Somatic cell

Last updated

A somatic cell (from Ancient Greek σῶμα sôma, meaning "body"), or vegetal cell, is any biological cell forming the body of a multicellular organism other than a gamete, germ cell, gametocyte or undifferentiated stem cell. [1]


The cell which takes part in composition of the body of an organism and divides through the process of binary fission and mitotic division is called somatic cell.

In contrast, gametes are cells that fuse during sexual reproduction, germ cells are cells that give rise to gametes, and stem cells are cells that can divide through mitosis and differentiate into diverse specialized cell types. For example, in mammals, somatic cells make up all the internal organs, skin, bones, blood and connective tissue, while mammalian germ cells give rise to spermatozoa and ova which fuse during fertilization to produce a cell called a zygote, which divides and differentiates into the cells of an embryo. There are approximately 220 types of somatic cell in the human body. [1]

Theoretically, these cells are not germ cells (the source of gametes); they transmit their mutations, to their cellular descendants (if they have any), but not to the organism's descendants. However, in sponges, non-differentiated somatic cells form the germ line and, in Cnidaria, differentiated somatic cells are the source of the germline. Mitotic cell division is only seen in diploid somatic cells. Only some cells like germ cells take part in reproduction. [2]


As multicellularity evolved many times, sterile somatic cells did too.[ citation needed ] The evolution of an immortal germline producing specialized somatic cells involved the emergence of mortality, and can be viewed in its simplest version in volvocine algae. [3] Those species with a separation between sterile somatic cells and a germline are called Weismannists. However, Weismannist development is relatively rare (e.g., vertebrates, arthropods, Volvox ), as a great number of species have the capacity for somatic embryogenesis (e.g., land plants, most algae, many invertebrates). [4] [5]

Genetics and chromosome content

Like all cells, somatic cells contain DNA arranged in chromosomes. If a somatic cell contains chromosomes arranged in pairs, it is called diploid and the organism is called a diploid organism. (The gametes of diploid organisms contain only single unpaired chromosomes and are called haploid.) Each pair of chromosomes comprises one chromosome inherited from the father and one inherited from the mother. For example, in humans, somatic cells contain 46 chromosomes organized into 23 pairs. By contrast, gametes of diploid organisms contain only half as many chromosomes. In humans, this is 23 unpaired chromosomes. When two gametes (i.e. a spermatozoon and an ovum) meet during conception, they fuse together, creating a zygote. Due to the fusion of the two gametes, a human zygote contains 46 chromosomes (i.e. 23 pairs).

However, a large number of species have the chromosomes in their somatic cells arranged in fours ("tetraploid") or even sixes ("hexaploid"). Thus, they can have diploid or even triploid germline cells. An example of this is the modern cultivated species of wheat, Triticum aestivum L., a hexaploid species whose somatic cells contain six copies of every chromatid.

The frequency of spontaneous mutations is significantly lower in advanced male germ cells than in somatic cell types from the same individual. [6] Female germ cells also show a mutation frequency that is lower than that in corresponding somatic cells and similar to that in male germ cells. [7] These findings appear to reflect employment of more effective mechanisms to limit the initial occurrence of spontaneous mutations in germ cells than in somatic cells. Such mechanisms likely include elevated levels of DNA repair enzymes that ameliorate most potentially mutagenic DNA damages. [7]


In recent years, the technique of cloning whole organisms has been developed in mammals, allowing almost identical genetic clones of an animal to be produced. One method of doing this is called "somatic cell nuclear transfer" and involves removing the nucleus from a somatic cell, usually a skin cell. This nucleus contains all of the genetic information needed to produce the organism it was removed from. This nucleus is then injected into an ovum of the same species which has had its own genetic material removed. The ovum now no longer needs to be fertilized, because it contains the correct amount of genetic material (a diploid number of chromosomes). In theory, the ovum can be implanted into the uterus of a same-species animal and allowed to develop. The resulting animal will be a nearly genetically identical clone to the animal from which the nucleus was taken. The only difference is caused by any mitochondrial DNA that is retained in the ovum, which is different from the cell that donated the nucleus. In practice, this technique has so far been problematic, although there have been a few high-profile successes, such as Dolly the Sheep and, more recently, Snuppy, the first cloned dog. Somatic cells have also been collected in the practice of cryoconservation of animal genetic resources as a means of conserving animal genetic material, including to clone livestock.

Genetic modifications

Development of biotechnology has allowed for the genetic manipulation of somatic cells, whether for the modelling of chronic disease or for the prevention of malaise conditions. [8] [9]

Genetic engineering of somatic cells has resulted in some controversies [ citation needed ], although the International Summit on Human Gene Editing has released a statement in support of genetic modification of somatic cells, as the modifications thereof are not passed on to offspring. [10]

See also

Related Research Articles

Gamete Cell that fuses during fertilisation, such as a sperm or egg cell

A gamete is a haploid cell that fuses with another haploid cell during fertilization in organisms that reproduce sexually. Gametes are an organism's reproductive cells, also referred to as sex cells. In species that produce two morphologically distinct types of gametes, and in which each individual produces only one type, a female is any individual that produces the larger type of gamete—called an ovum— and a male produces the smaller type—called a sperm. Sperm cells or spermatozoon are small and motile due to the flagellum, a tail-shaped structure that allows the cell to propel and move. In contrast, each egg cell or ovum is relatively large and non-motile. In short a gamete is an egg cell or a sperm. In animals, ova mature in the ovaries of females and sperm develop in the testes of males. During fertilization, a spermatozoon and ovum unite to form a new diploid organism. Gametes carry half the genetic information of an individual, one ploidy of each type, and are created through meiosis, in which a germ cell undergoes two fissions, resulting in the production of four gametes. In biology, the type of gamete an organism produces determines the classification of its sex.

Gametophyte Haploid stage in the life cycle of plants and algae

A gametophyte is one of the two alternating multicellular phases in the life cycles of plants and algae. It is a haploid multicellular organism that develops from a haploid spore that has one set of chromosomes. The gametophyte is the sexual phase in the life cycle of plants and algae. It develops sex organs that produce gametes, haploid sex cells that participate in fertilization to form a diploid zygote which has a double set of chromosomes. Cell division of the zygote results in a new diploid multicellular organism, the second stage in the life cycle known as the sporophyte. The sporophyte can produce haploid spores by meiosis that on germination produce a new generation of gametophytes.

Meiosis Type of cell division in sexually-reproducing organisms used to produce gametes

Meiosis is a special type of cell division of germ cells in sexually-reproducing organisms used to produce the gametes, such as sperm or egg cells. It involves two rounds of division that ultimately result in four cells with only one copy of each chromosome (haploid). Additionally, prior to the division, genetic material from the paternal and maternal copies of each chromosome is crossed over, creating new combinations of code on each chromosome. Later on, during fertilisation, the haploid cells produced by meiosis from a male and female will fuse to create a cell with two copies of each chromosome again, the zygote.

Ploidy Number of sets of chromosomes in a cell

Ploidy is the number of complete sets of chromosomes in a cell, and hence the number of possible alleles for autosomal and pseudoautosomal genes. Sets of chromosomes refer to the number of maternal and paternal chromosome copies, respectively, in each homologous chromosome pair, which chromosomes naturally exist as. Somatic cells, tissues, and individual organisms can be described according to the number of sets of chromosomes present : monoploid, diploid, triploid, tetraploid, pentaploid, hexaploid, heptaploid or septaploid, etc. The generic term polyploid is often used to describe cells with three or more chromosome sets.

Zygote Single diploid eukaryotic cell formed by a fertilization event between two gametes

A zygote is a eukaryotic cell formed by a fertilization event between two gametes. The zygote's genome is a combination of the DNA in each gamete, and contains all of the genetic information necessary to form a new individual organism.

Alternation of generations Reproductive cycle of plants and algae

Alternation of generations is the type of life cycle that occurs in those plants and algae in the Archaeplastida and the Heterokontophyta that have distinct haploid sexual and diploid asexual stages. In these groups, a multicellular haploid gametophyte with n chromosomes alternates with a multicellular diploid sporophyte with 2n chromosomes, made up of n pairs. A mature sporophyte produces haploid spores by meiosis, a process which reduces the number of chromosomes to half, from 2n to n.

The term somatic - etymologically from the French word "somatique", from Ancient Greek "σωματικός", from σῶμα - is often used in biology to refer to the cells of the body in contrast to the reproductive (germline) cells, which usually give rise to the egg or sperm. These somatic cells are diploid, containing two copies of each chromosome, whereas germ cells are haploid, as they only contain one copy of each chromosome. Although under normal circumstances all somatic cells in an organism contain identical DNA, they develop a variety of tissue-specific characteristics. This process is called differentiation, through epigenetic and regulatory alterations. The grouping of similar cells and tissues creates the foundation for organs.

Egg cell Female reproductive cell in most anisogamous organisms

The egg cell, or ovum, is the female reproductive cell, or gamete, in most anisogamous organisms. The term is used when the female gamete is not capable of movement (non-motile). If the male gamete (sperm) is capable of movement, the type of sexual reproduction is also classified as oogamous. A nonmotile female gamete formed in the oogonium of some algae, fungi, oomycetes, or bryophytes is an oosphere. When fertilized the oosphere becomes the oospore.

Gametogenesis Biological process

Gametogenesis is a biological process by which diploid or haploid precursor cells undergo cell division and differentiation to form mature haploid gametes. Depending on the biological life cycle of the organism, gametogenesis occurs by meiotic division of diploid gametocytes into various gametes, or by mitosis. For example, plants produce gametes through mitosis in gametophytes. The gametophytes grow from haploid spores after sporic meiosis. The existence of a multicellular, haploid phase in the life cycle between meiosis and gametogenesis is also referred to as alternation of generations.

Biological life cycle Life cycle of living species

In biology, a biological life cycle is a series of changes in form that an organism undergoes, returning to the starting state. "The concept is closely related to those of the life history, development and ontogeny, but differs from them in stressing renewal." Transitions of form may involve growth, asexual reproduction, or sexual reproduction.

Germ cell Gamete-producing cell

A germ cell is any biological cell that gives rise to the gametes of an organism that reproduces sexually. In many animals, the germ cells originate in the primitive streak and migrate via the gut of an embryo to the developing gonads. There, they undergo meiosis, followed by cellular differentiation into mature gametes, either eggs or sperm. Unlike animals, plants do not have germ cells designated in early development. Instead, germ cells can arise from somatic cells in the adult, such as the floral meristem of flowering plants.


In biology and genetics, the germline is the population of a multicellular organism's cells that pass on their genetic material to the progeny (offspring). In other words, they are the cells that form the egg, sperm and the fertilised egg. They are usually differentiated to perform this function and segregated in a specific place away from other bodily cells.

Karyogamy Fusion of the nuclei of two haploid eukaryotic cells

Karyogamy is the final step in the process of fusing together two haploid eukaryotic cells, and refers specifically to the fusion of the two nuclei. Before karyogamy, each haploid cell has one complete copy of the organism's genome. In order for karyogamy to occur, the cell membrane and cytoplasm of each cell must fuse with the other in a process known as plasmogamy. Once within the joined cell membrane, the nuclei are referred to as pronuclei. Once the cell membranes, cytoplasm, and pronuclei fuse together, the resulting single cell is diploid, containing two copies of the genome. This diploid cell, called a zygote or zygospore can then enter meiosis, or continue to divide by mitosis. Mammalian fertilization uses a comparable process to combine haploid sperm and egg cells (gametes) to create a diploid fertilized egg.

Mosaic (genetics)

Mosaicism or genetic mosaicism is a condition in multi-cellular organisms in which a single organism possesses more than one genetic line as the result of genetic mutation. This means that various genetic lines resulted from a single fertilized egg. Genetic mosaics may often be confused with chimerism, in which two or more genotypes arise in one individual similarly to mosaicism. In chimerism, though, the two genotypes arise from the fusion of more than one fertilized zygote in the early stages of embryonic development, rather than from a mutation or chromosome loss.

Genetics, a discipline of biology, is the science of heredity and variation in living organisms.

An oogonium is a small diploid cell which, upon maturation, forms a primordial follicle in a female fetus or the female gametangium of certain thallophytes.

Outline of cell biology Overview of and topical guide to cell biology

The following outline is provided as an overview of and topical guide to cell biology:

Sexual reproduction Reproduction process that creates a new organism by combining the genetic material of two organisms

Sexual reproduction is a type of reproduction that involves a complex life cycle in which a gamete with a single set of chromosomes (haploid) combines with another to produce a zygote that develops into an organism composed of cells with two sets of chromosomes (diploid). Sexual reproduction is the most common life cycle in multicellular eukaryotes, such as animals, fungi and plants. Sexual reproduction does not occur in prokaryotes, but they have processes with similar effects such as bacterial conjugation, transformation and transduction, which may have been precursors to sexual reproduction in early eukaryotes.

<i>Volvox carteri</i> Species of alga

Volvox carteri is a species of colonial green algae in the order Volvocales. The V. carteri life cycle includes a sexual phase and an asexual phase. V. carteri forms small spherical colonies, or coenobia, of 2000–6000 Chlamydomonas-type somatic cells and 12–16 large, potentially immortal reproductive cells called gonidia. While vegetative, male and female colonies are indistinguishable; however, in the sexual phase, females produce 35-45 eggs and males produce up to 50 sperm packets with 64 or 128 sperm each.

A somatic mutation is change in the DNA sequence of a somatic cell of a multicellular organism with dedicated reproductive cells; that is, any mutation that occurs in a cell other than a gamete, germ cell, or gametocyte. Unlike germline mutations, which can be passed on to the descendants of an organism, somatic mutations are not usually transmitted to descendants. This distinction is blurred in plants, which lack a dedicated germline, and in those animals that can reproduce asexually through mechanisms such as budding, as in members of the cnidarian genus Hydra.


  1. 1 2 Campbell, Neil A.; Reece, Jane B.; Urry, Lisa A.; Cain, Michael L.; Wasserman, Steven A.; Minorsky, Peter V.; Jackson, Robert B. (2009). Biology (9th ed.). p.  229. ISBN   978-0-8053-6844-4.
  2. Chernis, P J (1985). "Petrographic analyses of URL-2 and URL-6 special thermal conductivity samples". doi: 10.4095/315247 .Cite journal requires |journal= (help)
  3. Hallmann A (2011). "Evolution of reproductive development in the volvocine algae". Sex. Plant Reprod. 24 (2): 97–112. doi:10.1007/s00497-010-0158-4. PMC   3098969 . PMID   21174128.
  4. Ridley M (2004) Evolution, 3rd edition. Blackwell Publishing, p. 29-297.
  5. Niklas, K. J. (2014) The evolutionary-developmental origins of multicellularity.
  6. Walter CA, Intano GW, McCarrey JR, McMahan CA, Walter RB (1998). "Mutation frequency declines during spermatogenesis in young mice but increases in old mice". Proc. Natl. Acad. Sci. U.S.A. 95 (17): 10015–9. Bibcode:1998PNAS...9510015W. doi: 10.1073/pnas.95.17.10015 . PMC   21453 . PMID   9707592.
  7. 1 2 Murphey P, McLean DJ, McMahan CA, Walter CA, McCarrey JR (2013). "Enhanced genetic integrity in mouse germ cells". Biol. Reprod. 88 (1): 6. doi:10.1095/biolreprod.112.103481. PMC   4434944 . PMID   23153565.
  8. "Somatic genome editing with CRISPR/Cas9 generates and corrects a metabolic disease" . Retrieved 5 July 2018.
  9. "NIH Commits $190M to Somatic Gene-Editing Tools/Tech Research" . Retrieved 5 July 2018.
  10. "Why Treat Gene Editing Differently In Two Types Of Human Cells?" . Retrieved 5 July 2018.