Subject Alternative Name

Last updated
An example of a Subject Alternative Name section for domain names owned by the Wikimedia Foundation Subject Alt Names on Firefox 90 screenshot.png
An example of a Subject Alternative Name section for domain names owned by the Wikimedia Foundation

Subject Alternative Name (SAN) is an extension to X.509 that allows various values to be associated with a security certificate using a subjectAltName field. [1] These values are called Subject Alternative Names (SANs). Names include: [2]

RFC   2818 (May 2000) specifies Subject Alternative Names as the preferred method of adding DNS names to certificates, deprecating the previous method of putting DNS names in the commonName field. [3] Google Chrome version 58 (March 2017) removed support for checking the commonName field at all, instead only looking at the SANs. [3]

See also

Related Research Articles

The Domain Name System (DNS) is a hierarchical and distributed naming system for computers, services, and other resources in the Internet or other Internet Protocol (IP) networks. It associates various information with domain names assigned to each of the associated entities. Most prominently, it translates readily memorized domain names to the numerical IP addresses needed for locating and identifying computer services and devices with the underlying network protocols. The Domain Name System has been an essential component of the functionality of the Internet since 1985.

<span class="mw-page-title-main">IPv6</span> Version 6 of the Internet Protocol

Internet Protocol version 6 (IPv6) is the most recent version of the Internet Protocol (IP), the communications protocol that provides an identification and location system for computers on networks and routes traffic across the Internet. IPv6 was developed by the Internet Engineering Task Force (IETF) to deal with the long-anticipated problem of IPv4 address exhaustion, and is intended to replace IPv4. In December 1998, IPv6 became a Draft Standard for the IETF, which subsequently ratified it as an Internet Standard on 14 July 2017.

X.500 is a series of computer networking standards covering electronic directory services. The X.500 series was developed by the Telecommunication Standardization Sector of the International Telecommunication Union (ITU-T). ITU-T was formerly known as the Consultative Committee for International Telephony and Telegraphy (CCITT). X.500 was first approved in 1988. The directory services were developed to support requirements of X.400 electronic mail exchange and name lookup. The International Organization for Standardization (ISO) and International Electrotechnical Commission (IEC) were partners in developing the standards, incorporating them into the Open Systems Interconnection suite of protocols. ISO/IEC 9594 is the corresponding ISO/IEC identification.

A mail exchanger record specifies the mail server responsible for accepting email messages on behalf of a domain name. It is a resource record in the Domain Name System (DNS). It is possible to configure several MX records, typically pointing to an array of mail servers for load balancing and redundancy.

Transport Layer Security (TLS) is a cryptographic protocol designed to provide communications security over a computer network. The protocol is widely used in applications such as email, instant messaging, and voice over IP, but its use in securing HTTPS remains the most publicly visible.

In cryptography, a public key certificate, also known as a digital certificate or identity certificate, is an electronic document used to prove the validity of a public key. The certificate includes information about the key, information about the identity of its owner, and the digital signature of an entity that has verified the certificate's contents. If the signature is valid, and the software examining the certificate trusts the issuer, then it can use that key to communicate securely with the certificate's subject. In email encryption, code signing, and e-signature systems, a certificate's subject is typically a person or organization. However, in Transport Layer Security (TLS) a certificate's subject is typically a computer or other device, though TLS certificates may identify organizations or individuals in addition to their core role in identifying devices. TLS, sometimes called by its older name Secure Sockets Layer (SSL), is notable for being a part of HTTPS, a protocol for securely browsing the web.

In cryptography, X.509 is an International Telecommunication Union (ITU) standard defining the format of public key certificates. X.509 certificates are used in many Internet protocols, including TLS/SSL, which is the basis for HTTPS, the secure protocol for browsing the web. They are also used in offline applications, like electronic signatures.

The Domain Name System Security Extensions (DNSSEC) are a suite of extension specifications by the Internet Engineering Task Force (IETF) for securing data exchanged in the Domain Name System (DNS) in Internet Protocol (IP) networks. The protocol provides cryptographic authentication of data, authenticated denial of existence, and data integrity, but not availability or confidentiality.

The Online Certificate Status Protocol (OCSP) is an Internet protocol used for obtaining the revocation status of an X.509 digital certificate. It is described in RFC 6960 and is on the Internet standards track. It was created as an alternative to certificate revocation lists (CRL), specifically addressing certain problems associated with using CRLs in a public key infrastructure (PKI). Messages communicated via OCSP are encoded in ASN.1 and are usually communicated over HTTP. The "request/response" nature of these messages leads to OCSP servers being termed OCSP responders.

An IPv6 transition mechanism is a technology that facilitates the transitioning of the Internet from the Internet Protocol version 4 (IPv4) infrastructure in use since 1983 to the successor addressing and routing system of Internet Protocol Version 6 (IPv6). As IPv4 and IPv6 networks are not directly interoperable, transition technologies are designed to permit hosts on either network type to communicate with any other host.

The Online Certificate Status Protocol (OCSP) stapling, formally known as the TLS Certificate Status Request extension, is a standard for checking the revocation status of X.509 digital certificates. It allows the presenter of a certificate to bear the resource cost involved in providing Online Certificate Status Protocol (OCSP) responses by appending ("stapling") a time-stamped OCSP response signed by the CA to the initial TLS handshake, eliminating the need for clients to contact the CA, with the aim of improving both security and performance.

PKI Resource Query Protocol (PRQP) is an Internet protocol used for obtaining information about services associated with an X.509 Certificate Authority. It is described by RFC 7030 published on October 23, 2013. PRQP aims to improve Interoperability and Usabilities issues among PKIs, helping finding services and data repositories associated with a CA. Messages communicated via PRQP are encoded in ASN.1 and are usually communicated over HTTP.

<span class="mw-page-title-main">Web typography</span> Publishing considerations for the Web

Web typography is the use of fonts on the World Wide Web. When HTML was first created, font faces and styles were controlled exclusively by the settings of each web browser. There was no mechanism for individual Web pages to control font display until Netscape introduced the font element in 1995, which was then standardized in the HTML 3.2 specification. However, the font specified by the font element had to be installed on the user's computer or a fallback font, such as a browser's default sans-serif or monospace font, would be used. The first Cascading Style Sheets specification was published in 1996 and provided the same capabilities.

<span class="mw-page-title-main">IPv6 address</span> Label to identify a network interface of a computer or other network node

An Internet Protocol Version 6 address is a numeric label that is used to identify and locate a network interface of a computer or a network node participating in a computer network using IPv6. IP addresses are included in the packet header to indicate the source and the destination of each packet. The IP address of the destination is used to make decisions about routing IP packets to other networks.

<span class="mw-page-title-main">Wildcard certificate</span> Public key certificate which can be used with multiple subdomain of a domain

In computer networking, a wildcard certificate is a public key certificate which can be used with multiple sub-domains of a domain. The principal use is for securing web sites with HTTPS, but there are also applications in many other fields. Compared with conventional certificates, a wildcard certificate can be cheaper and more convenient than a certificate for each sub-domain. Multi-domain wildcard certificates further simplify the complexity and reduce costs by securing multiple domains and their sub-domains.

DNS-based Authentication of Named Entities (DANE) is an Internet security protocol to allow X.509 digital certificates, commonly used for Transport Layer Security (TLS), to be bound to domain names using Domain Name System Security Extensions (DNSSEC).

HTTP Public Key Pinning (HPKP) is an obsolete Internet security mechanism delivered via an HTTP header which allows HTTPS websites to resist impersonation by attackers using misissued or otherwise fraudulent digital certificates. A server uses it to deliver to the client a set of hashes of public keys that must appear in the certificate chain of future connections to the same domain name.

DNS Certification Authority Authorization (CAA) is an Internet security policy mechanism that allows domain name holders to indicate to certificate authorities whether they are authorized to issue digital certificates for a particular domain name. It does this by means of a new "CAA" Domain Name System (DNS) resource record.

References

  1. "x509v3_config - X509 V3 certificate extension configuration format". OpenSSL . Retrieved 2020-01-16.
  2. RFC   5280: 4.2.1.6. Subject Alternative Name
  3. 1 2 Medley, Joseph (March 2017). "Deprecations and Removals in Chrome 58". Google Developers. Retrieved 2022-01-04.