2003). "Case reports: scrub typhus during pregnancy in India". Trans R Soc Trop Med Hyg. 97 (5): 570–2. doi:10.1016/S0035-9203(03)80032-9. PMID   15307429.
  34. Watt G, Kantipong P, Jongsakul K, et al. (2000). "Doxycycline and rifampicin for mild scrub-typhus infections in northern Thailand: a randomised trial". Lancet. 356 (9235): 1057–1061. doi:10.1016/S0140-6736(00)02728-8. PMID   11009140.
  35. Arguin PM, Kozarsky PE, Reed C (2008). "Chapter 4: Rickettsial Infections". CDC Health Information for International Travel, 2008. Mosby. ISBN   978-0-323-04885-9.
  36. "AWIC Newsletter: The Cotton Rat In Biomedical Research". Archived from the original on 2004-06-10.
  37. "Scrub Typhus Vaccine, Far East". Hansard. Millbanksystems. April 2, 1946.
  38. Thomson Walker W (1947). "Scrub Typhus Vaccine". Br Med J. 1 (4501): 484–7. doi:10.1136/bmj.1.4501.484. PMC   2053023 . PMID   20248030.
  39. Shirai A, Tanskul PL, Andre, RG, et al. (1981). "Rickettsia tsutsugamushi strains found in chiggers collected in Thailand". Southeast Asian J Trop Med Public Health. 12 (1): 1–6. PMID   6789455.
  40. Kang JS, Chang WH (1999). "Antigenic relationship among the eight prototype and new serotype strains of Orientia tsutsugamushi revealed by monoclonal antibodies". Microbiol Immunol. 43 (3): 229–34. doi:10.1111/j.1348-0421.1999.tb02397.x. PMID   10338191.
  41. Kelly DJ, Fuerst PA, Ching WM, Richards AL (2009). "Scrub typhus: The geographic distribution of phenotypic and genotypic variants of Orientia tsutsugamushi". Clinical Infectious Diseases. 48 (s3): S203–30. doi:10.1086/596576. PMID   19220144.
  42. Audy JR (1968). Red mites and typhus. London: University of London, Athlone Press. ISBN   978-0-485-26318-3.
  43. Kearny CH (1997). Jungle Snafus...And Remedies. Cave Junction, Oregon: Oregon Institute of Science & Medicine. p. 309. ISBN   978-1-884067-10-5.
  44. Smallman-Raynor M, Cliff AD (2004). War epidemics: an historical geography of infectious diseases in military conflict and civil strife, 1850–2000. Oxford: Oxford University Press. pp. 489–91. ISBN   978-0-19-823364-0.
  45. 1 2 William Manchester (1978). "The Green War". American Caesar. Little Brown Company. pp. 297–298. ISBN   978-0-316-54498-6.
  46. Manchester, p. Six months to recapture Buna and Gona from July 21–22, 1942
  47. Ogawa M, Hagiwara T, Kishimoto T, et al. (1 August 2002). "Scrub typhus in Japan: Epidemiology and clinical features of cases reported in 1998". Am J Trop Med Hyg. 67 (2): 162–5. PMID   12389941.
External resources