Last updated
Afterglow of the troposphere (orange), the stratosphere (blue) and the mesosphere (dark) at which atmospheric entry begins, leaving smoke trails, such as in this case of a spacecraft reentry. ISS-46 Soyuz TMA-17M reentry.jpg
Afterglow of the troposphere (orange), the stratosphere (blue) and the mesosphere (dark) at which atmospheric entry begins, leaving smoke trails, such as in this case of a spacecraft reentry.
This image shows the temperature trend in the lower stratosphere as measured by a series of satellite-based instruments between January 1979 and December 2005. The lower stratosphere is centered around 18 kilometers above Earth's surface. The stratosphere image is dominated by blues and greens, which indicates a cooling over time. Stratosphere Temperature Trend.jpg
This image shows the temperature trend in the lower stratosphere as measured by a series of satellite-based instruments between January 1979 and December 2005. The lower stratosphere is centered around 18 kilometers above Earth's surface. The stratosphere image is dominated by blues and greens, which indicates a cooling over time.
Diagram showing the five primary layers of the Earth's atmosphere: exosphere, thermosphere, mesosphere, stratosphere, and troposphere. The layers are not to scale. Atmosphere layers-en.svg
Diagram showing the five primary layers of the Earth's atmosphere: exosphere, thermosphere, mesosphere, stratosphere, and troposphere. The layers are not to scale.

The stratosphere ( /ˈstrætəˌsfɪər,-t-/ ) is the second layer of the atmosphere of Earth, located above the troposphere and below the mesosphere. [2] [3] The stratosphere is an atmospheric layer composed of stratified temperature layers, with the warm layers of air high in the sky and the cool layers of air in the low sky, close to the planetary surface of the Earth. The increase of temperature with altitude is a result of the absorption of the Sun's ultraviolet (UV) radiation by the ozone layer. [4] The temperature inversion is in contrast to the troposphere, near the Earth's surface, where temperature decreases with altitude.


Between the troposphere and stratosphere is the tropopause border that demarcates the beginning of the temperature inversion. Near the equator, the lower edge of the stratosphere is as high as 20 km (66,000 ft; 12 mi), at midlatitudes around 10 km (33,000 ft; 6.2 mi), and at the poles about 7 km (23,000 ft; 4.3 mi). [4] Temperatures range from an average of −51 °C (−60 °F; 220 K) near the tropopause to an average of −15 °C (5.0 °F; 260 K) near the mesosphere. [5] Stratospheric temperatures also vary within the stratosphere as the seasons change, reaching particularly low temperatures in the polar night (winter). [6] Winds in the stratosphere can far exceed those in the troposphere, reaching near 60 m/s (220 km/h; 130 mph) in the Southern polar vortex. [6]

Ozone layer

The mechanism describing the formation of the ozone layer was described by British mathematician Sydney Chapman in 1930, and is known as the Chapman cycle or ozone–oxygen cycle. [7] Molecular oxygen absorbs high energy sunlight in the UV-C region, at wavelengths shorter than about 240 nm. Radicals produced from the homolytically split oxygen molecules combine with molecular oxygen to form ozone. Ozone in turn is photolysed much more rapidly than molecular oxygen as it has a stronger absorption that occurs at longer wavelengths, where the solar emission is more intense. Ozone (O3) photolysis produces O and O2. The oxygen atom product combines with atmospheric molecular oxygen to reform O3, releasing heat. The rapid photolysis and reformation of ozone heat the stratosphere, resulting in a temperature inversion. This increase of temperature with altitude is characteristic of the stratosphere; its resistance to vertical mixing means that it is stratified. Within the stratosphere temperatures increase with altitude (see temperature inversion); the top of the stratosphere has a temperature of about 270 K (−3°C or 26.6°F). [8]

This vertical stratification, with warmer layers above and cooler layers below, makes the stratosphere dynamically stable: there is no regular convection and associated turbulence in this part of the atmosphere. However, exceptionally energetic convection processes, such as volcanic eruption columns and overshooting tops in severe supercell thunderstorms, may carry convection into the stratosphere on a very local and temporary basis. Overall, the attenuation of solar UV at wavelengths that damage DNA by the ozone layer allows life to exist on the surface of the planet outside of the ocean. All air entering the stratosphere must pass through the tropopause, the temperature minimum that divides the troposphere and stratosphere. The rising air is literally freeze dried; the stratosphere is a very dry place. The top of the stratosphere is called the stratopause, above which the temperature decreases with height.

Formation and destruction

Sydney Chapman gave a correct description of the source of stratospheric ozone and its ability to generate heat within the stratosphere;[ citation needed ] he also wrote that ozone may be destroyed by reacting with atomic oxygen, making two molecules of molecular oxygen. We now know that there are additional ozone loss mechanisms and that these mechanisms are catalytic meaning that a small amount of the catalyst can destroy a great number of ozone molecules. The first is due to the reaction of hydroxyl radicals (•OH) with ozone. •OH is formed by the reaction of electrically excited oxygen atoms produced by ozone photolysis, with water vapor. While the stratosphere is dry, additional water vapor is produced in situ by the photochemical oxidation of methane (CH4). The HO2 radical produced by the reaction of OH with O3 is recycled to OH by reaction with oxygen atoms or ozone. In addition, solar proton events can significantly affect ozone levels via radiolysis with the subsequent formation of OH. Nitrous oxide (N2O) is produced by biological activity at the surface and is oxidised to NO in the stratosphere; the so-called NOx radical cycles also deplete stratospheric ozone. Finally, chlorofluorocarbon molecules are photolysed in the stratosphere releasing chlorine atoms that react with ozone giving ClO and O2. The chlorine atoms are recycled when ClO reacts with O in the upper stratosphere, or when ClO reacts with itself in the chemistry of the Antarctic ozone hole.

Paul J. Crutzen, Mario J. Molina and F. Sherwood Rowland were awarded the Nobel Prize in Chemistry in 1995 for their work describing the formation and decomposition of stratospheric ozone. [9]

Aircraft flight

Aircraft typically cruise at the stratosphere to avoid turbulence rampant in the troposphere. The blue beam in this image is the ozone layer, beaming further to the mesosphere. The ozone heats the stratosphere, making conditions stable. The stratosphere is also the altitude limit of jets and weather balloons, as air is roughly a thousand times thinner there than at the troposphere. Boeing 737 view 1.jpg
Aircraft typically cruise at the stratosphere to avoid turbulence rampant in the troposphere. The blue beam in this image is the ozone layer, beaming further to the mesosphere. The ozone heats the stratosphere, making conditions stable. The stratosphere is also the altitude limit of jets and weather balloons, as air is roughly a thousand times thinner there than at the troposphere.

Commercial airliners typically cruise at altitudes of 9–12 km (30,000–39,000 ft) which is in the lower reaches of the stratosphere in temperate latitudes. [11] This optimizes fuel efficiency, mostly due to the low temperatures encountered near the tropopause and low air density, reducing parasitic drag on the airframe. Stated another way, it allows the airliner to fly faster while maintaining lift equal to the weight of the plane. (The fuel consumption depends on the drag, which is related to the lift by the lift-to-drag ratio.) It also allows the airplane to stay above the turbulent weather of the troposphere.

The Concorde aircraft cruised at Mach 2 at about 60,000 ft (18 km), and the SR-71 cruised at Mach 3 at 85,000 ft (26 km), all within the stratosphere.

Because the temperature in the tropopause and lower stratosphere is largely constant with increasing altitude, very little convection and its resultant turbulence occurs there. Most turbulence at this altitude is caused by variations in the jet stream and other local wind shears, although areas of significant convective activity (thunderstorms) in the troposphere below may produce turbulence as a result of convective overshoot.

On October 24, 2014, Alan Eustace became the record holder for reaching the altitude record for a manned balloon at 135,890 ft (41,419 m). [12] Eustace also broke the world records for vertical speed skydiving, reached with a peak velocity of 1,321 km/h (822 mph) and total freefall distance of 123,414 ft (37,617 m) – lasting four minutes and 27 seconds. [13]

Circulation and mixing

The stratosphere is a region of intense interactions among radiative, dynamical, and chemical processes, in which the horizontal mixing of gaseous components proceeds much more rapidly than does vertical mixing. The overall circulation of the stratosphere is termed as Brewer-Dobson circulation, which is a single-celled circulation, spanning from the tropics up to the poles, consisting of the tropical upwelling of air from the tropical troposphere and the extra-tropical downwelling of air. Stratospheric circulation is a predominantly wave-driven circulation in that the tropical upwelling is induced by the wave force by the westward propagating Rossby waves, in a phenomenon called Rossby-wave pumping.

An interesting feature of stratospheric circulation is the quasi-biennial oscillation (QBO) in the tropical latitudes, which is driven by gravity waves that are convectively generated in the troposphere. The QBO induces a secondary circulation that is important for the global stratospheric transport of tracers, such as ozone [14] or water vapor.

Another large-scale feature that significantly influences stratospheric circulation is the breaking planetary waves [15] resulting in intense quasi-horizontal mixing in the midlatitudes. This breaking is much more pronounced in the winter hemisphere where this region is called the surf zone. This breaking is caused due to a highly non-linear interaction between the vertically propagating planetary waves and the isolated high potential vorticity region known as the polar vortex. The resultant breaking causes large-scale mixing of air and other trace gases throughout the midlatitude surf zone. The timescale of this rapid mixing is much smaller than the much slower timescales of upwelling in the tropics and downwelling in the extratropics.

During northern hemispheric winters, sudden stratospheric warmings, caused by the absorption of Rossby waves in the stratosphere, can be observed in approximately half of winters when easterly winds develop in the stratosphere. These events often precede unusual winter weather [16] and may even be responsible for the cold European winters of the 1960s. [17]

Stratospheric warming of the polar vortex results in its weakening. [18] When the vortex is strong, it keeps the cold, high-pressure air masses contained in the Arctic; when the vortex weakens, air masses move equatorward, and results in rapid changes of weather in the mid latitudes.



Bacterial life survives in the stratosphere, making it a part of the biosphere. [19] In 2001, dust was collected at a height of 41 kilometres in a high-altitude balloon experiment and was found to contain bacterial material when examined later in the laboratory. [20]


Some bird species have been reported to fly at the upper levels of the troposphere. On November 29, 1973, a Rüppell's vulture (Gyps rueppelli) was ingested into a jet engine 11,278 m (37,000 ft) above the Ivory Coast. [21] Bar-headed geese (Anser indicus) sometimes migrate over Mount Everest, whose summit is 8,848 m (29,029 ft). [22] [23]


Lightning extending above the troposphere into the stratosphere as blue jet and reaching into the mesosphere as red sprite. Gigantic jet NOIRLab.jpg
Lightning extending above the troposphere into the stratosphere as blue jet and reaching into the mesosphere as red sprite.

In 1902, Léon Teisserenc de Bort from France and Richard Assmann from Germany, in separate but coordinated publications and following years of observations, published the discovery of an isothermal layer at around 11–14 km (6.8-8.7 mi), which is the base of the lower stratosphere. This was based on temperature profiles from mostly unmanned and a few manned instrumented balloons. [24]

See also

Related Research Articles

<span class="mw-page-title-main">Jet stream</span> Fast-flowing atmospheric air current

Jet streams are fast flowing, narrow, meandering air currents in the atmospheres of the Earth, Venus, Jupiter, Saturn, Uranus, and Neptune. On Earth, the main jet streams are located near the altitude of the tropopause and are westerly winds. Jet streams may start, stop, split into two or more parts, combine into one stream, or flow in various directions including opposite to the direction of the remainder of the jet.

<span class="mw-page-title-main">Ozone layer</span> Region of the stratosphere

The ozone layer or ozone shield is a region of Earth's stratosphere that absorbs most of the Sun's ultraviolet radiation. It contains a high concentration of ozone (O3) in relation to other parts of the atmosphere, although still small in relation to other gases in the stratosphere. The ozone layer contains less than 10 parts per million of ozone, while the average ozone concentration in Earth's atmosphere as a whole is about 0.3 parts per million. The ozone layer is mainly found in the lower portion of the stratosphere, from approximately 15 to 35 kilometers (9 to 22 mi) above Earth, although its thickness varies seasonally and geographically.

<span class="mw-page-title-main">Troposphere</span> Lowest layer of Earths atmosphere

The troposphere is the lowest layer of the atmosphere of Earth. It contains 75% of the total mass of the planetary atmosphere and 99% of the total mass of water vapor and aerosols, and is where most weather phenomena occur. From the planetary surface of the Earth, the average height of the troposphere is 18 km in the tropics; 17 km in the middle latitudes; and 6 km in the high latitudes of the polar regions in winter; thus the average height of the troposphere is 13 km.

<span class="mw-page-title-main">Ozone depletion</span> Atmospheric phenomenon

Ozone depletion consists of two related events observed since the late 1970s: a steady lowering of about four percent in the total amount of ozone in Earth's atmosphere, and a much larger springtime decrease in stratospheric ozone around Earth's polar regions. The latter phenomenon is referred to as the ozone hole. There are also springtime polar tropospheric ozone depletion events in addition to these stratospheric events.

<span class="mw-page-title-main">Mesosphere</span> Layer of the atmosphere directly above the stratosphere and below the thermosphere

The mesosphere is the third layer of the atmosphere, directly above the stratosphere and directly below the thermosphere. In the mesosphere, temperature decreases as altitude increases. This characteristic is used to define limits: it begins at the top of the stratosphere, and ends at the mesopause, which is the coldest part of Earth's atmosphere, with temperatures below −143 °C. The exact upper and lower boundaries of the mesosphere vary with latitude and with season, but the lower boundary is usually located at altitudes from 47 to 51 km above sea level, and the upper boundary is usually from 85 to 100 km.

<span class="mw-page-title-main">Thermosphere</span> Layer of the Earths atmosphere above the mesosphere and below the exosphere

The thermosphere is the layer in the Earth's atmosphere directly above the mesosphere and below the exosphere. Within this layer of the atmosphere, ultraviolet radiation causes photoionization/photodissociation of molecules, creating ions; the thermosphere thus constitutes the larger part of the ionosphere. Taking its name from the Greek θερμός meaning heat, the thermosphere begins at about 80 km (50 mi) above sea level. At these high altitudes, the residual atmospheric gases sort into strata according to molecular mass. Thermospheric temperatures increase with altitude due to absorption of highly energetic solar radiation. Temperatures are highly dependent on solar activity, and can rise to 2,000 °C (3,630 °F) or more. Radiation causes the atmospheric particles in this layer to become electrically charged, enabling radio waves to be refracted and thus be received beyond the horizon. In the exosphere, beginning at about 600 km (375 mi) above sea level, the atmosphere turns into space, although, by the judging criteria set for the definition of the Kármán line (100 km), most of the thermosphere is part of space. The border between the thermosphere and exosphere is known as the thermopause.

<span class="mw-page-title-main">Inversion (meteorology)</span> Deviation from the normal change of an atmospheric property with altitude

In meteorology, an inversion is a deviation from the normal change of an atmospheric property with altitude. It almost always refers to an inversion of the air temperature lapse rate, in which case it is called a temperature inversion. Normally, air temperature decreases with an increase in altitude, but during an inversion warmer air is held above cooler air.

<span class="mw-page-title-main">Tropopause</span> The boundary of the atmosphere between the troposphere and stratosphere

The tropopause is the atmospheric boundary that demarcates the troposphere from the stratosphere, which are the lowest two of the five layers of the atmosphere of Earth. The tropopause is a thermodynamic gradient-stratification layer, that marks the end of the troposphere, and is approximately 17 kilometres (11 mi) above the equatorial regions, and approximately 9 kilometres (5.6 mi) above the polar regions.

A sudden stratospheric warming (SSW) is an event in which polar stratospheric temperatures rise by several tens of kelvins over the course of a few days. The warming is preceded by a slowing then reversal of the westerly winds in the stratospheric polar vortex. SSWs occur about six times per decade in the northern hemisphere, and about once every 20-30 years in the southern hemisphere. Only two southern SSWs have been observed.

<span class="mw-page-title-main">Atmosphere of Earth</span> Gas layer surrounding Earth

The atmosphere of Earth is the layer of gases, known collectively as air, retained by Earth's gravity that surrounds the planet and forms its planetary atmosphere. The atmosphere of Earth creates pressure, absorbs most meteoroids and ultraviolet solar radiation, warms the surface through heat retention, allowing life and liquid water to exist on the Earth's surface, and reduces temperature extremes between day and night.

<span class="mw-page-title-main">Ground-level ozone</span> Constituent gas of the troposphere

Ground-level ozone (O3), also known as surface-level ozone and tropospheric ozone, is a trace gas in the troposphere (the lowest level of the Earth's atmosphere), with an average concentration of 20–30 parts per billion by volume (ppbv), with close to 100 ppbv in polluted areas. Ozone is also an important constituent of the stratosphere, where the ozone layer (2 to 8 parts per million ozone) exists which is located between 10 and 50 kilometers above the Earth's surface. The troposphere extends from the ground up to a variable height of approximately 14 kilometers above sea level. Ozone is least concentrated in the ground layer (or planetary boundary layer) of the troposphere. Ground-level or tropospheric ozone is created by chemical reactions between NOx gases (oxides of nitrogen produced by combustion) and volatile organic compounds (VOCs). The combination of these chemicals in the presence of sunlight form ozone. Its concentration increases as height above sea level increases, with a maximum concentration at the tropopause. About 90% of total ozone in the atmosphere is in the stratosphere, and 10% is in the troposphere. Although tropospheric ozone is less concentrated than stratospheric ozone, it is of concern because of its health effects. Ozone in the troposphere is considered a greenhouse gas, and may contribute to global warming.

<span class="mw-page-title-main">Ozone–oxygen cycle</span> Biogeochemical cycle

The ozone–oxygen cycle is the process by which ozone is continually regenerated in Earth's stratosphere, converting ultraviolet radiation (UV) into heat. In 1930 Sydney Chapman resolved the chemistry involved. The process is commonly called the Chapman cycle by atmospheric scientists.

<span class="mw-page-title-main">Polar vortex</span> Persistent cold-core low-pressure area that circles one of the poles

A circumpolar vortex, or simply polar vortex, is a large region of cold, rotating air that encircles both of Earth's polar regions. Polar vortices also exist on other rotating, low-obliquity planetary bodies. The term polar vortex can be used to describe two distinct phenomena; the stratospheric polar vortex, and the tropospheric polar vortex. The stratospheric and tropospheric polar vortices both rotate in the direction of the Earth's spin, but they are distinct phenomena that have different sizes, structures, seasonal cycles, and impacts on weather.

<span class="mw-page-title-main">Index of meteorology articles</span>

This is a list of meteorology topics. The terms relate to meteorology, the interdisciplinary scientific study of the atmosphere that focuses on weather processes and forecasting.

In meteorology, clear-air turbulence (CAT) is the turbulent movement of air masses in the absence of any visual clues, such as clouds, and is caused when bodies of air moving at widely different speeds meet.

The homosphere is the layer of an atmosphere where the bulk gases are homogeneously mixed due to turbulent mixing or eddy diffusion. The bulk composition of the air is mostly uniform so the concentrations of molecules are the same throughout the homosphere. The top of the homosphere is called the homopause, also known as the turbopause. Above the homopause is the heterosphere, where diffusion is faster than mixing, and heavy gases decrease in density with altitude more rapidly than lighter gases.

<span class="mw-page-title-main">Atmospheric chemistry observational databases</span> Aspect of atmospheric sciences

Over the last two centuries many environmental chemical observations have been made from a variety of ground-based, airborne, and orbital platforms and deposited in databases. Many of these databases are publicly available. All of the instruments mentioned in this article give online public access to their data. These observations are critical in developing our understanding of the Earth's atmosphere and issues such as climate change, ozone depletion and air quality. Some of the external links provide repositories of many of these datasets in one place. For example, the Cambridge Atmospheric Chemical Database, is a large database in a uniform ASCII format. Each observation is augmented with the meteorological conditions such as the temperature, potential temperature, geopotential height, and equivalent PV latitude.

<span class="mw-page-title-main">Tropospheric ozone depletion events</span>

Tropospheric ozone depletion events are phenomena that reduce the concentration of ozone in the earth's troposphere. Ozone (O3) is a trace gas which has been of concern because of its unique dual role in different layers of the lower atmosphere. Apart from absorbing UV-B radiation and converting solar energy into heat in the stratosphere, ozone in the troposphere provides greenhouse effect and controls the oxidation capacity of the atmosphere.

<span class="mw-page-title-main">Atmospheric temperature</span> Physical quantity that expresses hot and cold in the atmosphere

Atmospheric temperature is a measure of temperature at different levels of the Earth's atmosphere. It is governed by many factors, including incoming solar radiation, humidity and altitude. When discussing surface air temperature, the annual atmospheric temperature range at any geographical location depends largely upon the type of biome, as measured by the Köppen climate classification

<span class="mw-page-title-main">Glossary of meteorology</span> List of definitions of terms and concepts commonly used in meteorology

This glossary of meteorology is a list of terms and concepts relevant to meteorology and atmospheric science, their sub-disciplines, and related fields.


  1. "Atmospheric Temperature Trends, 1979–2005". NASA/Earth Observatory. 6 July 2007. Archived from the original on 5 September 2015. Retrieved 24 August 2015.
  2. Jones, Daniel (2003) [1917], Peter Roach; James Hartmann; Jane Setter (eds.), English Pronouncing Dictionary, Cambridge: Cambridge University Press, ISBN   978-3-12-539683-8
  3. "Stratosphere". Merriam-Webster Dictionary .
  4. 1 2 "The Stratosphere - overview". University Corporation for Atmospheric Research. Retrieved 25 July 2018.
  5. "NWS JetStream - Layers of the Atmosphere".
  6. 1 2 "Nasa Ozone Watch: Polar vortex facts".
  7. "CHAPTER 10. STRATOSPHERIC OZONE". Archived from the original on 2019-09-30. Retrieved 2020-10-20.
  8. Seinfeld, J. H., and S. N.(2006), Atmospheric Chemistry and Physics: From Air Pollution to Climate Change 2nd ed, Wiley, New Jersey
  9. "The Nobel Prize in Chemistry 1995". Retrieved 2020-07-21.
  10. "The Stratosphere - overview | UCAR Center for Science Education". National Center for Science Education . Retrieved 2021-02-06.
  11. Cheng, Daniel (2003). Elert, Glenn (ed.). "Altitude of a commercial jet airplane". The Physics Factbook. Retrieved 2022-01-21.
  12. Markoff, John (2014-10-24). "Parachutist's Record Fall: Over 25 Miles in 15 Minutes (Published 2014)". The New York Times. ISSN   0362-4331 . Retrieved 2020-10-20.
  13. "Google's Alan Eustace beats Baumgartner's skydiving record". BBC News. 2014-10-24. Archived from the original on 2014-10-25.
  14. N.Butchart, A.A. Scaife, J. Austin, S.H.E. Hare, J.R. Knight. Quasi-biennial oscillation in ozone in a coupled chemistry-climate model Archived 2014-05-18 at the Wayback Machine , Journal of Geophysical Research.
  15. M.E. McIntyre, T.N. Palmer. Breaking planetary waves in the stratosphere Archived 2017-03-17 at the Wayback Machine , Nature.
  16. M.P. Baldwin and T.J. Dunkerton. 'Stratospheric Harbingers of Anomalous Weather Regimes Archived 2014-01-12 at the Wayback Machine , Science Magazine.
  17. A.A. Scaife, J.R. Knight, G.K. Vallis, C.K. Folland. A stratospheric influence on the winter NAO and North Atlantic surface climate Archived 2014-05-18 at the Wayback Machine , Geophysical Research Letters.
  18. "How Sudden Stratospheric Warming Affects the Whole Atmosphere". Eos. 20 March 2018. Retrieved 2020-07-21.
  19. DasSarma, Priya; DasSarma, Shiladitya (2018). "Survival of microbes in Earth's stratosphere". Current Opinion in Microbiology. 43: 24–30. doi:10.1016/j.mib.2017.11.002. ISSN   1369-5274. PMID   29156444. S2CID   19041112.
  20. Michael Mark Woolfson (2013). Time, Space, Stars & Man: The Story of the Big Bang. World Scientific. p. 388. ISBN   978-1-84816-933-3.
  21. Laybourne, Roxie C. (December 1974). "Collision between a Vulture and an Aircraft at an Altitude of 37,000 Feet" (PDF). The Wilson Bulletin. 86 (4): 461–462. ISSN   0043-5643. JSTOR   4160546. OCLC   46381512. Archived (PDF) from the original on 2014-02-22.
  22. "Audubon: Birds". Archived from the original on 2011-09-14. Retrieved 2011-11-08.
  23. Thomas Alerstam; David A. Christie; Astrid Ulfstrand (1993). Bird Migration. Cambridge University Press. p. 276. ISBN   978-0-521-44822-2.
  24. Steinhagen, Hans (2005), Der Wettermann - Leben und Werk Richard Aßmanns, Neuenhagen, Germany: Findling, ISBN   978-3-933603-33-3