Sound measurements | |
---|---|

Characteristic | Symbols |

Sound pressure | p, SPL,L_{PA} |

Particle velocity | v, SVL |

Particle displacement | δ |

Sound intensity | I, SIL |

Sound power | P, SWL, L_{WA} |

Sound energy | W |

Sound energy density | w |

Sound exposure | E, SEL |

Acoustic impedance | Z |

Audio frequency | AF |

Transmission loss | TL |

The **speed of sound** is the distance travelled per unit of time by a sound wave as it propagates through an elastic medium. At 20 °C (68 °F), the speed of sound in air is about 343 metres per second (1,235 km/h; 1,125 ft/s; 767 mph; 667 kn), or a kilometre in 2.9 s or a mile in 4.7 s. It depends strongly on temperature as well as the medium through which a sound wave is propagating. At 0 °C (32 °F), the speed-of-sound is 1,192 km/h, 741 mph.^{ [1] }

- History
- Basic concepts
- Compression and shear waves
- Equations
- Dependence on the properties of the medium
- Altitude variation and implications for atmospheric acoustics
- Practical formula for dry air
- Details
- Speed of sound in ideal gases and air
- Effects due to wind shear
- Tables
- Effect of frequency and gas composition
- General physical considerations
- Practical application to air
- Mach number
- Experimental methods
- Single-shot timing methods
- Other methods
- High-precision measurements in air
- Non-gaseous media
- Speed of sound in solids
- Speed of sound in liquids
- Speed of sound in plasma
- Gradients
- See also
- References
- External links

The speed of sound in an ideal gas depends only on its temperature and composition. The speed has a weak dependence on frequency and pressure in ordinary air, deviating slightly from ideal behavior.

In colloquial speech, *speed of sound* refers to the speed of sound waves in air. However, the speed of sound varies from substance to substance: typically, sound travels most slowly in gases, faster in liquids, and fastest in solids. For example, while sound travels at 343 m/s in air, it travels at 1,481 m/s in water (almost 4.3 times as fast) and at 5,120 m/s in iron (almost 15 times as fast). In an exceptionally stiff material such as diamond, sound travels at 12,000 metres per second (39,000 ft/s),^{ [2] }— about 35 times its speed in air and about the fastest it can travel under normal conditions.

Sound waves in solids are composed of compression waves (just as in gases and liquids), and a different type of sound wave called a shear wave, which occurs only in solids. Shear waves in solids usually travel at different speeds, as exhibited in seismology. The speed of compression waves in solids is determined by the medium's compressibility, shear modulus and density. The speed of shear waves is determined only by the solid material's shear modulus and density.

In fluid dynamics, the speed of sound in a fluid medium (gas or liquid) is used as a relative measure for the speed of an object moving through the medium. The ratio of the speed of an object to the speed of sound in the fluid is called the object's Mach number. Objects moving at speeds greater than *Mach1* are said to be traveling at supersonic speeds.

Sir Isaac Newton's 1687 * Principia * includes a computation of the speed of sound in air as 979 feet per second (298 m/s). This is too low by about 15%.^{ [3] } The discrepancy is due primarily to neglecting the (then unknown) effect of rapidly-fluctuating temperature in a sound wave (in modern terms, sound wave compression and expansion of air is an adiabatic process, not an isothermal process). This error was later rectified by Laplace.^{ [4] }

During the 17th century there were several attempts to measure the speed of sound accurately, including attempts by Marin Mersenne in 1630 (1,380 Parisian feet per second), Pierre Gassendi in 1635 (1,473 Parisian feet per second) and Robert Boyle (1,125 Parisian feet per second).^{ [5] } In 1709, the Reverend William Derham, Rector of Upminster, published a more accurate measure of the speed of sound, at 1,072 Parisian feet per second.^{ [5] } (The Parisian foot was 325 mm. This is longer than the standard "international foot" in common use today, which was officially defined in 1959 as 304.8 mm, making the speed of sound at 20 °C (68 °F) 1,055 Parisian feet per second).

Derham used a telescope from the tower of the church of St. Laurence, Upminster to observe the flash of a distant shotgun being fired, and then measured the time until he heard the gunshot with a half-second pendulum. Measurements were made of gunshots from a number of local landmarks, including North Ockendon church. The distance was known by triangulation, and thus the speed that the sound had travelled was calculated.^{ [6] }

The transmission of sound can be illustrated by using a model consisting of an array of spherical objects interconnected by springs.

In real material terms, the spheres represent the material's molecules and the springs represent the bonds between them. Sound passes through the system by compressing and expanding the springs, transmitting the acoustic energy to neighboring spheres. This helps transmit the energy in-turn to the neighboring sphere's springs (bonds), and so on.

The speed of sound through the model depends on the stiffness/rigidity of the springs, and the mass of the spheres. As long as the spacing of the spheres remains constant, stiffer springs/bonds transmit energy quicker, while larger spheres transmit the energy slower.

In a real material, the stiffness of the springs is known as the "elastic modulus", and the mass corresponds to the material density. Given that all other things being equal (ceteris paribus), sound will travel slower in spongy materials, and faster in stiffer ones. Effects like dispersion and reflection can also be understood using this model. ^{[ citation needed ]}

For instance, sound will travel 1.59 times faster in nickel than in bronze, due to the greater stiffness of nickel at about the same density. Similarly, sound travels about 1.41 times faster in light hydrogen (protium) gas than in heavy hydrogen (deuterium) gas, since deuterium has similar properties but twice the density. At the same time, "compression-type" sound will travel faster in solids than in liquids, and faster in liquids than in gases, because the solids are more difficult to compress than liquids, while liquids, in turn, are more difficult to compress than gases.

Some textbooks mistakenly state that the speed of sound increases with density. This notion is illustrated by presenting data for three materials, such as air, water, and steel, they each have vastly different compressibility, which more than makes up for the density differences. An illustrative example of the two effects is that sound travels only 4.3 times faster in water than air, despite enormous differences in compressibility of the two media. The reason is that the larger density of water, which works to *slow* sound in water relative to air, nearly makes up for the compressibility differences in the two media.

A practical example can be observed in Edinburgh when the "One o'Clock Gun" is fired at the eastern end of Edinburgh Castle. Standing at the base of the western end of the Castle Rock, the sound of the Gun can be heard through the rock, slightly before it arrives by the air route, partly delayed by the slightly longer route. It is particularly effective if a multi-gun salute such as for "The Queen's Birthday" is being fired.

In a gas or liquid, sound consists of compression waves. In solids, waves propagate as two different types. A longitudinal wave is associated with compression and decompression in the direction of travel, and is the same process in gases and liquids, with an analogous compression-type wave in solids. Only compression waves are supported in gases and liquids. An additional type of wave, the transverse wave, also called a shear wave, occurs only in solids because only solids support elastic deformations. It is due to elastic deformation of the medium perpendicular to the direction of wave travel; the direction of shear-deformation is called the "polarization" of this type of wave. In general, transverse waves occur as a pair of orthogonal polarizations.

These different waves (compression waves and the different polarizations of shear waves) may have different speeds at the same frequency. Therefore, they arrive at an observer at different times, an extreme example being an earthquake, where sharp compression waves arrive first and rocking transverse waves seconds later.

The speed of a compression wave in a fluid is determined by the medium's compressibility and density. In solids, the compression waves are analogous to those in fluids, depending on compressibility and density, but with the additional factor of shear modulus which affects compression waves due to off-axis elastic energies which are able to influence effective tension and relaxation in a compression. The speed of shear waves, which can occur only in solids, is determined simply by the solid material's shear modulus and density.

The speed of sound in mathematical notation is conventionally represented by *c*, from the Latin *celeritas* meaning "velocity".

For fluids in general, the speed of sound *c* is given by the Newton–Laplace equation:

where

*K*is a coefficient of stiffness, the isentropic bulk modulus (or the modulus of bulk elasticity for gases);_{s}- is the density.

Thus, the speed of sound increases with the stiffness (the resistance of an elastic body to deformation by an applied force) of the material and decreases with an increase in density. For ideal gases, the bulk modulus *K* is simply the gas pressure multiplied by the dimensionless adiabatic index, which is about 1.4 for air under normal conditions of pressure and temperature.

For general equations of state, if classical mechanics is used, the speed of sound *c* can be derived^{ [7] } as follows:

Consider the sound wave propagating at speed through a pipe aligned with the axis and with a cross-sectional area of . In time interval it moves length . In steady state, the mass flow rate must be the same at the two ends of the tube, therefore the mass flux . Per Newton's second law, the pressure-gradient force provides the acceleration:

And therefore:

where

*P*is the pressure;- is the density and the derivative is taken isentropically, that is, at constant entropy
*s*. This is because a sound wave travels so fast that its propagation can be approximated as an adiabatic process.

If relativistic effects are important, the speed of sound is calculated from the relativistic Euler equations.

In a non-dispersive medium, the speed of sound is independent of sound frequency, so the speeds of energy transport and sound propagation are the same for all frequencies. Air, a mixture of oxygen and nitrogen, constitutes a non-dispersive medium. However, air does contain a small amount of CO_{2} which *is* a dispersive medium, and causes dispersion to air at ultrasonic frequencies (> 28 kHz ).^{ [8] }

In a dispersive medium, the speed of sound is a function of sound frequency, through the dispersion relation. Each frequency component propagates at its own speed, called the phase velocity, while the energy of the disturbance propagates at the group velocity. The same phenomenon occurs with light waves; see optical dispersion for a description.

The speed of sound is variable and depends on the properties of the substance through which the wave is travelling. In solids, the speed of transverse (or shear) waves depends on the shear deformation under shear stress (called the shear modulus), and the density of the medium. Longitudinal (or compression) waves in solids depend on the same two factors with the addition of a dependence on compressibility.

In fluids, only the medium's compressibility and density are the important factors, since fluids do not transmit shear stresses. In heterogeneous fluids, such as a liquid filled with gas bubbles, the density of the liquid and the compressibility of the gas affect the speed of sound in an additive manner, as demonstrated in the hot chocolate effect.

In gases, adiabatic compressibility is directly related to pressure through the heat capacity ratio (adiabatic index), while pressure and density are inversely related to the temperature and molecular weight, thus making only the completely independent properties of *temperature and molecular structure* important (heat capacity ratio may be determined by temperature and molecular structure, but simple molecular weight is not sufficient to determine it).

Sound propagates faster in low molecular weight gases such as helium than it does in heavier gases such as xenon. For monatomic gases, the speed of sound is about 75% of the mean speed that the atoms move in that gas.

For a given ideal gas the molecular composition is fixed, and thus the speed of sound depends only on its temperature. At a constant temperature, the gas pressure has no effect on the speed of sound, since the density will increase, and since pressure and density (also proportional to pressure) have equal but opposite effects on the speed of sound, and the two contributions cancel out exactly. In a similar way, compression waves in solids depend both on compressibility and density—just as in liquids—but in gases the density contributes to the compressibility in such a way that some part of each attribute factors out, leaving only a dependence on temperature, molecular weight, and heat capacity ratio which can be independently derived from temperature and molecular composition (see derivations below). Thus, for a single given gas (assuming the molecular weight does not change) and over a small temperature range (for which the heat capacity is relatively constant), the speed of sound becomes dependent on only the temperature of the gas.

In non-ideal gas behavior regimen, for which the Van der Waals gas equation would be used, the proportionality is not exact, and there is a slight dependence of sound velocity on the gas pressure.

Humidity has a small but measurable effect on the speed of sound (causing it to increase by about 0.1%–0.6%), because oxygen and nitrogen molecules of the air are replaced by lighter molecules of water. This is a simple mixing effect.

In the Earth's atmosphere, the chief factor affecting the speed of sound is the temperature. For a given ideal gas with constant heat capacity and composition, the speed of sound is dependent *solely* upon temperature; see Details below. In such an ideal case, the effects of decreased density and decreased pressure of altitude cancel each other out, save for the residual effect of temperature.

Since temperature (and thus the speed of sound) decreases with increasing altitude up to 11 km, sound is refracted upward, away from listeners on the ground, creating an acoustic shadow at some distance from the source.^{ [9] } The decrease of the speed of sound with height is referred to as a negative sound speed gradient.

However, there are variations in this trend above 11 km. In particular, in the stratosphere above about 20 km, the speed of sound increases with height, due to an increase in temperature from heating within the ozone layer. This produces a positive speed of sound gradient in this region. Still another region of positive gradient occurs at very high altitudes, in the aptly-named thermosphere above 90 km.

The approximate speed of sound in dry (0% humidity) air, in metres per second, at temperatures near 0 °C, can be calculated from

where * is the temperature in degrees Celsius (°C).*^{ [10] }

This equation is derived from the first two terms of the Taylor expansion of the following more accurate equation:

Dividing the first part, and multiplying the second part, on the right hand side, by √273.15 gives the exactly equivalent form

which can also be written as

where *T* denotes the thermodynamic temperature.

The value of 331.3 m/s, which represents the speed at 0 °C (or 273.15 K), is based on theoretical (and some measured) values of the heat capacity ratio, *γ*, as well as on the fact that at 1 atm real air is very well described by the ideal gas approximation. Commonly found values for the speed of sound at 0 °C may vary from 331.2 to 331.6 due to the assumptions made when it is calculated. If ideal gas *γ* is assumed to be 7/5 = 1.4 exactly, the 0 °C speed is calculated (see section below) to be 331.3 m/s, the coefficient used above.

This equation is correct to a much wider temperature range, but still depends on the approximation of heat capacity ratio being independent of temperature, and for this reason will fail, particularly at higher temperatures. It gives good predictions in relatively dry, cold, low-pressure conditions, such as the Earth's stratosphere. The equation fails at extremely low pressures and short wavelengths, due to dependence on the assumption that the wavelength of the sound in the gas is much longer than the average mean free path between gas molecule collisions. A derivation of these equations will be given in the following section.

A graph comparing results of the two equations is at right, using the slightly different value of 331.5 m/s for the speed of sound at 0 °C.^{ [11] }

For an ideal gas, *K* (the bulk modulus in equations above, equivalent to C, the coefficient of stiffness in solids) is given by

thus, from the Newton–Laplace equation above, the speed of sound in an ideal gas is given by

where

*γ*is the adiabatic index also known as the*isentropic expansion factor*. It is the ratio of the specific heat of a gas at constant pressure to that of a gas at constant volume () and arises because a classical sound wave induces an adiabatic compression, in which the heat of the compression does not have enough time to escape the pressure pulse, and thus contributes to the pressure induced by the compression;*p*is the pressure;*ρ*is the density.

Using the ideal gas law to replace *p* with *nRT*/*V*, and replacing *ρ* with *nM*/*V*, the equation for an ideal gas becomes

where

*c*_{ideal}is the speed of sound in an ideal gas;*R*(approximately 8.314463J·K^{−1}·mol^{−1}) is the molar gas constant (universal gas constant);^{ [12] }*k*is the Boltzmann constant;*γ*(gamma) is the adiabatic index. At room temperature, where thermal energy is fully partitioned into rotation (rotations are fully excited) but quantum effects prevent excitation of vibrational modes, the value is 7/5 = 1.400 for diatomic molecules, according to kinetic theory. Gamma is actually experimentally measured over a range from 1.3991 to 1.403 at 0 °C, for air. Gamma is exactly 5/3 = 1.6667 for monatomic gases such as noble gases and it is 8/6 = 1.3333 for triatomic molecule gases that, like H2O, are not co-linear (a co-linear triatomic gas such as CO2 is equivalent to a diatomic gas for our purposes here);*T*is the absolute temperature;*M*is the molar mass of the gas. The mean molar mass for dry air is about 0.028,964,5 kg/mol;^{[ citation needed ]}*n*is the number of moles;*m*is the mass of a single molecule.

This equation applies only when the sound wave is a small perturbation on the ambient condition, and the certain other noted conditions are fulfilled, as noted below. Calculated values for *c*_{air} have been found to vary slightly from experimentally determined values.^{ [13] }

Newton famously considered the speed of sound before most of the development of thermodynamics and so incorrectly used isothermal calculations instead of adiabatic. His result was missing the factor of *γ* but was otherwise correct.

Numerical substitution of the above values gives the ideal gas approximation of sound velocity for gases, which is accurate at relatively low gas pressures and densities (for air, this includes standard Earth sea-level conditions). Also, for diatomic gases the use of *γ* = 1.4000 requires that the gas exists in a temperature range high enough that rotational heat capacity is fully excited (i.e., molecular rotation is fully used as a heat energy "partition" or reservoir); but at the same time the temperature must be low enough that molecular vibrational modes contribute no heat capacity (i.e., insignificant heat goes into vibration, as all vibrational quantum modes above the minimum-energy-mode, have energies too high to be populated by a significant number of molecules at this temperature). For air, these conditions are fulfilled at room temperature, and also temperatures considerably below room temperature (see tables below). See the section on gases in specific heat capacity for a more complete discussion of this phenomenon.

For air, we introduce the shorthand

In addition, we switch to the Celsius temperature * = **T* − 273.15, which is useful to calculate air speed in the region near 0 °C (about 273 kelvin). Then, for dry air,

where * (theta) is the temperature in degrees Celsius(°C).*

Substituting numerical values

for the molar gas constant in J/mole/Kelvin, and

for the mean molar mass of air, in kg; and using the ideal diatomic gas value of *γ* = 1.4000, we have

Finally, Taylor expansion of the remaining square root in yields

The above derivation includes the first two equations given in the "Practical formula for dry air" section above.

The speed of sound varies with temperature. Since temperature and sound velocity normally decrease with increasing altitude, sound is refracted upward, away from listeners on the ground, creating an acoustic shadow at some distance from the source.^{ [9] } Wind shear of 4 m/(s · km) can produce refraction equal to a typical temperature lapse rate of 7.5 °C/km.^{ [14] } Higher values of wind gradient will refract sound downward toward the surface in the downwind direction,^{ [15] } eliminating the acoustic shadow on the downwind side. This will increase the audibility of sounds downwind. This downwind refraction effect occurs because there is a wind gradient; the sound is not being carried along by the wind.^{ [16] }

For sound propagation, the exponential variation of wind speed with height can be defined as follows:^{ [17] }

where

*U*(*h*) is the speed of the wind at height*h*;*ζ*is the exponential coefficient based on ground surface roughness, typically between 0.08 and 0.52;- d
*U*/d*H*(*h*) is the expected wind gradient at height*h*.

In the 1862 American Civil War Battle of Iuka, an acoustic shadow, believed to have been enhanced by a northeast wind, kept two divisions of Union soldiers out of the battle,^{ [18] } because they could not hear the sounds of battle only 10 km (six miles) downwind.^{ [19] }

In the standard atmosphere:

*T*_{0}is 273.15 K (= 0 °C = 32 °F), giving a theoretical value of 331.3 m/s (= 1086.9 ft/s = 1193 km/h = 741.1 mph = 644.0 kn ). Values ranging from 331.3 to 331.6 m/s may be found in reference literature, however;*T*_{20}is 293.15 K (= 20 °C = 68 °F), giving a value of 343.2 m/s (= 1126.0 ft/s = 1236 km/h = 767.8 mph = 667.2 kn );*T*_{25}is 298.15 K (= 25 °C = 77 °F), giving a value of 346.1 m/s (= 1135.6 ft/s = 1246 km/h = 774.3 mph = 672.8 kn ).

In fact, assuming an ideal gas, the speed of sound *c* depends on temperature only, **not on the pressure** or **density** (since these change in lockstep for a given temperature and cancel out). Air is almost an ideal gas. The temperature of the air varies with altitude, giving the following variations in the speed of sound using the standard atmosphere—*actual conditions may vary*.

Temperature, T (°C) | Speed of sound, c(m/s) | Density of air, ρ(kg/m ^{3}) | Characteristic specific acoustic impedance, z_{0} (Pa·s/m) |
---|---|---|---|

35 | 351.88 | 1.1455 | 403.2 |

30 | 349.02 | 1.1644 | 406.5 |

25 | 346.13 | 1.1839 | 409.4 |

20 | 343.21 | 1.2041 | 413.3 |

15 | 340.27 | 1.2250 | 416.9 |

10 | 337.31 | 1.2466 | 420.5 |

5 | 334.32 | 1.2690 | 424.3 |

0 | 331.30 | 1.2922 | 428.0 |

−5 | 328.25 | 1.3163 | 432.1 |

−10 | 325.18 | 1.3413 | 436.1 |

−15 | 322.07 | 1.3673 | 440.3 |

−20 | 318.94 | 1.3943 | 444.6 |

−25 | 315.77 | 1.4224 | 449.1 |

Given normal atmospheric conditions, the temperature, and thus speed of sound, varies with altitude:

Altitude | Temperature | m/s | km/h | mph | kn |

Sea level | 15 °C (59 °F) | 340 | 1,225 | 761 | 661 |

11,000 m−20,000 m (Cruising altitude of commercial jets, and first supersonic flight) | −57 °C (−70 °F) | 295 | 1,062 | 660 | 573 |

29,000 m (Flight of X-43A) | −48 °C (−53 °F) | 301 | 1,083 | 673 | 585 |

The medium in which a sound wave is travelling does not always respond adiabatically, and as a result, the speed of sound can vary with frequency.^{ [20] }

The limitations of the concept of speed of sound due to extreme attenuation are also of concern. The attenuation which exists at sea level for high frequencies applies to successively lower frequencies as atmospheric pressure decreases, or as the mean free path increases. For this reason, the concept of speed of sound (except for frequencies approaching zero) progressively loses its range of applicability at high altitudes.^{ [13] } The standard equations for the speed of sound apply with reasonable accuracy only to situations in which the wavelength of the sound wave is considerably longer than the mean free path of molecules in a gas.

The molecular composition of the gas contributes both as the mass (M) of the molecules, and their heat capacities, and so both have an influence on speed of sound. In general, at the same molecular mass, monatomic gases have slightly higher speed of sound (over 9% higher) because they have a higher *γ* (5/3 = 1.66...) than diatomics do (7/5 = 1.4). Thus, at the same molecular mass, the speed of sound of a monatomic gas goes up by a factor of

This gives the 9% difference, and would be a typical ratio for speeds of sound at room temperature in helium vs. deuterium, each with a molecular weight of 4. Sound travels faster in helium than deuterium because adiabatic compression heats helium more since the helium molecules can store heat energy from compression only in translation, but not rotation. Thus helium molecules (monatomic molecules) travel faster in a sound wave and transmit sound faster. (Sound travels at about 70% of the mean molecular speed in gases; the figure is 75% in monatomic gases and 68% in diatomic gases).

Note that in this example we have assumed that temperature is low enough that heat capacities are not influenced by molecular vibration (see heat capacity). However, vibrational modes simply cause gammas which decrease toward 1, since vibration modes in a polyatomic gas give the gas additional ways to store heat which do not affect temperature, and thus do not affect molecular velocity and sound velocity. Thus, the effect of higher temperatures and vibrational heat capacity acts to increase the difference between the speed of sound in monatomic vs. polyatomic molecules, with the speed remaining greater in monatomics.

By far, the most important factor influencing the speed of sound in air is temperature. The speed is proportional to the square root of the absolute temperature, giving an increase of about 0.6 m/s per degree Celsius. For this reason, the pitch of a musical wind instrument increases as its temperature increases.

The speed of sound is raised by humidity. The difference between 0% and 100% humidity is about 1.5 m/s at standard pressure and temperature, but the size of the humidity effect increases dramatically with temperature.

The dependence on frequency and pressure are normally insignificant in practical applications. In dry air, the speed of sound increases by about 0.1 m/s as the frequency rises from 10 Hz to 100 Hz. For audible frequencies above 100 Hz it is relatively constant. Standard values of the speed of sound are quoted in the limit of low frequencies, where the wavelength is large compared to the mean free path.^{ [21] }

As shown above, the approximate value 1000/3 = 333.33... m/s is exact a little below 5 °C and is a good approximation for all "usual" outside temperatures (in temperate climates, at least), hence the usual rule of thumb to determine how far lightning has struck: count the seconds from the start of the lightning flash to the start of the corresponding roll of thunder and divide by 3: the result is the distance in kilometers to the nearest point of the lightning bolt.

Mach number, a useful quantity in aerodynamics, is the ratio of air speed to the local speed of sound. At altitude, for reasons explained, Mach number is a function of temperature.

Aircraft flight instruments, however, operate using pressure differential to compute Mach number, not temperature. The assumption is that a particular pressure represents a particular altitude and, therefore, a standard temperature. Aircraft flight instruments need to operate this way because the stagnation pressure sensed by a Pitot tube is dependent on altitude as well as speed.

A range of different methods exist for the measurement of sound in air.

The earliest reasonably accurate estimate of the speed of sound in air was made by William Derham and acknowledged by Isaac Newton. Derham had a telescope at the top of the tower of the Church of St Laurence in Upminster, England. On a calm day, a synchronized pocket watch would be given to an assistant who would fire a shotgun at a pre-determined time from a conspicuous point some miles away, across the countryside. This could be confirmed by telescope. He then measured the interval between seeing gunsmoke and arrival of the sound using a half-second pendulum. The distance from where the gun was fired was found by triangulation, and simple division (distance/time) provided velocity. Lastly, by making many observations, using a range of different distances, the inaccuracy of the half-second pendulum could be averaged out, giving his final estimate of the speed of sound. Modern stopwatches enable this method to be used today over distances as short as 200–400 metres, and not needing something as loud as a shotgun.

The simplest concept is the measurement made using two microphones and a fast recording device such as a digital storage scope. This method uses the following idea.

If a sound source and two microphones are arranged in a straight line, with the sound source at one end, then the following can be measured:

- The distance between the microphones (
*x*), called microphone basis. - The time of arrival between the signals (delay) reaching the different microphones (
*t*).

Then *v* = *x*/*t*.

In these methods, the time measurement has been replaced by a measurement of the inverse of time (frequency).

Kundt's tube is an example of an experiment which can be used to measure the speed of sound in a small volume. It has the advantage of being able to measure the speed of sound in any gas. This method uses a powder to make the nodes and antinodes visible to the human eye. This is an example of a compact experimental setup.

A tuning fork can be held near the mouth of a long pipe which is dipping into a barrel of water. In this system it is the case that the pipe can be brought to resonance if the length of the air column in the pipe is equal to *(1 + 2*n*)λ/4* where *n* is an integer. As the antinodal point for the pipe at the open end is slightly outside the mouth of the pipe it is best to find two or more points of resonance and then measure half a wavelength between these.

Here it is the case that *v* = *fλ*.

The effect of impurities can be significant when making high-precision measurements. Chemical desiccants can be used to dry the air, but will, in turn, contaminate the sample. The air can be dried cryogenically, but this has the effect of removing the carbon dioxide as well; therefore many high-precision measurements are performed with air free of carbon dioxide rather than with natural air. A 2002 review^{ [22] } found that a 1963 measurement by Smith and Harlow using a cylindrical resonator gave "the most probable value of the standard speed of sound to date." The experiment was done with air from which the carbon dioxide had been removed, but the result was then corrected for this effect so as to be applicable to real air. The experiments were done at 30 °C but corrected for temperature in order to report them at 0 °C. The result was 331.45 ± 0.01 m/s for dry air at STP, for frequencies from 93 Hz to 1,500 Hz.

In a solid, there is a non-zero stiffness both for volumetric deformations and shear deformations. Hence, it is possible to generate sound waves with different velocities dependent on the deformation mode. Sound waves generating volumetric deformations (compression) and shear deformations (shearing) are called pressure waves (longitudinal waves) and shear waves (transverse waves), respectively. In earthquakes, the corresponding seismic waves are called P-waves (primary waves) and S-waves (secondary waves), respectively. The sound velocities of these two types of waves propagating in a homogeneous 3-dimensional solid are respectively given by^{ [23] }

where

*K*is the bulk modulus of the elastic materials;*G*is the shear modulus of the elastic materials;*E*is the Young's modulus;*ρ*is the density;*ν*is Poisson's ratio.

The last quantity is not an independent one, as E = 3K(1 − 2ν). Note that the speed of pressure waves depends both on the pressure and shear resistance properties of the material, while the speed of shear waves depends on the shear properties only.

Typically, pressure waves travel faster in materials than do shear waves, and in earthquakes this is the reason that the onset of an earthquake is often preceded by a quick upward-downward shock, before arrival of waves that produce a side-to-side motion. For example, for a typical steel alloy, *K* = 170 GPa, *G* = 80 GPa and *ρ* = 7,700 kg/m^{3}, yielding a compressional speed *c*_{solid,p} of 6,000 m/s.^{ [23] } This is in reasonable agreement with *c*_{solid,p} measured experimentally at 5,930 m/s for a (possibly different) type of steel.^{ [24] } The shear speed *c*_{solid,s} is estimated at 3,200 m/s using the same numbers.

The speed of sound for pressure waves in stiff materials such as metals is sometimes given for "long rods" of the material in question, in which the speed is easier to measure. In rods where their diameter is shorter than a wavelength, the speed of pure pressure waves may be simplified and is given by:^{ [25] }

where *E* is Young's modulus. This is similar to the expression for shear waves, save that Young's modulus replaces the shear modulus. This speed of sound for pressure waves in long rods will always be slightly less than the same speed in homogeneous 3-dimensional solids, and the ratio of the speeds in the two different types of objects depends on Poisson's ratio for the material.

In a fluid, the only non-zero stiffness is to volumetric deformation (a fluid does not sustain shear forces).

Hence the speed of sound in a fluid is given by

where *K* is the bulk modulus of the fluid.

In fresh water, sound travels at about 1481 m/s at 20 °C (see the External Links section below for online calculators).^{ [26] } Applications of underwater sound can be found in sonar, acoustic communication and acoustical oceanography.

In salt water that is free of air bubbles or suspended sediment, sound travels at about 1500 m/s (1500.235 m/s at 1000 kilopascals , 10 °C and 3% salinity by one method).^{ [27] } The speed of sound in seawater depends on pressure (hence depth), temperature (a change of 1 °C ~ 4 m/s), and salinity (a change of 1‰ ~ 1 m/s), and empirical equations have been derived to accurately calculate the speed of sound from these variables.^{ [28] }^{ [29] } Other factors affecting the speed of sound are minor. Since in most ocean regions temperature decreases with depth, the profile of the speed of sound with depth decreases to a minimum at a depth of several hundred metres. Below the minimum, sound speed increases again, as the effect of increasing pressure overcomes the effect of decreasing temperature (right).^{ [30] } For more information see Dushaw et al.^{ [31] }

An empirical equation for the speed of sound in sea water is provided by Mackenzie:^{ [32] }

where

*T*is the temperature in degrees Celsius;*S*is the salinity in parts per thousand;*z*is the depth in metres.

The constants *a*_{1}, *a*_{2}, ..., *a*_{9} are

with check value 1550.744 m/s for *T* = 25 °C, *S* = 35 parts per thousand, *z* = 1,000 m. This equation has a standard error of 0.070 m/s for salinity between 25 and 40 ppt. See Technical Guides. Speed of Sound in Sea-Water for an online calculator.

(Note: The Sound Speed vs. Depth graph does *not* correlate directly to the MacKenzie formula. This is due to the fact that the temperature and salinity varies at different depths. When *T* and *S* are held constant, the formula itself is always increasing with depth.)

Other equations for the speed of sound in sea water are accurate over a wide range of conditions, but are far more complicated, e.g., that by V. A. Del Grosso^{ [33] } and the Chen-Millero-Li Equation.^{ [31] }^{ [34] }

The speed of sound in a plasma for the common case that the electrons are hotter than the ions (but not too much hotter) is given by the formula (see here)

where

*m*_{i}is the ion mass;*μ*is the ratio of ion mass to proton mass*μ*=*m*_{i}/*m*_{p};*T*_{e}is the electron temperature;*Z*is the charge state;*k*is Boltzmann constant;*γ*is the adiabatic index.

In contrast to a gas, the pressure and the density are provided by separate species: the pressure by the electrons and the density by the ions. The two are coupled through a fluctuating electric field.

When sound spreads out evenly in all directions in three dimensions, the intensity drops in proportion to the inverse square of the distance. However, in the ocean, there is a layer called the 'deep sound channel' or SOFAR channel which can confine sound waves at a particular depth.

In the SOFAR channel, the speed of sound is lower than that in the layers above and below. Just as light waves will refract towards a region of higher index, sound waves will refract towards a region where their speed is reduced. The result is that sound gets confined in the layer, much the way light can be confined to a sheet of glass or optical fiber. Thus, the sound is confined in essentially two dimensions. In two dimensions the intensity drops in proportion to only the inverse of the distance. This allows waves to travel much further before being undetectably faint.

A similar effect occurs in the atmosphere. Project Mogul successfully used this effect to detect a nuclear explosion at a considerable distance.

**Mach number** is a dimensionless quantity in fluid dynamics representing the ratio of flow velocity past a boundary to the local speed of sound.

(A gas which obey pv=nRT at any condition of temperature and pressure but in real life/practice life no gas is ideal).. .An **ideal gas** is a theoretical gas composed of many randomly moving point particles that are not subject to interparticle interactions. The ideal gas concept is useful because it obeys the ideal gas law, a simplified equation of state, and is amenable to analysis under statistical mechanics. The requirement of zero interaction can often be relaxed if, for example, the interaction is perfectly elastic or regarded as point-like collisions.

In thermodynamics and fluid mechanics, the **compressibility** is a measure of the relative volume change of a fluid or solid as a response to a pressure change. In its simple form, the compressibility may be expressed as

In fluid dynamics, the **Euler equations** are a set of quasilinear hyperbolic equations governing adiabatic and inviscid flow. They are named after Leonhard Euler. The equations represent Cauchy equations of conservation of mass (continuity), and balance of momentum and energy, and can be seen as particular Navier–Stokes equations with zero viscosity and zero thermal conductivity. In fact, Euler equations can be obtained by linearization of some more precise continuity equations like Navier–Stokes equations in a local equilibrium state given by a Maxwellian. The Euler equations can be applied to incompressible and to compressible flow – assuming the flow velocity is a solenoidal field, or using another appropriate energy equation respectively. Historically, only the incompressible equations have been derived by Euler. However, fluid dynamics literature often refers to the full set – including the energy equation – of the more general compressible equations together as "the Euler equations".

The **Rankine–Hugoniot conditions**, also referred to as **Rankine–Hugoniot jump conditions** or **Rankine–Hugoniot relations**, describe the relationship between the states on both sides of a shock wave or a combustion wave in a one-dimensional flow in fluids or a one-dimensional deformation in solids. They are named in recognition of the work carried out by Scottish engineer and physicist William John Macquorn Rankine and French engineer Pierre Henri Hugoniot.

The **Knudsen number** (**Kn**) is a dimensionless number defined as the ratio of the molecular mean free path length to a representative physical length scale. This length scale could be, for example, the radius of a body in a fluid. The number is named after Danish physicist Martin Knudsen (1871–1949).

**Indicated airspeed** (**IAS**) is the airspeed read directly from the airspeed indicator (ASI) on an aircraft, driven by the pitot-static system. It uses the difference between total pressure and static pressure, provided by the system, to either mechanically or electronically measure dynamic pressure. The dynamic pressure includes terms for both density and airspeed. Since the airspeed indicator cannot know the density, it is by design calibrated to assume the sea level standard atmospheric density when calculating airspeed. Since the actual density will vary considerably from this assumed value as the aircraft changes altitude, IAS varies considerably from true airspeed (TAS), the relative velocity between the aircraft and the surrounding air mass. Calibrated airspeed (CAS) is the IAS corrected for instrument and position error.

The **bulk modulus** of a substance is a measure of how resistant to compression that substance is. It is defined as the ratio of the infinitesimal pressure increase to the resulting *relative* decrease of the volume. Other moduli describe the material's response (strain) to other kinds of stress: the shear modulus describes the response to shear, and Young's modulus describes the response to linear stress. For a fluid, only the bulk modulus is meaningful. For a complex anisotropic solid such as wood or paper, these three moduli do not contain enough information to describe its behaviour, and one must use the full generalized Hooke's law. The reciprocal of the bulk modulus at fixed temperature is called the isothermal compressibility.

A **P wave** is one of the two main types of elastic body waves, called seismic waves in seismology. P waves travel faster than other seismic waves and hence are the first signal from an earthquake to arrive at any affected location or at a seismograph. P waves may be transmitted through gases, liquids, or solids.

In materials science, **shear modulus** or **modulus of rigidity**, denoted by *G*, or sometimes *S* or *μ*, is a measure of the elastic shear stiffness of a material and is defined as the ratio of shear stress to the shear strain:

An **orifice plate** is a device used for measuring flow rate, for reducing pressure or for restricting flow.

In thermal physics and thermodynamics, the **heat capacity ratio**, also known as the **adiabatic index**, the **ratio of specific heats**, or **Laplace's coefficient**, is the ratio of the heat capacity at constant pressure to heat capacity at constant volume. It is sometimes also known as the *isentropic expansion factor* and is denoted by γ (gamma) for an ideal gas or κ (kappa), the isentropic exponent for a real gas. The symbol γ is used by aerospace and chemical engineers.

In physics, the **acoustic wave equation** governs the propagation of acoustic waves through a material medium. The form of the equation is a second order partial differential equation. The equation describes the evolution of acoustic pressure or particle velocity * u* as a function of position

In stellar physics, the **Jeans instability** causes the collapse of interstellar gas clouds and subsequent star formation, named after James Jeans. It occurs when the internal gas pressure is not strong enough to prevent gravitational collapse of a region filled with matter. For stability, the cloud must be in hydrostatic equilibrium, which in case of a spherical cloud translates to:

**Acoustic waves** are a type of energy propagation through a medium by means of adiabatic compression and decompression. Important quantities for describing acoustic waves are acoustic pressure, particle velocity, particle displacement and acoustic intensity. Acoustic waves travel with a characteristic acoustic velocity that depends on the medium they're passing through. Some examples of acoustic waves are audible sound from a speaker, ground movement from an earthquake, or ultrasound used for medical imaging.

The **hypsometric equation**, also known as the **thickness equation**, relates an atmospheric pressure ratio to the equivalent thickness of an atmospheric layer considering the layer mean of virtual temperature, gravity, and occasionally wind. It is derived from the hydrostatic equation and the ideal gas law.

**Volume viscosity** is a material property relevant for characterizing fluid flow. Common symbols are or . It has dimensions, and the corresponding SI unit is the pascal-second (Pa·s).

The **Cauchy number** (**Ca**) is a dimensionless number in continuum mechanics used in the study of compressible flows. It is named after the French mathematician Augustin Louis Cauchy. When the compressibility is important the elastic forces must be considered along with inertial forces for dynamic similarity. Thus, the Cauchy Number is defined as the ratio between inertial and the compressibility force in a flow and can be expressed as

In physics, **sound** is a vibration that propagates as an acoustic wave, through a transmission medium such as a gas, liquid or solid.

The **Adams–Williamson equation**, named after Leason H. Adams and E. D. Williamson, is an equation used to determine density as a function of radius, more commonly used to determine the relation between the velocities of seismic waves and the density of the Earth's interior. Given the average density of rocks at the Earth's surface and profiles of the P-wave and S-wave speeds as function of depth, it can predict how density increases with depth. It assumes that the compression is adiabatic and that the Earth is spherically symmetric, homogeneous, and in hydrostatic equilibrium. It can also be applied to spherical shells with that property. It is an important part of models of the Earth's interior such as the Preliminary reference Earth model (PREM).

- ↑ "Speed of Sound Calculator". National Weather Service. Retrieved 23 July 2021.
- ↑ Speed of Sound
- ↑ "The Speed of Sound". mathpages.com. Retrieved 3 May 2015.
- ↑ Bannon, Mike; Kaputa, Frank. "The Newton–Laplace Equation and Speed of Sound". Thermal Jackets. Retrieved 3 May 2015.
- 1 2 Murdin, Paul (25 December 2008).
*Full Meridian of Glory: Perilous Adventures in the Competition to Measure the Earth*. Springer Science & Business Media. pp. 35–36. ISBN 9780387755342. - ↑ Fox, Tony (2003).
*Essex Journal*. Essex Arch & Hist Soc. pp. 12–16. - ↑ "17.2 Speed of Sound | University Physics Volume 1".
*courses.lumenlearning.com*. Retrieved 24 January 2020. - ↑ Dean, E. A. (August 1979). Atmospheric Effects on the Speed of Sound, Technical report of Defense Technical Information Center
- 1 2 Everest, F. (2001).
*The Master Handbook of Acoustics*. New York: McGraw-Hill. pp. 262–263. ISBN 978-0-07-136097-5. - ↑ Bies, D.A.; Hansen, C.H. (2009).
*Engineering Noise Control - Theory and Practice, 4th Edition*. New York: CRC Press. pp. 18–19. ISBN 978-0-415-48707-8. - ↑ Kinsler, L.E.; Frey, A.R.; Coppens, A.B.; Sanders, J.V. (2000).
*Fundamentals of Acoustics, 4th Edition*. New York: John Wiley & Sons. pp. 120-121. ISBN 0-471-84789-5. - ↑ "CODATA Value: molar gas constant". Physics.nist.gov. Retrieved 24 October 2010.
- 1 2 U.S. Standard Atmosphere, 1976, U.S. Government Printing Office, Washington, D.C., 1976.
- ↑ Uman, Martin (1984).
*Lightning*. New York: Dover Publications. ISBN 978-0-486-64575-9. - ↑ Volland, Hans (1995).
*Handbook of Atmospheric Electrodynamics*. Boca Raton: CRC Press. p. 22. ISBN 978-0-8493-8647-3. - ↑ Singal, S. (2005).
*Noise Pollution and Control Strategy*. Oxford: Alpha Science International. p. 7. ISBN 978-1-84265-237-4.It may be seen that refraction effects occur only because there is a wind gradient and it is not due to the result of sound being convected along by the wind.

- ↑ Bies, David (2009).
*Engineering Noise Control, Theory and Practice*. London: CRC Press. p. 249. ISBN 978-0-415-26713-7.As wind speed generally increases with altitude, wind blowing towards the listener from the source will refract sound waves downwards, resulting in increased noise levels.

- ↑ Cornwall, Sir (1996).
*Grant as Military Commander*. New York: Barnes & Noble. p. 92. ISBN 978-1-56619-913-1. - ↑ Cozens, Peter (2006).
*The Darkest Days of the War: the Battles of Iuka and Corinth*. Chapel Hill: The University of North Carolina Press. ISBN 978-0-8078-5783-0. - ↑ A B Wood, A Textbook of Sound (Bell, London, 1946)
- ↑ "Speed of Sound in Air". Phy.mtu.edu. Retrieved 13 June 2014.
- ↑ Zuckerwar, Handbook of the speed of sound in real gases, p. 52
- 1 2 L. E. Kinsler et al. (2000),
*Fundamentals of acoustics*, 4th Ed., John Wiley and sons Inc., New York, USA. - ↑ J. Krautkrämer and H. Krautkrämer (1990),
*Ultrasonic testing of materials*, 4th fully revised edition, Springer-Verlag, Berlin, Germany, p. 497 - ↑ Kinsler, L.E.; Frey, A.R.; Coppens, A.B.; Sanders, J.V. (2000).
*Fundamentals of Acoustics, 4th Edition*. New York: John Wiley & Sons. pp. 70. ISBN 0-471-84789-5. - ↑ "Speed of Sound in Water at Temperatures between 32–212 oF (0–100 oC) — imperial and SI units".
*The Engineering Toolbox*. - ↑ Wong, George S. K.; Zhu, Shi-ming (1995). "Speed of sound in seawater as a function of salinity, temperature, and pressure".
*The Journal of the Acoustical Society of America*.**97**(3): 1732. Bibcode:1995ASAJ...97.1732W. doi:10.1121/1.413048. - ↑ APL-UW TR 9407 High-Frequency Ocean Environmental Acoustic Models Handbook, pp. I1-I2.
- ↑ Robinson, Stephen (22 September 2005). "Technical Guides – Speed of Sound in Sea-Water".
*National Physical Laboratory*. Retrieved 7 December 2016. - ↑ "How Fast Does Sound Travel?".
*Discovery of Sound in the Sea*. University of Rhode Island. Retrieved 30 November 2010. - 1 2 Dushaw, Brian D.; Worcester, P. F.; Cornuelle, B. D.; Howe, B. M. (1993). "On Equations for the Speed of Sound in Seawater".
*Journal of the Acoustical Society of America*.**93**(1): 255–275. Bibcode:1993ASAJ...93..255D. doi:10.1121/1.405660. - ↑ Kenneth V., Mackenzie (1981). "Discussion of sea-water sound-speed determinations".
*Journal of the Acoustical Society of America*.**70**(3): 801–806. Bibcode:1981ASAJ...70..801M. doi:10.1121/1.386919. - ↑ Del Grosso, V. A. (1974). "New equation for speed of sound in natural waters (with comparisons to other equations)".
*Journal of the Acoustical Society of America*.**56**(4): 1084–1091. Bibcode:1974ASAJ...56.1084D. doi:10.1121/1.1903388. - ↑ Meinen, Christopher S.; Watts, D. Randolph (1997). "Further Evidence that the Sound-Speed Algorithm of Del Grosso Is More Accurate Than that of Chen and Millero".
*Journal of the Acoustical Society of America*.**102**(4): 2058–2062. Bibcode:1997ASAJ..102.2058M. doi:10.1121/1.419655.

- Speed of Sound Calculator
- Calculation: Speed of Sound in Air and the Temperature
- Speed of sound: Temperature Matters, Not Air Pressure
- Properties of the U.S. Standard Atmosphere 1976
- The Speed of Sound
- How to Measure the Speed of Sound in a Laboratory
- Did Sound Once Travel at Light Speed?
- Acoustic Properties of Various Materials Including the Speed of Sound
- Discovery of Sound in the Sea (uses of sound by humans and other animals)

This page is based on this Wikipedia article

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.