Selectivity (electronic)

Last updated

Selectivity is a measure of the performance of a radio receiver to respond only to the radio signal it is tuned to (such as a radio station) and reject other signals nearby in frequency, such as another broadcast on an adjacent channel.

Performance performing arts event, single representation of a performing arts production

Performance is completion of a task with application of knowledge, skills and abilities.

Frequency is the number of occurrences of a repeating event per unit of time. It is also referred to as temporal frequency, which emphasizes the contrast to spatial frequency and angular frequency. The period is the duration of time of one cycle in a repeating event, so the period is the reciprocal of the frequency. For example: if a newborn baby's heart beats at a frequency of 120 times a minute, its period—the time interval between beats—is half a second. Frequency is an important parameter used in science and engineering to specify the rate of oscillatory and vibratory phenomena, such as mechanical vibrations, audio signals (sound), radio waves, and light.

Selectivity is usually measured as a ratio in decibels (dBs), comparing the signal strength received against that of a similar signal on another frequency. If the signal is at the adjacent channel of the selected signal, this measurement is also known as adjacent-channel rejection ratio (ACRR).

Ratio relationship between two numbers of the same kind

In mathematics, a ratio is a relationship between two numbers indicating how many times the first number contains the second. For example, if a bowl of fruit contains eight oranges and six lemons, then the ratio of oranges to lemons is eight to six. Similarly, the ratio of lemons to oranges is 6:8 and the ratio of oranges to the total amount of fruit is 8:14.

The decibel is a unit of measurement used to express the ratio of one value of a power or field quantity to another on a logarithmic scale, the logarithmic quantity being called the power level or field level, respectively. It can be used to express a change in value or an absolute value. In the latter case, it expresses the ratio of a value to a fixed reference value; when used in this way, a suffix that indicates the reference value is often appended to the decibel symbol. For example, if the reference value is 1 volt, then the suffix is "V", and if the reference value is one milliwatt, then the suffix is "m".

Measurement Process of assigning numbers to objects or events

Measurement is the assignment of a number to a characteristic of an object or event, which can be compared with other objects or events. The scope and application of measurement are dependent on the context and discipline. In the natural sciences and engineering, measurements do not apply to nominal properties of objects or events, which is consistent with the guidelines of the International vocabulary of metrology published by the International Bureau of Weights and Measures. However, in other fields such as statistics as well as the social and behavioral sciences, measurements can have multiple levels, which would include nominal, ordinal, interval and ratio scales.

Selectivity also provides some immunity to blanketing interference.

Radio Blanketing Interference is a term used predominantly in the USA to refer to Receiver Blocking which is interference caused when a strong unwanted off-channel radio signal prevents the reception of another (wanted) transmission.

LC circuits are often used as filters; the Q ("Quality" factor) determines the bandwidth of each LC tuned circuit in the radio. The L/C ratio, in turn, determines their Q and so their selectivity, because the rest of the circuit - the aerial or amplifier feeding the tuned circuit for example - will contain present resistance. For a series resonant circuit, the higher the inductance and the lower the capacitance, the narrower the filter bandwidth (meaning the reactance of the inductance, L, and the capacitance, C, at resonant frequency will be relatively high compared with the series source/load resistances). For a parallel resonant circuit the opposite applies; small inductances reduce the damping of external circuitry.

LC circuit

An LC circuit, also called a resonant circuit, tank circuit, or tuned circuit, is an electric circuit consisting of an inductor, represented by the letter L, and a capacitor, represented by the letter C, connected together. The circuit can act as an electrical resonator, an electrical analogue of a tuning fork, storing energy oscillating at the circuit's resonant frequency.

<i>Q</i> factor

In physics and engineering the quality factor or Q factor is a dimensionless parameter that describes how underdamped an oscillator or resonator is, and characterizes a resonator's bandwidth relative to its centre frequency. Higher Q indicates a lower rate of energy loss relative to the stored energy of the resonator; the oscillations die out more slowly. A pendulum suspended from a high-quality bearing, oscillating in air, has a high Q, while a pendulum immersed in oil has a low one. Resonators with high quality factors have low damping, so that they ring or vibrate longer.

Bandwidth (signal processing) difference between the upper and lower frequencies in a continuous set of frequencies

Bandwidth is the difference between the upper and lower frequencies in a continuous band of frequencies. It is typically measured in hertz, and depending on context, may specifically refer to passband bandwidth or baseband bandwidth. Passband bandwidth is the difference between the upper and lower cutoff frequencies of, for example, a band-pass filter, a communication channel, or a signal spectrum. Baseband bandwidth applies to a low-pass filter or baseband signal; the bandwidth is equal to its upper cutoff frequency.

There are practical limits to the increase in selectivity with changing L/C ratio:

Therefore other methods may be used to increase selectivity, such as Q multiplier circuits and regenerative receivers. Superheterodyne receivers allow use one or more fixed intermediate frequency tuned circuits for selectivity. Fixed tuning eliminates the requirement that multiple tuning stages accurately match while being adjusted. [1]

In electronics, a Q multiplier is a circuit added to a radio receiver to improve its selectivity and sensitivity. It is a regenerative amplifier adjusted to provide positive feedback within the receiver. This has the effect of narrowing the receiver's bandwidth, as if the Q factor of its tuned circuits had been increased. The Q multiplier was a common accessory in shortwave receivers of the vacuum tube era as either a factory installation or an add-on device. In use, the Q multiplier had to be adjusted to a point just short of oscillation to provide maximum sensitivity and rejection of interfering signals.

Regenerative circuit

A regenerative circuit is an amplifier circuit that employs positive feedback. Some of the output of the amplifying device is applied back to its input so as to add to the input signal, increasing the amplification. One example is the Schmitt trigger, but the most common use of the term is in RF amplifiers, and especially regenerative receivers, to greatly increase the gain of a single amplifier stage.

Superheterodyne receiver radio receiver; uses frequency mixing to convert a received signal to a fixed intermediate frequency which can be more conveniently processed than the original carrier frequency;virtually all modern radio receivers use the superheterodyne principle

A superheterodyne receiver, often shortened to superhet, is a type of radio receiver that uses frequency mixing to convert a received signal to a fixed intermediate frequency (IF) which can be more conveniently processed than the original carrier frequency. It was invented by US engineer Edwin Armstrong in 1918 during World War I. Virtually all modern radio receivers use the superheterodyne principle.

See also

Les Besser is an American electronics engineer, an expert in microwave technology. He is the founder (1973) of Compact Software, the first commercially successful microwave computer-aided design (CAD) company, which commercialize his program COMPACT.

International Standard Book Number Unique numeric book identifier

The International Standard Book Number (ISBN) is a numeric commercial book identifier which is intended to be unique. Publishers purchase ISBNs from an affiliate of the International ISBN Agency.

Related Research Articles

Inductor passive two-terminal electrical component that stores energy in its magnetic field

An inductor, also called a coil, choke, or reactor, is a passive two-terminal electrical component that stores energy in a magnetic field when electric current flows through it. An inductor typically consists of an insulated wire wound into a coil around a core.

Crystal radio

A crystal radio receiver, also called a crystal set, is a simple radio receiver, popular in the early days of radio. It uses only the power of the received radio signal to produce sound, needing no external power. It is named for its most important component, a crystal detector, originally made from a piece of crystalline mineral such as galena. This component is now called a diode.

Crystal filter electronic filter

A crystal filter is an electronic filter that uses quartz crystals for resonators. Quartz crystals are piezoelectric, so their mechanical characteristics can affect electronic circuits. In particular, quartz crystals can exhibit mechanical resonances with a very high Q factor. The crystal's stability and its high Q factor allow crystal filters to have precise center frequencies and steep band-pass characteristics. Typical crystal filter attenuation in the band-pass is approximately 2-3dB. Crystal filters are commonly used in communication devices such as radio receivers.

Tuned radio frequency receiver

A tuned radio frequency receiver is a type of radio receiver that is composed of one or more tuned radio frequency (RF) amplifier stages followed by a detector (demodulator) circuit to extract the audio signal and usually an audio frequency amplifier. This type of receiver was popular in the 1920s. Early examples could be tedious to operate because when tuning in a station each stage had to be individually adjusted to the station's frequency, but later models had ganged tuning, the tuning mechanisms of all stages being linked together, and operated by just one control knob. By the mid 1930s, it was replaced by the superheterodyne receiver patented by Edwin Armstrong.

Radio receiver radio device for receiving radio waves and converting them to a useful signal

In radio communications, a radio receiver, also known as a receiver, wireless or simply radio is an electronic device that receives radio waves and converts the information carried by them to a usable form. It is used with an antenna. The antenna intercepts radio waves and converts them to tiny alternating currents which are applied to the receiver, and the receiver extracts the desired information. The receiver uses electronic filters to separate the desired radio frequency signal from all the other signals picked up by the antenna, an electronic amplifier to increase the power of the signal for further processing, and finally recovers the desired information through demodulation.

Antenna tuner

Antenna tuner, matching network, matchbox, transmatch, antenna tuning unit (ATU), antenna coupler, and feedline coupler are all equivalent names for a device connected between a radio transmitter and its antenna, to improve power transfer between them by matching the specified load impedance of the radio to the combined input impedance of the feedline.

Tuner (radio) frequency selection subsystem for a radio receiver

A tuner is a subsystem that receives radio frequency (RF) transmissions like radio broadcasts and converts the selected carrier frequency and its associated bandwidth into a fixed frequency that is suitable for further processing, usually because a lower frequency is used on the output. Broadcast FM/AM transmissions usually feed this intermediate frequency (IF) directly into a demodulator that convert the radio signal into audio-frequency signals that can be fed into an amplifier to drive a loudspeaker.

Spark-gap transmitter

A spark-gap transmitter is an obsolete type of radio transmitter which generates radio waves by means of an electric spark. Spark-gap transmitters were the first type of radio transmitter, and were the main type used during the wireless telegraphy or "spark" era, the first three decades of radio, from 1887 to the end of World War 1. German physicist Heinrich Hertz built the first experimental spark-gap transmitters in 1887, with which he discovered radio waves and studied their properties.

Electronic filter electronic circuit that removes unwanted components from the signal, or enhances wanted ones, or both

Electronic filters are circuits which perform signal processing functions, specifically to remove unwanted frequency components from the signal, to enhance wanted ones, or both. Electronic filters can be:


A T-antenna, T-aerial, flat-top antenna, or top-hat antenna is a capacitively loaded monopole wire radio antenna used in the VLF, LF, MF and shortwave bands. T-antennas are widely used as transmitting antennas for amateur radio stations, long wave and medium wave broadcasting stations. They are also used as receiving antennas for shortwave listening.

Q meter

A Q meter is a piece of equipment used in the testing of radio frequency circuits. It has been largely replaced in professional laboratories by other types of impedance measuring device, though it is still in use among radio amateurs. It was developed at Boonton Radio Corporation in Boonton, New Jersey in 1934 by William D. Loughlin.

Electrical resonance occurs in an electric circuit at a particular resonant frequency when the imaginary parts of impedances or admittances of circuit elements cancel each other

Electrical resonance occurs in an electric circuit at a particular resonant frequency when the impedances or admittances of circuit elements cancel each other. In some circuits, this happens when the impedance between the input and output of the circuit is almost zero and the transfer function is close to one.

Transformer types

A variety of types of electrical transformer are made for different purposes. Despite their design differences, the various types employ the same basic principle as discovered in 1831 by Michael Faraday, and share several key functional parts.


A preselector is a name for an electronic device that connects between a radio antenna and a radio receiver. The preselector is a band-pass filter that blocks troublesome out-of-tune frequencies from passing through from the antenna into the radio receiver that otherwise would be directly connected to the antenna.

Analogue filters are a basic building block of signal processing much used in electronics. Amongst their many applications are the separation of an audio signal before application to bass, mid-range and tweeter loudspeakers; the combining and later separation of multiple telephone conversations onto a single channel; the selection of a chosen radio station in a radio receiver and rejection of others.

Basket winding

Basket winding is a winding method for electrical wire in a coil. The winding pattern is used for radio-frequency electronic components with many parallel wires, such as inductors and transformers. The winding pattern reduces the amount of wire running in adjacent, parallel turns. The wires in successive layers of a basket wound coil cross each other at large angles, as close to 90 degrees as possible, which reduces energy loss due to electrical cross-coupling between wires at radio frequencies.

RLC circuit

An RLC circuit is an electrical circuit consisting of a resistor (R), an inductor (L), and a capacitor (C), connected in series or in parallel. The name of the circuit is derived from the letters that are used to denote the constituent components of this circuit, where the sequence of the components may vary from RLC.


  1. The American Radio Relay League: "The Radio Amateur's Handbook, 1968", page 112