Stannane

Last updated
Stannane
Stannane-CRC-IR-Raman-dimensions-2D.png
Ball-and-stick model of the stannane molecule Stannane-from-xtal-3D-balls.png
Ball-and-stick model of the stannane molecule
Space-filling model of the stannane molecule Stannane-3D-vdW.png
Space-filling model of the stannane molecule
  Tin, Sn
  Hydrogen, H
Names
IUPAC name
Stannane
Other names
tin tetrahydride
tin hydride
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
PubChem CID
  • InChI=1S/Sn.4H Yes check.svgY
    Key: KXCAEQNNTZANTK-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/Sn.4H/rH4Sn/h1H4
    Key: KXCAEQNNTZANTK-GVMKXMNPAM
  • [Sn]
Properties
SnH4
Molar mass 122.71 g/mol
Appearancecolourless gas
Density 5.4 g/L, gas
Melting point −146 °C (−231 °F; 127 K)
Boiling point −52 °C (−62 °F; 221 K)
Structure
Tetrahedral
0  D
Thermochemistry
1.262 kJ/(kg·K)
162.8 kJ/mol
19.049 kJ/mol
Related compounds
Related organotins
tributylstannane (Bu3SnH)
Related compounds
Methane
Silane
Germane
Plumbane
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Stannane /ˈstænn/ or tin hydride is an inorganic compound with the chemical formula Sn H 4. It is a colourless gas and the tin analogue of methane. Stannane can be prepared by the reaction of SnCl4 and Li[AlH4]. [1]

SnCl4 + Li[AlH4] → SnH4 + LiCl + AlCl3

Stannane decomposes slowly at room temperature to give metallic tin and hydrogen and ignites on contact with air. [1]

Variants of stannane can be found as a highly toxic, gaseous, inorganic metal hydrides and group 14 hydrides.

See also

Related Research Articles

<span class="mw-page-title-main">Hydride</span> Molecule with a hydrogen bound to a more electropositive element or group

In chemistry, a hydride is formally the anion of hydrogen (H), a hydrogen atom with two electrons. The term is applied loosely. At one extreme, all compounds containing covalently bound H atoms are called hydrides: water (H2O) is a hydride of oxygen, ammonia is a hydride of nitrogen, etc. For inorganic chemists, hydrides refer to compounds and ions in which hydrogen is covalently attached to a less electronegative element. In such cases, the H centre has nucleophilic character, which contrasts with the protic character of acids. The hydride anion is very rarely observed.

<span class="mw-page-title-main">Silane</span> Chemical compound (SiH4)

Silane (Silicane) is an inorganic compound with chemical formula SiH4. It is a colourless, pyrophoric, toxic gas with a sharp, repulsive, pungent smell, somewhat similar to that of acetic acid. Silane is of practical interest as a precursor to elemental silicon. Silane with alkyl groups are effective water repellents for mineral surfaces such as concrete and masonry. Silanes with both organic and inorganic attachments are used as coupling agents. They are commonly used to apply coatings to surfaces or as an adhesion promoter.

<span class="mw-page-title-main">Diborane</span> Chemical compound

Diborane(6), commonly known as diborane, is the chemical compound with the formula B2H6. It is a toxic, colorless, and pyrophoric gas with a repulsively sweet odor. Given its simple formula, borane is a fundamental boron compound. It has attracted wide attention for its electronic structure. Several of its derivatives are useful reagents.

<span class="mw-page-title-main">Lithium aluminium hydride</span> Chemical compound

Lithium aluminium hydride, commonly abbreviated to LAH, is an inorganic compound with the chemical formula Li[AlH4] or LiAlH4. It is a white solid, discovered by Finholt, Bond and Schlesinger in 1947. This compound is used as a reducing agent in organic synthesis, especially for the reduction of esters, carboxylic acids, and amides. The solid is dangerously reactive toward water, releasing gaseous hydrogen (H2). Some related derivatives have been discussed for hydrogen storage.

Tin(IV) chloride, also known as tin tetrachloride or stannic chloride, is an inorganic compound with the formula SnCl4. It is a colorless hygroscopic liquid, which fumes on contact with air. It is used as a precursor to other tin compounds. It was first discovered by Andreas Libavius (1550–1616) and was known as spiritus fumans libavii.

<span class="mw-page-title-main">Organotin chemistry</span> Branch of organic chemistry

Organotin chemistry is the scientific study of the synthesis and properties of organotin compounds or stannanes, which are organometallic compounds containing tin–carbon bonds. The first organotin compound was diethyltin diiodide, discovered by Edward Frankland in 1849. The area grew rapidly in the 1900s, especially after the discovery of the Grignard reagents, which are useful for producing Sn–C bonds. The area remains rich with many applications in industry and continuing activity in the research laboratory.

<span class="mw-page-title-main">Tin(II) chloride</span> Chemical compound

Tin(II) chloride, also known as stannous chloride, is a white crystalline solid with the formula SnCl2. It forms a stable dihydrate, but aqueous solutions tend to undergo hydrolysis, particularly if hot. SnCl2 is widely used as a reducing agent (in acid solution), and in electrolytic baths for tin-plating. Tin(II) chloride should not be confused with the other chloride of tin; tin(IV) chloride or stannic chloride (SnCl4).

In inorganic chemistry, chlorosilanes are a group of reactive, chlorine-containing chemical compounds, related to silane and used in many chemical processes. Each such chemical has at least one silicon-chlorine bond. Trichlorosilane is produced on the largest scale. The parent chlorosilane is silicon tetrachloride.

<span class="mw-page-title-main">Indium(III) chloride</span> Chemical compound

Indium(III) chloride is the chemical compound with the formula InCl3 which forms a tetrahydrate. This salt is a white, flaky solid with applications in organic synthesis as a Lewis acid. It is also the most available soluble derivative of indium. This is one of three known indium chlorides.

<span class="mw-page-title-main">Plumbane</span> Chemical compound

Plumbane is an inorganic chemical compound with the chemical formula PbH4. It is a colorless gas. It is a metal hydride and group 14 hydride composed of lead and hydrogen. Plumbane is not well characterized or well known, and it is thermodynamically unstable with respect to the loss of a hydrogen atom. Derivatives of plumbane include lead tetrafluoride, PbF4, and tetraethyllead, (CH3CH2)4Pb.

<span class="mw-page-title-main">Sodium aluminium hydride</span> Chemical compound

Sodium aluminium hydride or sodium alumanuide is an inorganic compound with the chemical formula NaAlH4. It is a white pyrophoric solid that dissolves in tetrahydrofuran (THF), but not in diethyl ether or hydrocarbons. It has been evaluated as an agent for the reversible storage of hydrogen and it is used as a reagent for the chemical synthesis of organic compounds. Similar to lithium aluminium hydride, it is a salt consisting of separated sodium cations and tetrahedral AlH
4
anions.

<span class="mw-page-title-main">Silicon tetrabromide</span> Chemical compound

Silicon tetrabromide, also known as tetrabromosilane, is the inorganic compound with the formula SiBr4. This colorless liquid has a suffocating odor due to its tendency to hydrolyze with release of hydrogen bromide. The general properties of silicon tetrabromide closely resemble those of the more commonly used silicon tetrachloride.

<span class="mw-page-title-main">Tin(IV) fluoride</span> Chemical compound

Tin(IV) fluoride is a chemical compound of tin and fluorine with the chemical formula SnF4 and is a white solid with a melting point above 700 °C.

Zinc hydride is an inorganic compound with the chemical formula ZnH2. It is a white, odourless solid which slowly decomposes into its elements at room temperature; despite this it is the most stable of the binary first row transition metal hydrides. A variety of coordination compounds containing Zn–H bonds are used as reducing agents, but ZnH2 itself has no common applications.

<span class="mw-page-title-main">Polonium hydride</span> Chemical compound

Polonium hydride (also known as polonium dihydride, hydrogen polonide, or polane) is a chemical compound with the formula PoH2. It is a liquid at room temperature, the second hydrogen chalcogenide with this property after water. It is very unstable chemically and tends to decompose into elemental polonium and hydrogen. It is a volatile and very labile compound, from which many polonides can be derived. Additionally, it is radioactive.

In chemistry, redistribution usually refers to the exchange of anionic ligands bonded to metal and metalloid centers. The conversion does not involve redox, in contrast to disproportionation reactions. Some useful redistribution reactions are conducted at higher temperatures; upon cooling the mixture, the product mixture is kinetically frozen and the individual products can be separated. In cases where redistribution is rapid at mild temperatures, the reaction is less useful synthetically but still important mechanistically.

Titanium(IV) hydride is an inorganic compound with the empirical chemical formula TiH
4
. It has not yet been obtained in bulk, hence its bulk properties remain unknown. However, molecular titanium(IV) hydride has been isolated in solid gas matrices. The molecular form is a colourless gas, and very unstable toward thermal decomposition. As such the compound is not well characterised, although many of its properties have been calculated via computational chemistry.

Group 14 hydrides are chemical compounds composed of hydrogen atoms and group 14 atoms.

<span class="mw-page-title-main">Lithium tetrahydridogallate</span> Chemical compound

Lithium tetrahydridogallate is the inorganic compound with formula LiGaH4. It is a white solid similar to but less thermally robust than lithium aluminium hydride.

References

  1. 1 2 Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN   978-0-08-037941-8.