Sea surface temperature

Last updated

Land surface temperatures have increased faster than ocean temperatures as the ocean absorbs about 92% of excess heat generated by climate change. Chart with data from NASA showing how land and sea surface air temperatures have changed vs a pre-industrial baseline. Land vs Ocean Temperature.svg
Land surface temperatures have increased faster than ocean temperatures as the ocean absorbs about 92% of excess heat generated by climate change. Chart with data from NASA showing how land and sea surface air temperatures have changed vs a pre-industrial baseline.
This is a daily, global Sea Surface Temperature (SST) data set produced on December 20th, 2013 at 1-km resolution (also known as ultra-high resolution) by the JPL ROMS (Regional Ocean Modeling System) group. SST 20131220 blended Global.png
This is a daily, global Sea Surface Temperature (SST) data set produced on December 20th, 2013 at 1-km resolution (also known as ultra-high resolution) by the JPL ROMS (Regional Ocean Modeling System) group.
Weekly average sea surface temperature for the World Ocean during the first week of February 2011, during a period of La Nina. Weeklysst.gif
Weekly average sea surface temperature for the World Ocean during the first week of February 2011, during a period of La Niña.
Sea surface temperature and flows.

Sea surface temperature (SST) is the water temperature close to the ocean's surface. The exact meaning of surface varies according to the measurement method used, but it is between 1 millimetre (0.04 in) and 20 metres (70 ft) below the sea surface. Air masses in the Earth's atmosphere are highly modified by sea surface temperatures within a short distance of the shore. Localized areas of heavy snow can form in bands downwind of warm water bodies within an otherwise cold air mass. Warm sea surface temperatures are known to be a cause of tropical cyclogenesis over the Earth's oceans. Tropical cyclones can also cause a cool wake, due to turbulent mixing of the upper 30 metres (100 ft) of the ocean. SST changes diurnally, like the air above it, but to a lesser degree. There is less SST variation on breezy days than on calm days. In addition, ocean currents such as the Atlantic Multidecadal Oscillation (AMO), can effect SST's on multi-decadal time scales, [4] a major impact results from the global thermohaline circulation, which affects average SST significantly throughout most of the world's oceans.

Contents

Ocean temperature is related to ocean heat content, an important topic in the study of global warming.

Coastal SSTs can cause offshore winds to generate upwelling, which can significantly cool or warm nearby landmasses, but shallower waters over a continental shelf are often warmer. Onshore winds can cause a considerable warm-up even in areas where upwelling is fairly constant, such as the northwest coast of South America. Its values are important within numerical weather prediction as the SST influences the atmosphere above, such as in the formation of sea breezes and sea fog. It is also used to calibrate measurements from weather satellites.

Measurement

Temperature profile of the surface layer of the ocean (a) at night and (b) during the day MODIS and AIRS SST comp fig2.i.jpg
Temperature profile of the surface layer of the ocean (a) at night and (b) during the day

There are a variety of techniques for measuring this parameter that can potentially yield different results because different things are actually being measured. Away from the immediate sea surface, general temperature measurements are accompanied by a reference to the specific depth of measurement. This is because of significant differences encountered between measurements made at different depths, especially during the daytime when low wind speed and high sunshine conditions may lead to the formation of a warm layer at the ocean's surface and strong vertical temperature gradients (a diurnal thermocline). [5] Sea surface temperature measurements are confined to the top portion of the ocean, known as the near-surface layer. [6]

Thermometers

SST was one of the first oceanographic variables to be measured. Benjamin Franklin suspended a mercury thermometer from a ship while travelling between the United States and Europe in his survey of the Gulf Stream in the late eighteenth century. SST was later measured by dipping a thermometer into a bucket of water that was manually drawn from the sea surface. The first automated technique for determining SST was accomplished by measuring the temperature of water in the intake port of large ships, which was underway by 1963. These observations have a warm bias of around 0.6 °C (1 °F) due to the heat of the engine room. [7] This bias has led to changes in the perception of global warming since 2000. [8] Fixed weather buoys measure the water temperature at a depth of 3 metres (9.8 ft). Measurements of SST have had inconsistencies over the last 130 years due to the way they were taken. In the nineteenth century, measurements were taken in a bucket off of a ship. However, there was a slight variation in temperature because of the differences in buckets. Samples were collected in either a wood or an uninsulated canvas bucket, but the canvas bucket cooled quicker than the wood bucket. The sudden change in temperature between 1940 and 1941 was the result of an undocumented change in procedure. The samples were taken near the engine intake because it was too dangerous to use lights to take measurements over the side of the ship at night. [9] Many different drifting buoys exist around the world that vary in design, and the location of reliable temperature sensors varies. These measurements are beamed to satellites for automated and immediate data distribution. [10] A large network of coastal buoys in U.S. waters is maintained by the National Data Buoy Center (NDBC). [11] Between 1985 and 1994, an extensive array of moored and drifting buoys was deployed across the equatorial Pacific Ocean designed to help monitor and predict the El Niño phenomenon. [12]

Weather satellites

2003-2011 SST based on MODIS Aqua data. MODIS sst.png
2003–2011 SST based on MODIS Aqua data.

Weather satellites have been available to determine sea surface temperature information since 1967, with the first global composites created during 1970. [13] Since 1982, [14] satellites have been increasingly utilized to measure SST and have allowed its spatial and temporal variation to be viewed more fully. Satellite measurements of SST are in reasonable agreement with in situ temperature measurements. [15] The satellite measurement is made by sensing the ocean radiation in two or more wavelengths within the infrared part of the electromagnetic spectrum or other parts of the spectrum which can then be empirically related to SST. [16] These wavelengths are chosen because they are:

  1. within the peak of the blackbody radiation expected from the Earth, [17] and
  2. able to transmit adequately well through the atmosphere [18]

The satellite-measured SST provides both a synoptic view of the ocean and a high frequency of repeat views, [19] allowing the examination of basin-wide upper ocean dynamics not possible with ships or buoys. NASA's (National Aeronautic and Space Administration) Moderate Resolution Imaging Spectroradiometer (MODIS) SST satellites have been providing global SST data since 2000, available with a one-day lag. NOAA's GOES (Geostationary Orbiting Earth Satellites) satellites are geo-stationary above the Western Hemisphere which enables to them to deliver SST data on an hourly basis with only a few hours of lag time.

There are several difficulties with satellite-based absolute SST measurements. First, in infrared remote sensing methodology the radiation emanates from the top "skin" of the ocean, approximately the top 0.01 mm or less, which may not represent the bulk temperature of the upper meter of ocean due primarily to effects of solar surface heating during the daytime, reflected radiation, as well as sensible heat loss and surface evaporation. All these factors make it somewhat difficult to compare satellite data to measurements from buoys or shipboard methods, complicating ground truth efforts. [20] Secondly, the satellite cannot look through clouds, creating a cool bias in satellite-derived SSTs within cloudy areas. [5] However, passive microwave techniques can accurately measure SST and penetrate cloud cover. [16] Within atmospheric sounder channels on weather satellites, which peak just above the ocean's surface, knowledge of the sea surface temperature is important to their calibration. [5]

Local variation

The SST has a diurnal range, just like the Earth's atmosphere above, though to a lesser degree due to its greater specific heat. [21] On calm days, the temperature can vary by 6 °C (10 °F). [5] The temperature of the ocean at depth lags the Earth's atmosphere temperature by 15 days per 10 metres (33 ft), which means for locations like the Aral Sea, temperatures near its bottom reach a maximum in December and a minimum in May and June. [22] Near the coastline, offshore winds move the warm waters near the surface offshore, and replace them with cooler water from below in the process known as Ekman transport. This pattern increases nutrients for marine life in the region. [23] Offshore river deltas, freshwater flows over the top of the denser seawater, which allows it to heat faster due to limited vertical mixing. [24] Remotely sensed SST can be used to detect the surface temperature signature due to tropical cyclones. In general, an SST cooling is observed after the passing of a hurricane primarily as the result of mixed layer deepening and surface heat losses. [25] In the wake of several day long Saharan dust outbreaks across the adjacent northern Atlantic Ocean, sea surface temperatures are reduced 0.2 C to 0.4 C (0.3 to 0.7 F). [26] Other sources of short-term SST fluctuation include extratropical cyclones, rapid influxes of glacial fresh water [27] and concentrated phytoplankton blooms [28] due to seasonal cycles or agricultural run-off. [29]

Atlantic Multidecadal Oscillation

The Atlantic Multidecadal Oscillation (AMO) is important for how external forcings are linked with North Atlantic SSTs. [30]

Regional variation

The 1997 El Nino observed by TOPEX/Poseidon. The white areas off the tropical coasts of South and North America indicate the pool of warm water. 1997 El Nino TOPEX.jpg
The 1997 El Niño observed by TOPEX/Poseidon. The white areas off the tropical coasts of South and North America indicate the pool of warm water.

El Niño is defined by prolonged differences in Pacific Ocean surface temperatures when compared with the average value. The accepted definition is a warming or cooling of at least 0.5 °C (0.9 °F) averaged over the east-central tropical Pacific Ocean. Typically, this anomaly happens at irregular intervals of 2–7 years and lasts nine months to two years. [32] The average period length is 5 years. When this warming or cooling occurs for only seven to nine months, it is classified as El Niño/La Niña "conditions"; when it occurs for more than that period, it is classified as El Niño/La Niña "episodes". [33]

The sign of an El Niño in the sea surface temperature pattern is when warm water spreads from the west Pacific and the Indian Ocean to the east Pacific. It takes the rain with it, causing extensive drought in the western Pacific and rainfall in the normally dry eastern Pacific. El Niño's warm rush of nutrient-poor tropical water, heated by its eastward passage in the Equatorial Current, replaces the cold, nutrient-rich surface water of the Humboldt Current. When El Niño conditions last for many months, extensive ocean warming and the reduction in Easterly Trade winds limits upwelling of cold nutrient-rich deep water and its economic impact to local fishing for an international market can be serious. [34]

Importance to the Earth's atmosphere

Sea-effect snow bands near the Korean Peninsula Snow Clouds in Korea.jpg
Sea-effect snow bands near the Korean Peninsula

Sea surface temperature affects the behavior of the Earth's atmosphere above, so their initialization into atmospheric models is important. While sea surface temperature is important for tropical cyclogenesis, it is also important in determining the formation of sea fog and sea breezes. [5] Heat from underlying warmer waters can significantly modify an air mass over distances as short as 35 kilometres (22 mi) to 40 kilometres (25 mi). [35] For example, southwest of Northern Hemisphere extratropical cyclones, curved cyclonic flow bringing cold air across relatively warm water bodies can lead to narrow lake-effect snow (or sea effect) bands. Those bands bring strong localized precipitation, often in the form of snow, since large water bodies such as lakes efficiently store heat that results in significant temperature differences—larger than 13 °C (23 °F)—between the water surface and the air above. [36] Because of this temperature difference, warmth and moisture are transported upward, condensing into vertically oriented clouds which produce snow showers. The temperature decrease with height and cloud depth are directly affected by both the water temperature and the large-scale environment. The stronger the temperature decrease with height, the taller the clouds get, and the greater the precipitation rate becomes. [37]

Tropical cyclones

Seasonal peaks of tropical cyclone activity worldwide WorldwideTCpeaks.gif
Seasonal peaks of tropical cyclone activity worldwide
Average equatorial Pacific temperatures Mean sst equatorial pacific.gif
Average equatorial Pacific temperatures

Ocean temperature of at least 26.5°C (79.7°F) spanning through at minimum a 50-metre depth is one of the precursors needed to maintain a tropical cyclone (a type of mesocyclone). [38] [39] These warm waters are needed to maintain the warm core that fuels tropical systems. This value is well above 16.1 °C (60.9 °F), the long term global average surface temperature of the oceans. [40] However, this requirement can be considered only a general baseline because it assumes that the ambient atmospheric environment surrounding an area of disturbed weather presents average conditions. Tropical cyclones have intensified when SSTs were slightly below this standard temperature.

Tropical cyclones are known to form even when normal conditions are not met. For example, cooler air temperatures at a higher altitude (e.g., at the 500  hPa level, or 5.9 km) can lead to tropical cyclogenesis at lower water temperatures, as a certain lapse rate is required to force the atmosphere to be unstable enough for convection. In a moist atmosphere, this lapse rate is 6.5 °C/km, while in an atmosphere with less than 100% relative humidity, the required lapse rate is 9.8 °C/km. [41]

At the 500 hPa level, the air temperature averages −7 °C (18 °F) within the tropics, but air in the tropics is normally dry at this height, giving the air room to wet-bulb, or cool as it moistens, to a more favorable temperature that can then support convection. A wetbulb temperature at 500 hPa in a tropical atmosphere of −13.2 °C (8.2 °F) is required to initiate convection if the water temperature is 26.5 °C (79.7 °F), and this temperature requirement increases or decreases proportionally by 1 °C in the sea surface temperature for each 1 °C change at 500 hpa. Inside a cold cyclone, 500 hPa temperatures can fall as low as −30 °C (−22 °F), which can initiate convection even in the driest atmospheres. This also explains why moisture in the mid-levels of the troposphere, roughly at the 500 hPa level, is normally a requirement for development. However, when dry air is found at the same height, temperatures at 500 hPa need to be even colder as dry atmospheres require a greater lapse rate for instability than moist atmospheres. [42] [43] At heights near the tropopause, the 30-year average temperature (as measured in the period encompassing 1961 through 1990) was −77 °C (−132 °F). [44] A recent example of a tropical cyclone that maintained itself over cooler waters was Epsilon of the 2005 Atlantic hurricane season. [45]

See also

Related Research Articles

Satellite temperature measurements

Satellite temperature measurements are inferences of the temperature of the atmosphere at various altitudes as well as sea and land surface temperatures obtained from radiometric measurements by satellites. These measurements can be used to locate weather fronts, monitor the El Niño-Southern Oscillation, determine the strength of tropical cyclones, study urban heat islands and monitor the global climate. Wildfires, volcanos, and industrial hot spots can also be found via thermal imaging from weather satellites.

Instrumental temperature record In situ measurements that provides the temperature of Earths climate system

The instrumental temperature record provides the temperature of Earth's climate system from the historical network of in situ measurements of surface air temperatures and ocean surface temperatures. Data are collected at thousands of meteorological stations, buoys and ships around the globe. The longest-running temperature record is the Central England temperature data series, which starts in 1659. The longest-running quasi-global record starts in 1850. In recent decades more extensive sampling of ocean temperatures at various depths have begun allowing estimates of ocean heat content but these do not form part of the global surface temperature datasets.

El Niño–Southern Oscillation Irregularly periodic variation in winds and sea surface temperatures over the tropical eastern Pacific Ocean

El Niño–Southern Oscillation (ENSO) is an irregularly periodic variation in winds and sea surface temperatures over the tropical eastern Pacific Ocean, affecting the climate of much of the tropics and subtropics. The warming phase of the sea temperature is known as El Niño and the cooling phase as La Niña. The Southern Oscillation is the accompanying atmospheric component, coupled with the sea temperature change: El Niño is accompanied by high air surface pressure in the tropical western Pacific and La Niña with low air surface pressure there. The two periods last several months each and typically occur every few years with varying intensity per period.

Physical oceanography The study of physical conditions and physical processes within the ocean

Physical oceanography is the study of physical conditions and physical processes within the ocean, especially the motions and physical properties of ocean waters.

Thermohaline circulation A part of the large-scale ocean circulation that is driven by global density gradients created by surface heat and freshwater fluxes

Thermohaline circulation (THC) is a part of the large-scale ocean circulation that is driven by global density gradients created by surface heat and freshwater fluxes. The adjective thermohaline derives from thermo- referring to temperature and -haline referring to salt content, factors which together determine the density of sea water. Wind-driven surface currents travel polewards from the equatorial Atlantic Ocean, cooling en route, and eventually sinking at high latitudes. This dense water then flows into the ocean basins. While the bulk of it upwells in the Southern Ocean, the oldest waters upwell in the North Pacific. Extensive mixing therefore takes place between the ocean basins, reducing differences between them and making the Earth's oceans a global system. The water in these circuits transport both energy and mass around the globe. As such, the state of the circulation has a large impact on the climate of the Earth.

The Tropical Ocean Global Atmosphere program (TOGA) was a ten-year study (1985-1994) of the World Climate Research Programme (WCRP) aimed specifically at the prediction of climate phenomena on time scales of months to years.

Pacific decadal oscillation robust, recurring pattern of ocean-atmosphere climate variability centered over the mid-latitude Pacific basin

The Pacific Decadal Oscillation (PDO) is a robust, recurring pattern of ocean-atmosphere climate variability centered over the mid-latitude Pacific basin. The PDO is detected as warm or cool surface waters in the Pacific Ocean, north of 20°N. Over the past century, the amplitude of this climate pattern has varied irregularly at interannual-to-interdecadal time scales. There is evidence of reversals in the prevailing polarity of the oscillation occurring around 1925, 1947, and 1977; the last two reversals corresponded with dramatic shifts in salmon production regimes in the North Pacific Ocean. This climate pattern also affects coastal sea and continental surface air temperatures from Alaska to California.

Climate variability is the term to describe variations in the mean state and other characteristics of climate "on all spatial and temporal scales beyond that of individual weather events." Some of the variability does not appear to be caused systematically and occurs at random times. Such variability is called random variability or noise. On the other hand, periodic variability occurs relatively regularly and in distinct modes of variability or climate patterns.

Loop Current A warm ocean current that flows northward between Cuba and the Yucatán Peninsula into the Gulf of Mexico, loops east and south and exits to the east through the Florida Straits to join the Gulf Stream

A parent to the Florida Current, the Loop Current is a warm ocean current that flows northward between Cuba and the Yucatán Peninsula, moves north into the Gulf of Mexico, loops east and south before exiting to the east through the Florida Straits and joining the Gulf Stream. The Loop Current is an extension of the western boundary current of the North Atlantic subtropical gyre. Serving as the dominant circulation feature in the Eastern Gulf of Mexico, the Loop Currents transports between 23 and 27 sverdrups and reaches maximum flow speeds of from 1.5 to 1.8 meters/second.

Mixed layer A layer in which active turbulence has homogenized some range of depths.

The oceanic or limnological mixed layer is a layer in which active turbulence has homogenized some range of depths. The surface mixed layer is a layer where this turbulence is generated by winds, surface heat fluxes, or processes such as evaporation or sea ice formation which result in an increase in salinity. The atmospheric mixed layer is a zone having nearly constant potential temperature and specific humidity with height. The depth of the atmospheric mixed layer is known as the mixing height. Turbulence typically plays a role in the formation of fluid mixed layers.

Tropical cyclogenesis

Tropical cyclogenesis is the development and strengthening of a tropical cyclone in the atmosphere. The mechanisms through which tropical cyclogenesis occurs are distinctly different from those through which temperate cyclogenesis occurs. Tropical cyclogenesis involves the development of a warm-core cyclone, due to significant convection in a favorable atmospheric environment.

Weather buoy Floating instrument package which collects weather and ocean data on the worlds oceans

Weather buoys are instruments which collect weather and ocean data within the world's oceans, as well as aid during emergency response to chemical spills, legal proceedings, and engineering design. Moored buoys have been in use since 1951, while drifting buoys have been used since 1979. Moored buoys are connected with the ocean bottom using either chains, nylon, or buoyant polypropylene. With the decline of the weather ship, they have taken a more primary role in measuring conditions over the open seas since the 1970s. During the 1980s and 1990s, a network of buoys in the central and eastern tropical Pacific Ocean helped study the El Niño-Southern Oscillation. Moored weather buoys range from 1.5–12 metres (5–40 ft) in diameter, while drifting buoys are smaller, with diameters of 30–40 centimetres (12–16 in). Drifting buoys are the dominant form of weather buoy in sheer number, with 1250 located worldwide. Wind data from buoys has smaller error than that from ships. There are differences in the values of sea surface temperature measurements between the two platforms as well, relating to the depth of the measurement and whether or not the water is heated by the ship which measures the quantity.

Tropical cyclone rotating storm system with a closed, low-level circulation

A tropical cyclone is a rapidly rotating storm system characterized by a low-pressure center, a closed low-level atmospheric circulation, strong winds, and a spiral arrangement of thunderstorms that produce heavy rain or squalls. Depending on its location and strength, a tropical cyclone is referred to by different names, including hurricane, typhoon, tropical storm, cyclonic storm, tropical depression, and simply cyclone. A hurricane is a tropical cyclone that occurs in the Atlantic Ocean and northeastern Pacific Ocean, and a typhoon occurs in the northwestern Pacific Ocean; in the south Pacific or Indian Ocean, comparable storms are referred to simply as "tropical cyclones" or "severe cyclonic storms".

Cold-core low cyclone aloft which has an associated cold pool of air residing at high altitude within the Earths troposphere

A cold-core low, also known as an upper level low or cold-core cyclone, is a cyclone aloft which has an associated cold pool of air residing at high altitude within the Earth's troposphere, without a frontal structure. It is a low pressure system that strengthens with height in accordance with the thermal wind relationship. If a weak surface circulation forms in response to such a feature at subtropical latitudes of the eastern north Pacific or north Indian oceans, it is called a subtropical cyclone. Cloud cover and rainfall mainly occurs with these systems during the day. Severe weather, such as tornadoes, can occur near the center of cold-core lows. Cold lows can help spawn cyclones with significant weather impacts, such as polar lows, and Kármán vortices. Cold lows can lead directly to the development of tropical cyclones, owing to their associated cold pool of air aloft or by acting as additional outflow channels to aid in further development.

Tropical instability waves A phenomenon in which the interface between areas of warm and cold sea surface temperatures near the equator form a regular pattern of westward-propagating waves

Tropical instability waves, often abbreviated TIW, are a phenomenon in which the interface between areas of warm and cold sea surface temperatures near the equator form a regular pattern of westward-propagating waves. These waves are often present in the Atlantic Ocean, extending westward from the African coast, but are more easily recognizable in the Pacific, extending westward from South America. They have an average period of about 30 days and wavelength of about 1100 kilometers, and are largest in amplitude between June and November. They are also largest during La Niña conditions, and may disappear when strong El Niño conditions are present.

Tropical cyclones and climate change confluent article on tropical cyclones and climate change

Tropical cyclones and climate change concerns how tropical cyclones have changed, and are expected to further change due to climate change. The topic receives considerable attention from climate scientists who study the connections between storms and climate, and notably since 2005 makes news during active storm seasons. The 2018 U.S. National Climate Change Assessment reported that "increases in greenhouse gases and decreases in air pollution have contributed to increases in Atlantic hurricane activity since 1970."

The Atlantic Equatorial Mode or Atlantic Niño is a quasiperiodic interannual climate pattern of the equatorial Atlantic Ocean. It is the dominant mode of year-to-year variability that results in alternating warming and cooling episodes of sea surface temperatures accompanied by changes in atmospheric circulation. The term Atlantic Niño comes from its close similarity with the El Niño-Southern Oscillation (ENSO) that dominates the tropical Pacific basin. The Atlantic Niño is not the same as the Atlantic Meridional (Interhemispheric) Mode that consists of a north-south dipole and operates more on decadal timescales. The equatorial warming and cooling events associated with the Atlantic Niño are known to be strongly related to atmospheric climate anomalies, especially in African countries bordering the Gulf of Guinea. Therefore, understanding of the Atlantic Niño has important implications for climate prediction in those regions. Although the Atlantic Niño is an intrinsic mode to the equatorial Atlantic, there may be a tenuous causal relationship between ENSO and the Atlantic Niño in some circumstances.

The Tropical Atlantic SST Dipole refers to a cross-equatorial sea surface temperature (SST) pattern that appears dominant on decadal timescales. It has a period of about 12 years, with the SST anomalies manifesting their most pronounced features around 10–15 degrees of latitude off of the Equator. The term Tropical Atlantic SST dipole is only one of the characteristic names used to refer to this mode of variability; other definitions include the interhemispheric SST gradient or the Meridional Atlantic mode. This decadal-scale SST pattern constitutes one of the key features of SST variability in the Tropical Atlantic Ocean, with another one being the Atlantic Equatorial Mode or Atlantic Niño, which occurs in the zonal (east-west) direction at interannual timescales, with sea surface temperature and heat content anomalies being observed in the eastern equatorial basin. Its importance in climate dynamics and decadal-scale climate prediction is evident when investigating its impact on adjacent continental regions such as the Northeast Brazil, the Sahel as well as its influence on North Atlantic cyclogenesis.

1997–98 El Niño event

The 1997–98 El Niño was regarded as one of the most powerful El Niño–Southern Oscillation events in recorded history, resulting in widespread droughts, flooding and other natural disasters across the globe. It caused an estimated 16% of the world's reef systems to die, and temporarily warmed air temperature by 1.5 °C, compared to the usual increase of 0.25 °C associated with El Niño events.

Cyclonic Niño

Cyclonic Niño is a climatological phenomenon that has been observed in climate models where tropical cyclone activity is increased. Increased tropical cyclone activity mixes ocean waters, introducing cooling in the upper layer of the ocean that quickly dissipates and warming in deeper layers that lasts considerably more, resulting in a net warming of the ocean.

References

  1. "The Oceans Are Heating Up Faster Than Expected". scientific american. Retrieved 3 March 2020.
  2. "Global Annual Mean Surface Air Temperature Change". NASA. Retrieved 23 February 2020.
  3. IPCC AR5 SYR Glossary 2014 , p. 124.
  4. McCarthy, Gerard D.; Haigh, Ivan D.; Hirschi, Joël J.-M.; Grist, Jeremy P.; Smeed, David A. (2015-05-28). "Ocean impact on decadal Atlantic climate variability revealed by sea-level observations" (PDF). Nature. 521 (7553): 508–510. doi:10.1038/nature14491. ISSN   1476-4687. PMID   26017453.
  5. 1 2 3 4 5 Vittorio Barale (2010). Oceanography from Space: Revisited. Springer. p. 263. ISBN   978-90-481-8680-8.
  6. Alexander Soloviev; Roger Lukas (2006). The near-surface layer of the ocean: structure, dynamics and applications. The Near-Surface Layer of the Ocean: Structure. シュプリンガー・ジャパン株式会社. p. xi. Bibcode:2006nslo.book.....S. ISBN   978-1-4020-4052-8.
  7. William J. Emery; Richard E. Thomson (2001). Data analysis methods in physical oceanography. Eos Transactions. 80. Gulf Professional Publishing. pp. 24–25. Bibcode:1999EOSTr..80..106J. doi:10.1029/99EO00074. ISBN   978-0-444-50757-0.
  8. Michael Marshall (2010-11-16). "Ships and buoys made global warming look slower". New Scientist. Retrieved 2011-01-29.
  9. Burroughs, William James (2007). Climate change : a multidisciplinary approach (2. ed.). Cambridge [u.a.]: Cambridge Univ. Press. ISBN   9780521690331.
  10. Vittorio Barale (2010). Oceanography from Space: Revisited. Springer. pp. 237–238. ISBN   978-90-481-8680-8.
  11. Lance F. Bosart, William A. Sprigg, National Research Council (1998). The meteorological buoy and coastal marine automated network for the United States. National Academies Press. p.  11. ISBN   978-0-309-06088-2.CS1 maint: multiple names: authors list (link)
  12. K. A. Browning; Robert J. Gurney (1999). Global energy and water cycles. Cambridge University Press. p. 62. ISBN   978-0-521-56057-3.
  13. P. Krishna Rao, W. L. Smith, and R. Koffler (January 1972). "Global Sea-Surface Temperature Distribution Determined From an Environmental Satellite" (PDF). Monthly Weather Review . 100 (1): 10–14. Bibcode:1972MWRv..100...10K. doi:10.1175/1520-0493(1972)100<0010:GSTDDF>2.3.CO;2 . Retrieved 2011-01-09.CS1 maint: multiple names: authors list (link)
  14. National Research Council (U.S.). NII 2000 Steering Committee (1997). The unpredictable certainty: information infrastructure through 2000; white papers. National Academies. p. 2.
  15. W. J. Emery; D. J. Baldwin; Peter Schlüssel & R. W. Reynolds (2001-02-15). "Accuracy of in situ sea surface temperatures used to calibrate infrared satellite measurements" (PDF). Journal of Geophysical Research . 106 (C2): 2387. Bibcode:2001JGR...106.2387E. doi:10.1029/2000JC000246. Archived from the original (PDF) on 2011-07-21. Retrieved 2011-01-09.
  16. 1 2 John Maurer (October 2002). "Infrared and microwave remote sensing of sea surface temperature (SST)". University of Hawai'i . Retrieved 2011-01-09.
  17. C. M. Kishtawal (2005-08-06). "Meteorological Satellites" (PDF). Satellite Remote Sensing and GIS Applications in Agricultural Meteorology: 73. Retrieved 2011-01-27.
  18. Robert Harwood (1971-09-16). "Mapping the Atmosphere From Space". New Scientist. 51 (769): 623.
  19. David E. Alexander; Rhodes Whitmore Fairbridge (1999). Encyclopedia of environmental science. Springer. p. 510. ISBN   978-0-412-74050-3.
  20. Ian Stuart Robinson (2004). Measuring the oceans from space: the principles and methods of satellite oceanography. Springer. p. 279. ISBN   978-3-540-42647-9.
  21. John Siegenthaler (2003). Modern hydronic heating for residential and light commercial buildings. Cengage Learning. p. 84. ISBN   978-0-7668-1637-4.
  22. Peter O. Zavialov (2005). Physical oceanography of the dying Aral Sea. シュプリンガー・ジャパン株式会社. p. 27. ISBN   978-3-540-22891-2.
  23. "Envisat watches for La Niña". BNSC via the Internet Wayback Machine. 2008-04-24. Archived from the original on 2008-04-24. Retrieved 2011-01-09.
  24. Rainer Feistel; Günther Nausch; Norbert Wasmund (2008). State and evolution of the Baltic Sea, 1952–2005: a detailed 50-year survey of meteorology and climate, physics, chemistry, biology, and marine environment. John Wiley and Sons. p. 258. ISBN   978-0-471-97968-5.
  25. Earth Observatory (2005). "Passing of Hurricanes Cools Entire Gulf". National Aeronautics and Space Administration. Archived from the original on 2006-09-30. Retrieved 2006-04-26.
  26. Nidia Martínez Avellaneda (2010). The Impact of Saharan Dust on the North Atlantic Circulation. GRIN Verlag. p. 72. ISBN   978-3-640-55639-7.
  27. Boyle, Edward A.; Lloyd Keigwin (5 November 1987). "North Atlantic thermohaline circulation during the past 20,000 years linked to high-latitude surface temperature" (PDF). Nature. 330 (6143): 35–40. Bibcode:1987Natur.330...35B. doi:10.1038/330035a0 . Retrieved 10 February 2011.
  28. Beaugrand, Grégory; Keith M. Brander; J. Alistair Lindley; Sami Souissi; Philip C. Reid (11 December 2003). "Plankton effect on cod recruitment in the North Sea". Nature. 426 (6967): 661–664. Bibcode:2003Natur.426..661B. doi:10.1038/nature02164. PMID   14668864.
  29. Beman, J. Michael; Kevin R. Arrigo; Pamela A. Matson (10 March 2005). "Agricultural runoff fuels large phytoplankton blooms in vulnerable areas of the ocean". Nature. 434 (7030): 211–214. Bibcode:2005Natur.434..211M. doi:10.1038/nature03370. PMID   15758999.
  30. Knudsen, Mads Faurschou; Jacobsen, Bo Holm; Seidenkrantz, Marit-Solveig; Olsen, Jesper (2014-02-25). "Evidence for external forcing of the Atlantic Multidecadal Oscillation since termination of the Little Ice Age". Nature Communications. 5: 3323. doi:10.1038/ncomms4323. ISSN   2041-1723. PMC   3948066 . PMID   24567051.
  31. "Independent NASA Satellite Measurements Confirm El Niño is Back and Strong". NASA/JPL.
  32. Climate Prediction Center (2005-12-19). "ENSO FAQ: How often do El Niño and La Niña typically occur?". National Centers for Environmental Prediction. Archived from the original on 2009-08-27. Retrieved 2009-07-26.
  33. National Climatic Data Center (June 2009). "El Niño / Southern Oscillation (ENSO) June 2009". National Oceanic and Atmospheric Administration. Retrieved 2009-07-26.
  34. WW2010 (1998-04-28). "El Niño". University of Illinois at Urbana-Champaign. Retrieved 2009-07-17.
  35. Jun Inoue, Masayuki Kawashima, Yasushi Fujiyoshi and Masaaki Wakatsuchi (October 2005). "Aircraft Observations of Air-mass Modification Over the Sea of Okhotsk during Sea-ice Growth". Boundary-Layer Meteorology. 117 (1): 111–129. Bibcode:2005BoLMe.117..111I. doi:10.1007/s10546-004-3407-y. ISSN   0006-8314.CS1 maint: multiple names: authors list (link)
  36. B. Geerts (1998). "Lake Effect Snow". University of Wyoming . Retrieved 2008-12-24.
  37. Greg Byrd (1998-06-03). "Lake Effect Snow". University Corporation for Atmospheric Research. Archived from the original on 2009-06-17. Retrieved 2009-07-12.
  38. Chris Landsea (2011). "Subject: A15) How do tropical cyclones form?". Hurricane Research Division . Retrieved 2011-01-27.
  39. Webster, PJ (2005). "Changes in tropical cyclone number, duration, and intensity in a warming environment". Science. Gale Group. 309 (5742): 1844–6. doi:10.1126/science.1116448. PMID   16166514.
  40. Matt Menne (March 15, 2000). "Global Long-term Mean Land and Sea Surface Temperatures". National Climatic Data Center . Retrieved 2006-10-19.
  41. Kushnir, Yochanan (2000). "The Climate System". Columbia University . Retrieved 24 September 2010.
  42. John M. Wallace & Peter V. Hobbs (1977). Atmospheric Science: An Introductory Survey. Academic Press, Inc. pp. 76–77.
  43. Chris Landsea (2000). "Climate Variability of Tropical Cyclones: Past, Present and Future". Storms. Atlantic Oceanographic and Meteorological Laboratory. pp. 220–41. Retrieved 2006-10-19.
  44. Dian J. Gaffen-Seidel, Rebecca J. Ross and James K. Angell (November 2000). "Climatological characteristics of the tropical tropopause as revealed by radiosondes". Journal of Geophysical Research. 106 (D8): 7857–7878. Bibcode:2001JGR...106.7857S. doi:10.1029/2000JD900837. Archived from the original on May 8, 2006. Retrieved 2006-10-19.
  45. Lixion Avila (2005-12-03). "Hurricane Epsilon Discussion Eighteen". National Hurricane Center. Retrieved 2010-12-14.

PD-icon.svg This article incorporates  public domain material from websites or documents ofthe National Oceanic and Atmospheric Administration .