This article needs additional citations for verification .(November 2024) |
statcoulomb | |
---|---|
Unit system | Gaussian, CGS-ESU |
Unit of | electric charge |
Symbol | Fr, statC, esu |
Derivation | dyn1/2⋅cm |
Conversions | |
1 Fr in ... | ... is equal to ... |
CGS base units | 1 cm3/2⋅g1/2⋅s−1 |
SI (charge) | ≘ ~ 3.33564×10−10 C |
SI (flux) | ≘ ~ 2.65×10−11 C |
The statcoulomb (statC), franklin (Fr), or electrostatic unit of charge (esu) is the unit of measurement for electrical charge used in the centimetre–gram–second electrostatic units variant (CGS-ESU) and Gaussian systems of units. In terms of the Gaussian base units, it is
That is, it is defined so that the proportionality constant in Coulomb's law using CGS-ESU quantities is a dimensionless quantity equal to 1.
Coulomb's law in the CGS-Gaussian system takes the form where F is the force, qG
1 and qG
2 are the two electric charges, and r is the distance between the charges. This serves to define charge as a quantity in the Gaussian system.
The statcoulomb is defined such that if two electric charges of 1 statC each and have a separation of 1 cm, the force of mutual electrical repulsion is 1 dyne. [1] Substituting F = 1 dyn, qG
1 = qG
2 = 1 statC, and r = 1 cm, we get:
From this it is also evident that the quantity dimension of electric charge as defined in the CGS-ESU and Gaussian systems is M1/2L3/2T−1.
Conversion of a quantity to the corresponding quantity of the International System of Quantities (ISQ) that underlies the International System of Units (SI) by using the defining equations of each system.
The SI uses the coulomb (C) as its unit of electric charge. The conversion factor between corresponding quantities with the units coulomb and statcoulomb depends on which quantity is to be converted. The most common cases are: [2]
The symbol "≘" ('corresponds to') is used instead of "=" because the two sides cannot be equated.
The ampere, often shortened to amp, is the unit of electric current in the International System of Units (SI). One ampere is equal to 1 coulomb (C) moving past a point per second. It is named after French mathematician and physicist André-Marie Ampère (1775–1836), considered the father of electromagnetism along with Danish physicist Hans Christian Ørsted.
The centimetre–gram–second system of units is a variant of the metric system based on the centimetre as the unit of length, the gram as the unit of mass, and the second as the unit of time. All CGS mechanical units are unambiguously derived from these three base units, but there are several different ways in which the CGS system was extended to cover electromagnetism.
The gauss is a unit of measurement of magnetic induction, also known as magnetic flux density. The unit is part of the Gaussian system of units, which inherited it from the older centimetre–gram–second electromagnetic units (CGS-EMU) system. It was named after the German mathematician and physicist Carl Friedrich Gauss in 1936. One gauss is defined as one maxwell per square centimetre.
The coulomb is the unit of electric charge in the International System of Units (SI). It is defined to be equal to the electric charge delivered by a 1 ampere current in 1 second. It is used to define the elementary charge e.
Electric potential is defined as the amount of work/energy needed per unit of electric charge to move the charge from a reference point to a specific point in an electric field. More precisely, the electric potential is the energy per unit charge for a test charge that is so small that the disturbance of the field under consideration is negligible. The motion across the field is supposed to proceed with negligible acceleration, so as to avoid the test charge acquiring kinetic energy or producing radiation. By definition, the electric potential at the reference point is zero units. Typically, the reference point is earth or a point at infinity, although any point can be used.
In physics, Gauss's law, also known as Gauss's flux theorem, is one of Maxwell's equations. It is an application of the divergence theorem, and it relates the distribution of electric charge to the resulting electric field.
The statvolt is a unit of voltage and electrical potential used in the CGS-ESU and gaussian systems of units. In terms of its relation to the SI units, one statvolt corresponds to ccgs 10−8 volt, i.e. to 299.792458 volts.
The elementary charge, usually denoted by e, is a fundamental physical constant, defined as the electric charge carried by a single proton or, equivalently, the magnitude of the negative electric charge carried by a single electron, which has charge −1 e.
Gaussian units constitute a metric system of units of measurement. This system is the most common of the several electromagnetic unit systems based on the centimetre–gram–second system of units (CGS). It is also called the Gaussian unit system, Gaussian-cgs units, or often just cgs units. The term "cgs units" is ambiguous and therefore to be avoided if possible: there are several variants of CGS, which have conflicting definitions of electromagnetic quantities and units.
The debye is a CGS unit of electric dipole moment named in honour of the physicist Peter J. W. Debye. It is defined as 10−18 statcoulomb-centimetres. Historically the debye was defined as the dipole moment resulting from two charges of opposite sign but an equal magnitude of 10−10 statcoulomb, which were separated by 1 ångström. This gave a convenient unit for molecular dipole moments.
The abcoulomb or electromagnetic unit of charge is the derived physical unit of electric charge in the cgs-emu system of units. One abcoulomb is equal to ten coulombs.
The abampere (abA), also called the biot (Bi) after Jean-Baptiste Biot, is the derived electromagnetic unit of electric current in the emu-cgs system of units. One abampere corresponds to ten amperes in the SI system of units. An abampere of current in a circular path of one centimeter radius produces a magnetic field of 2π oersteds at the center of the circle.
Vacuum permittivity, commonly denoted ε0, is the value of the absolute dielectric permittivity of classical vacuum. It may also be referred to as the permittivity of free space, the electric constant, or the distributed capacitance of the vacuum. It is an ideal (baseline) physical constant. Its CODATA value is:
Heaviside–Lorentz units constitute a system of units and quantities that extends the CGS with a particular set of equations that defines electromagnetic quantities, named for Oliver Heaviside and Hendrik Antoon Lorentz. They share with the CGS-Gaussian system that the electric constant ε0 and magnetic constant µ0 do not appear in the defining equations for electromagnetism, having been incorporated implicitly into the electromagnetic quantities. Heaviside–Lorentz units may be thought of as normalizing ε0 = 1 and µ0 = 1, while at the same time revising Maxwell's equations to use the speed of light c instead.
A rayl is one of two units of specific acoustic impedance and characteristic acoustic impedance; one an MKS unit, and the other a CGS unit. These have the same dimensions as momentum per volume.
The roentgen or röntgen is a legacy unit of measurement for the exposure of X-rays and gamma rays, and is defined as the electric charge freed by such radiation in a specified volume of air divided by the mass of that air . In 1928, it was adopted as the first international measurement quantity for ionizing radiation to be defined for radiation protection, as it was then the most easily replicated method of measuring air ionization by using ion chambers. It is named after the German physicist Wilhelm Röntgen, who discovered X-rays and was awarded the first Nobel Prize in Physics for the discovery.
In particle physics and physical cosmology, Planck units are a system of units of measurement defined exclusively in terms of four universal physical constants: c, G, ħ, and kB. Expressing one of these physical constants in terms of Planck units yields a numerical value of 1. They are a system of natural units, defined using fundamental properties of nature rather than properties of a chosen prototype object. Originally proposed in 1899 by German physicist Max Planck, they are relevant in research on unified theories such as quantum gravity.
In physics, natural unit systems are measurement systems for which selected physical constants have been set to 1 through nondimensionalization of physical units. For example, the speed of light c may be set to 1, and it may then be omitted, equating mass and energy directly E = m rather than using c as a conversion factor in the typical mass–energy equivalence equation E = mc2. A purely natural system of units has all of its dimensions collapsed, such that the physical constants completely define the system of units and the relevant physical laws contain no conversion constants.
The statampere (statA) is the derived electromagnetic unit of electric current in the CGS-ESU and Gaussian systems of units.:278 One statampere corresponds to 10/ccgs ampere ≈ 3.33564×10−10 ampere in the SI system of units.