Silver ratio

Last updated
Silver ratio
Silver rectangle.svg
Silver rectangle
Representations
Decimal2.4142135623730950488...
Algebraic form1 + 2
Continued fraction
Silver ratio within the octagon Silver ratio octagon.svg
Silver ratio within the octagon

In mathematics, two quantities are in the silver ratio (or silver mean) [1] [2] if the ratio of the smaller of those two quantities to the larger quantity is the same as the ratio of the larger quantity to the sum of the smaller quantity and twice the larger quantity (see below). This defines the silver ratio as an irrational mathematical constant, whose value of one plus the square root of 2 is approximately 2.4142135623. Its name is an allusion to the golden ratio; analogously to the way the golden ratio is the limiting ratio of consecutive Fibonacci numbers, the silver ratio is the limiting ratio of consecutive Pell numbers. The silver ratio is denoted by δS.

Contents

Mathematicians have studied the silver ratio since the time of the Greeks (although perhaps without giving a special name until recently) because of its connections to the square root of 2, its convergents, square triangular numbers, Pell numbers, octagons and the like.

The relation described above can be expressed algebraically, for a > b:

or equivalently,

The silver ratio can also be defined by the simple continued fraction [2; 2, 2, 2, ...]:

The convergents of this continued fraction (2/1, 5/2, 12/5, 29/12, 70/29, ...) are ratios of consecutive Pell numbers. These fractions provide accurate rational approximations of the silver ratio, analogous to the approximation of the golden ratio by ratios of consecutive Fibonacci numbers.

The silver rectangle is connected to the regular octagon. If a regular octagon is partitioned into two isosceles trapezoids and a rectangle, then the rectangle is a silver rectangle with an aspect ratio of 1:δS, and the 4 sides of the trapezoids are in a ratio of 1:1:1:δS. If the edge length of a regular octagon is t, then the span of the octagon (the distance between opposite sides) is δSt, and the area of the octagon is 2δSt2. [3]


Calculation

For comparison, two quantities a, b with a > b > 0 are said to be in the golden ratio φ if,

However, they are in the silver ratioδS if,

Equivalently,

Therefore,

Multiplying by δS and rearranging gives

Using the quadratic formula, two solutions can be obtained. Because δS is the ratio of positive quantities, it is necessarily positive, so,

Properties

If one cuts two of the largest squares possible off a silver rectangle one is left with a silver rectangle, to which the process may be repeated... Silver rectangle repeats.svg
If one cuts two of the largest squares possible off a silver rectangle one is left with a silver rectangle, to which the process may be repeated...
Silver spirals within the silver rectangle Silver spiral approximation.svg
Silver spirals within the silver rectangle

Number-theoretic properties

The silver ratio is a Pisot–Vijayaraghavan number (PV number), as its conjugate 1 − 2 = −1/δS ≈ −0.41421 has absolute value less than 1. In fact it is the second smallest quadratic PV number after the golden ratio. This means the distance from δ n
S
to the nearest integer is 1/δ n
S
≈ 0.41421n
. Thus, the sequence of fractional parts of δ n
S
, n = 1, 2, 3, ... (taken as elements of the torus) converges. In particular, this sequence is not equidistributed mod 1.

Powers

The lower powers of the silver ratio are

The powers continue in the pattern

where

For example, using this property:

Using K0 = 1 and K1 = 2 as initial conditions, a Binet-like formula results from solving the recurrence relation

which becomes

Trigonometric properties

The silver ratio is intimately connected to trigonometric ratios for π/8 = 22.5°.

So the area of a regular octagon with side length a is given by

See also

Related Research Articles

<span class="mw-page-title-main">Fibonacci sequence</span> Numbers obtained by adding the two previous ones

In mathematics, the Fibonacci sequence is a sequence in which each number is the sum of the two preceding ones. Numbers that are part of the Fibonacci sequence are known as Fibonacci numbers, commonly denoted Fn. The sequence commonly starts from 0 and 1, although some authors start the sequence from 1 and 1 or sometimes from 1 and 2. Starting from 0 and 1, the sequence begins

<span class="mw-page-title-main">Golden ratio</span> Number, approximately 1.618

In mathematics, two quantities are in the golden ratio if their ratio is the same as the ratio of their sum to the larger of the two quantities. Expressed algebraically, for quantities and with , is in a golden ratio to if

The number π is a mathematical constant that is the ratio of a circle's circumference to its diameter, approximately equal to 3.14159. The number π appears in many formulae across mathematics and physics. It is an irrational number, meaning that it cannot be expressed exactly as a ratio of two integers, although fractions such as are commonly used to approximate it. Consequently, its decimal representation never ends, nor enters a permanently repeating pattern. It is a transcendental number, meaning that it cannot be a solution of an equation involving only finite sums, products, powers, and integers. The transcendence of π implies that it is impossible to solve the ancient challenge of squaring the circle with a compass and straightedge. The decimal digits of π appear to be randomly distributed, but no proof of this conjecture has been found.

<span class="mw-page-title-main">Trigonometric functions</span> Functions of an angle

In mathematics, the trigonometric functions are real functions which relate an angle of a right-angled triangle to ratios of two side lengths. They are widely used in all sciences that are related to geometry, such as navigation, solid mechanics, celestial mechanics, geodesy, and many others. They are among the simplest periodic functions, and as such are also widely used for studying periodic phenomena through Fourier analysis.

<span class="mw-page-title-main">Effusion</span> Process of a gas escaping through a small hole

In physics and chemistry, effusion is the process in which a gas escapes from a container through a hole of diameter considerably smaller than the mean free path of the molecules. Such a hole is often described as a pinhole and the escape of the gas is due to the pressure difference between the container and the exterior. Under these conditions, essentially all molecules which arrive at the hole continue and pass through the hole, since collisions between molecules in the region of the hole are negligible. Conversely, when the diameter is larger than the mean free path of the gas, flow obeys the Sampson flow law.

In the calculus of variations and classical mechanics, the Euler–Lagrange equations are a system of second-order ordinary differential equations whose solutions are stationary points of the given action functional. The equations were discovered in the 1750s by Swiss mathematician Leonhard Euler and Italian mathematician Joseph-Louis Lagrange.

<span class="mw-page-title-main">Octagon</span> Polygon shape with eight sides

In geometry, an octagon is an eight-sided polygon or 8-gon.

<span class="mw-page-title-main">Square root of 2</span> Unique positive real number which when multiplied by itself gives 2

The square root of 2 (1.4142...) is a positive real number that, when multiplied by itself or squared, equals the number 2. It may be written in mathematics as or . It is an algebraic number, and therefore not a transcendental number. Technically, it should be called the principal square root of 2, to distinguish it from the negative number with the same property.

<span class="mw-page-title-main">Pell number</span> Natural number used to approximate √2

In mathematics, the Pell numbers are an infinite sequence of integers, known since ancient times, that comprise the denominators of the closest rational approximations to the square root of 2. This sequence of approximations begins 1/1, 3/2, 7/5, 17/12, and 41/29, so the sequence of Pell numbers begins with 1, 2, 5, 12, and 29. The numerators of the same sequence of approximations are half the companion Pell numbers or Pell–Lucas numbers; these numbers form a second infinite sequence that begins with 2, 6, 14, 34, and 82.

<span class="mw-page-title-main">Plastic ratio</span> Algebraic number, approximately 1.3247

In mathematics, the plastic ratio is a geometrical proportion close to 53/40. Its true value is the real solution of the equation x3 = x + 1.

In continuum mechanics, the finite strain theory—also called large strain theory, or large deformation theory—deals with deformations in which strains and/or rotations are large enough to invalidate assumptions inherent in infinitesimal strain theory. In this case, the undeformed and deformed configurations of the continuum are significantly different, requiring a clear distinction between them. This is commonly the case with elastomers, plastically deforming materials and other fluids and biological soft tissue.

In mathematics, the Fibonacci numbers form a sequence defined recursively by:

In mathematics, an infinite periodic continued fraction is a continued fraction that can be placed in the form

The square root of 5 is the positive real number that, when multiplied by itself, gives the prime number 5. It is more precisely called the principal square root of 5, to distinguish it from the negative number with the same property. This number appears in the fractional expression for the golden ratio. It can be denoted in surd form as:

<span class="mw-page-title-main">Rogers–Ramanujan continued fraction</span> Continued fraction closely related to the Rogers–Ramanujan identities

The Rogers–Ramanujan continued fraction is a continued fraction discovered by Rogers (1894) and independently by Srinivasa Ramanujan, and closely related to the Rogers–Ramanujan identities. It can be evaluated explicitly for a broad class of values of its argument.

The metallic means of the successive natural numbers are the continued fractions:

<span class="mw-page-title-main">Supergolden ratio</span> Algebraic integer, approximately 1.46557

In mathematics, the supergolden ratio is a geometrical proportion close to 85/58. Its true value is the real solution of the equation x3 = x2 + 1.

The redundancy principle in biology expresses the need of many copies of the same entity to fulfill a biological function. Examples are numerous: disproportionate numbers of spermatozoa during fertilization compared to one egg, large number of neurotransmitters released during neuronal communication compared to the number of receptors, large numbers of released calcium ions during transient in cells, and many more in molecular and cellular transduction or gene activation and cell signaling. This redundancy is particularly relevant when the sites of activation are physically separated from the initial position of the molecular messengers. The redundancy is often generated for the purpose of resolving the time constraint of fast-activating pathways. It can be expressed in terms of the theory of extreme statistics to determine its laws and quantify how the shortest paths are selected. The main goal is to estimate these large numbers from physical principles and mathematical derivations.

In geometry, the mean line segment length is the average length of a line segment connecting two points chosen uniformly at random in a given shape. In other words, it is the expected Euclidean distance between two random points, where each point in the shape is equally likely to be chosen.

References

  1. Vera W. de Spinadel (1999). The Family of Metallic Means, Vismath 1(3) from Mathematical Institute of Serbian Academy of Sciences and Arts.
  2. de Spinadel, Vera W. (1998). Williams, Kim (ed.). "The Metallic Means and Design". Nexus II: Architecture and Mathematics. Fucecchio (Florence): Edizioni dell'Erba: 141–157.
  3. Kapusta, Janos (2004), "The square, the circle, and the golden proportion: a new class of geometrical constructions" (PDF), Forma, 19: 293–313.

Further reading