Super high frequency

Last updated
Super high frequency
Frequency range
3 to 30 GHz
Wavelength range
1 dm to 1 cm
Related bands

Super high frequency (SHF) is the ITU designation for radio frequencies (RF) in the range between 3 and 30  gigahertz (GHz). This band of frequencies is also known as the centimetre band or centimetre wave as the wavelengths range from one to ten centimetres. These frequencies fall within the microwave band, so radio waves with these frequencies are called microwaves. The small wavelength of microwaves allows them to be directed in narrow beams by aperture antennas such as parabolic dishes and horn antennas, so they are used for point-to-point communication and data links [1] and for radar. This frequency range is used for most radar transmitters, wireless LANs, satellite communication, microwave radio relay links, and numerous short range terrestrial data links. They are also used for heating in industrial microwave heating, medical diathermy, microwave hyperthermy to treat cancer, and to cook food in microwave ovens.

International Telecommunication Union Specialised agency of the United Nations

The International Telecommunication Union, originally the International Telegraph Union, is a specialized agency of the United Nations (UN) that is responsible for issues that concern information and communication technologies. It is the oldest among all the 15 specialised agencies of UN.

Radio frequency (RF) is the oscillation rate of an alternating electric current or voltage or of a magnetic, electric or electromagnetic field or mechanical system in the frequency range from around twenty thousand times per second to around three hundred billion times per second. This is roughly between the upper limit of audio frequencies and the lower limit of infrared frequencies; these are the frequencies at which energy from an oscillating current can radiate off a conductor into space as radio waves. Different sources specify different upper and lower bounds for the frequency range.

Wavelength spatial period of the wave—the distance over which the waves shape repeats, and thus the inverse of the spatial frequency

In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats. It is thus the inverse of the spatial frequency. Wavelength is usually determined by considering the distance between consecutive corresponding points of the same phase, such as crests, troughs, or zero crossings and is a characteristic of both traveling waves and standing waves, as well as other spatial wave patterns. Wavelength is commonly designated by the Greek letter lambda (λ). The term wavelength is also sometimes applied to modulated waves, and to the sinusoidal envelopes of modulated waves or waves formed by interference of several sinusoids.


Frequencies in the SHF range are often referred to by their IEEE radar band designations: S, C, X, Ku, K, or Ka band, or by similar NATO or EU designations.

The S band is a designation by the Institute of Electrical and Electronics Engineers (IEEE) for a part of the microwave band of the electromagnetic spectrum covering frequencies from 2 to 4 gigahertz (GHz). Thus it crosses the conventional boundary between the UHF and SHF bands at 3.0 GHz. The S band is used by airport surveillance radar for air traffic control, weather radar, surface ship radar, and some communications satellites, especially those used by NASA to communicate with the Space Shuttle and the International Space Station. The 10 cm radar short-band ranges roughly from 1.55 to 5.2 GHz. The S band also contains the 2.4–2.483 GHz ISM band, widely used for low power unlicensed microwave devices such as cordless phones, wireless headphones (Bluetooth), wireless networking (WiFi), garage door openers, keyless vehicle locks, baby monitors as well as for medical diathermy machines and microwave ovens. India’s regional satellite navigation network (IRNSS) broadcasts on 2.483778 to 2.500278 GHz.

C band (IEEE) 4-8GHz

The C band is a designation by the Institute of Electrical and Electronics Engineers (IEEE) for a portion of the electromagnetic spectrum in the microwave range of frequencies ranging from 4.0 to 8.0 gigahertz (GHz); however, this definition is the one used by radar manufacturers and users, not necessarily by microwave radio telecommunications users. The C band is used for many satellite communications transmissions, some Wi-Fi devices, some cordless telephones as well as some surveillance and weather radar systems.

The X band is the designation for a band of frequencies in the microwave radio region of the electromagnetic spectrum. In some cases, such as in communication engineering, the frequency range of the X band is rather indefinitely set at approximately 7.0 to 11.2 GHz. In radar engineering, the frequency range is specified by the IEEE at 8.0 to 12.0 GHz. The X band is used for radar, satellite communication, and wireless computer networks.


A variety of parabolic antennas on a communications tower in Australia for point-to-point microwave communication links. Some have white plastic radomes over their apertures to protect against rain. Parabolic antennas.JPG
A variety of parabolic antennas on a communications tower in Australia for point-to-point microwave communication links. Some have white plastic radomes over their apertures to protect against rain.
X-band (8 - 12 GHz) marine radar antenna on a ship. The rotating bar sweeps a vertical fan-shaped beam of microwaves around the water surface to the horizon, detecting nearby ships and other obstructions Radar antennas on USS Theodore Roosevelt SPS-64.jpg
X-band (8 - 12 GHz) marine radar antenna on a ship. The rotating bar sweeps a vertical fan-shaped beam of microwaves around the water surface to the horizon, detecting nearby ships and other obstructions

Microwaves propagate solely by line of sight; because of the small refraction due to their short wavelength, the groundwave and ionospheric reflection (skywave or "skip" propagation) seen with lower frequency radio waves do not occur. [2] Although in some cases they can penetrate building walls enough for useful reception, unobstructed rights of way cleared to the first Fresnel zone are usually required. Wavelengths are small enough at microwave frequencies that the antenna can be much larger than a wavelength, allowing highly directional (high gain) antennas to be built which can produce narrow beams. Therefore, they are used in point-to-point terrestrial communications links, limited by the visual horizon to 30–40 miles (48–64 km). Such high gain antennas allow frequency reuse by nearby transmitters. The wavelength of SHF waves allows strong reflections from metal objects the size of automobiles, aircraft, and ships, and other vehicles. Thus, the narrow beamwidths possible with high gain antennas and the low atmospheric attenuation as compared with higher frequencies make SHF the main frequencies used in radar. Attenuation and scattering by moisture in the atmosphere increase with frequency, limiting the use of high SHF frequencies for long range applications.

Microwave form of electromagnetic radiation

Microwaves are a form of electromagnetic radiation with wavelengths ranging from about one meter to one millimeter; with frequencies between 300 MHz (1 m) and 300 GHz (1 mm). Different sources define different frequency ranges as microwaves; the above broad definition includes both UHF and EHF bands. A more common definition in radio engineering is the range between 1 and 100 GHz. In all cases, microwaves include the entire SHF band at minimum. Frequencies in the microwave range are often referred to by their IEEE radar band designations: S, C, X, Ku, K, or Ka band, or by similar NATO or EU designations.

Line-of-sight propagation characteristic of electromagnetic radiation or acoustic wave propagation which means waves which travel in a direct path from the source to the receiver

Line-of-sight propagation is a characteristic of electromagnetic radiation or acoustic wave propagation which means waves travel in a direct path from the source to the receiver. Electromagnetic transmission includes light emissions traveling in a straight line. The rays or waves may be diffracted, refracted, reflected, or absorbed by the atmosphere and obstructions with material and generally cannot travel over the horizon or behind obstacles.

Refraction refraction of light

In physics refraction is the change in direction of a wave passing from one medium to another or from a gradual change in the medium. Refraction of light is the most commonly observed phenomenon, but other waves such as sound waves and water waves also experience refraction. How much a wave is refracted is determined by the change in wave speed and the initial direction of wave propagation relative to the direction of change in speed.

Small amounts of microwave energy are randomly scattered by water vapor molecules in the troposphere. This is used in troposcatter communications systems, operating at a few GHz, to communicate beyond the horizon. A powerful microwave beam is aimed just above the horizon; as it passes through the tropopause some of the microwaves are scattered back to Earth to a receiver beyond the horizon. Distances of 300 km can be achieved. These are mainly used for military communication.

Troposphere The lowest layer of the atmosphere

The troposphere is the lowest layer of Earth's atmosphere, and is also where nearly all weather conditions take place. It contains approximately 75% of the atmosphere's mass and 99% of the total mass of water vapor and aerosols. The average height of the troposphere is 18 km in the tropics, 17 km in the middle latitudes, and 6 km in the polar regions in winter. The total average height of the troposphere is 13 km.

The tropopause is the boundary in the Earth's atmosphere between the troposphere and the stratosphere. It is a thermodynamic gradient stratification layer, marking the end of troposphere. It lies, on average, at 17 kilometres (11 mi) above equatorial regions, and above 9 kilometres (5.6 mi) over the polar regions.


Microwaves are often carried by waveguide, such as this example from an air traffic control radar, since other types of cable have large power losses at SHF frequencies. Diplexer1.jpg
Microwaves are often carried by waveguide, such as this example from an air traffic control radar, since other types of cable have large power losses at SHF frequencies.

The wavelengths of SHF waves are small enough that they can be focused into narrow beams by high gain antennas from a half meter to five meters in diameter. Directive antennas at SHF frequencies are mostly aperture antennas, such as parabolic antennas (the most common type), dielectric lens, slot and horn antennas. Large parabolic antennas can produce very narrow beams of a few degrees or less, and often must be aimed with the aid of a boresight. For omnidirectional applications like wireless devices and cellphones, small dipoles or monopoles are used. The patch antenna is another type, often integrated into the skin of aircraft. Another type of antenna practical at microwave frequencies is the phased array, consisting of many dipoles or patch antennas on a flat surface, each fed through a phase shifter, which allows the array's beam to be steered electronically. The short wavelength requires great mechanical rigidity in large antennas, to ensure that the radio waves arrive at the feed point in phase.

Parabolic antenna type of antenna

A parabolic antenna is an antenna that uses a parabolic reflector, a curved surface with the cross-sectional shape of a parabola, to direct the radio waves. The most common form is shaped like a dish and is popularly called a dish antenna or parabolic dish. The main advantage of a parabolic antenna is that it has high directivity. It functions similarly to a searchlight or flashlight reflector to direct the radio waves in a narrow beam, or receive radio waves from one particular direction only. Parabolic antennas have some of the highest gains, meaning that they can produce the narrowest beamwidths, of any antenna type. In order to achieve narrow beamwidths, the parabolic reflector must be much larger than the wavelength of the radio waves used, so parabolic antennas are used in the high frequency part of the radio spectrum, at UHF and microwave (SHF) frequencies, at which the wavelengths are small enough that conveniently-sized reflectors can be used.

Slot antenna

A slot antenna consists of a metal surface, usually a flat plate, with one or more holes or slots cut out. When the plate is driven as an antenna by a driving frequency, the slot radiates electromagnetic waves in a way similar to a dipole antenna. The shape and size of the slot, as well as the driving frequency, determine the radiation pattern. Often the radio waves are provided by a waveguide, and the antenna consists of slots in the waveguide. Slot antennas are often used at UHF and microwave frequencies instead of line antennas when greater control of the radiation pattern is required. Slot antennas are widely used in radar antennas, particularly marine radar antennas on ships, for the sector antennas used for cell phone base stations, and are often found in standard desktop microwave sources used for research purposes. A slot antenna's main advantages are its size, design simplicity, and convenient adaptation to mass production using either waveguide or PC board technology.

Horn antenna

A horn antenna or microwave horn is an antenna that consists of a flaring metal waveguide shaped like a horn to direct radio waves in a beam. Horns are widely used as antennas at UHF and microwave frequencies, above 300 MHz. They are used as feed antennas for larger antenna structures such as parabolic antennas, as standard calibration antennas to measure the gain of other antennas, and as directive antennas for such devices as radar guns, automatic door openers, and microwave radiometers. Their advantages are moderate directivity, low standing wave ratio (SWR), broad bandwidth, and simple construction and adjustment.


At microwave frequencies, the types of cable (transmission line) used to conduct lower frequency radio waves, such as coaxial cable, have high power losses. Therefore, to transport microwaves between the transmitter or receiver and the antenna with low losses, a special type of metal pipe called waveguide must be used. Because of the high cost and maintenance requirements of long waveguide runs, in many microwave antennas the output stage of the transmitter or the RF front end of the receiver is located at the antenna.

Transmission line specialized cable or other structure designed to carry alternating current of radio frequency

In radio-frequency engineering, a transmission line is a specialized cable or other structure designed to conduct alternating current of radio frequency, that is, currents with a frequency high enough that their wave nature must be taken into account. Transmission lines are used for purposes such as connecting radio transmitters and receivers with their antennas, distributing cable television signals, trunklines routing calls between telephone switching centres, computer network connections and high speed computer data buses.

Coaxial cable A type of electrical cable with an inner conductor surrounded by concentric insulating layer and conducting shield

Coaxial cable, or coax, is a type of electrical cable that has an inner conductor surrounded by a tubular insulating layer, surrounded by a tubular conducting shield. Many coaxial cables also have an insulating outer sheath or jacket. The term coaxial comes from the inner conductor and the outer shield sharing a geometric axis. Coaxial cable was invented by English engineer and mathematician Oliver Heaviside, who patented the design in 1880.

Waveguide (electromagnetism) waveguide for the transmission of electromagnetic waves; linear structure that conveys electromagnetic waves between its endpoints

In electromagnetics and communications engineering, the term waveguide may refer to any linear structure that conveys electromagnetic waves between its endpoints. However, the original and most common meaning is a hollow metal pipe used to carry radio waves. This type of waveguide is used as a transmission line mostly at microwave frequencies, for such purposes as connecting microwave transmitters and receivers to their antennas, in equipment such as microwave ovens, radar sets, satellite communications, and microwave radio links.


SHF frequencies occupy a "sweet spot" in the radio spectrum which is currently being exploited by many new radio services. [3] They are the lowest frequency band where radio waves can be directed in narrow beams by conveniently sized antennas so they do not interfere with nearby transmitters on the same frequency, allowing frequency reuse. On the other hand, they are the highest frequencies which can be used for long distance terrestrial communication; higher frequencies in the EHF (millimeter wave) band are highly absorbed by the atmosphere, limiting practical propagation distances to one kilometer. The high frequency gives microwave communication links a very large information-carrying capacity (bandwidth). In recent decades many new solid state sources of microwave energy have been developed, and microwave integrated circuits for the first time allow significant signal processing to be done at these frequencies. Sources of EHF energy are much more limited and in an earlier state of development.

See also

Related Research Articles

Path loss is the reduction in power density (attenuation) of an electromagnetic wave as it propagates through space. Path loss is a major component in the analysis and design of the link budget of a telecommunication system.

Feed horn small horn antenna used to convey radio waves between a transmitter and/or receiver and a parabolic reflector

In parabolic antennas such as satellite dishes, a feed horn is a small horn antenna used to convey radio waves between the transmitter and/or receiver and the parabolic reflector. In transmitting antennas, it is connected to the transmitter and converts the radio frequency alternating current from the transmitter to radio waves and feeds them to the rest of the antenna, which focuses them into a beam. In receiving antennas, incoming radio waves are gathered and focused by the antenna's reflector on the feed horn, which converts them to a tiny radio frequency voltage which is amplified by the receiver. Feed horns are used mainly at microwave (SHF) and higher frequencies.

Radio wave type of electromagnetic radiation

Radio waves are a type of electromagnetic radiation with wavelengths in the electromagnetic spectrum longer than infrared light. Radio waves have frequencies as high as 300 gigahertz (GHz) to as low as 30 hertz (Hz). At 300 GHz, the corresponding wavelength is 1 mm, and at 30 Hz is 10,000 km. Like all other electromagnetic waves, radio waves travel at the speed of light. They are generated by electric charges undergoing acceleration, such as time varying electric currents. Naturally occurring radio waves are emitted by lightning and astronomical objects.

Ultra high frequency radio waves

Ultra high frequency (UHF) is the ITU designation for radio frequencies in the range between 300 megahertz (MHz) and 3 gigahertz (GHz), also known as the decimetre band as the wavelengths range from one meter to one tenth of a meter. Radio waves with frequencies above the UHF band fall into the super-high frequency (SHF) or microwave frequency range. Lower frequency signals fall into the VHF or lower bands. UHF radio waves propagate mainly by line of sight; they are blocked by hills and large buildings although the transmission through building walls is strong enough for indoor reception. They are used for television broadcasting, cell phones, satellite communication including GPS, personal radio services including Wi-Fi and Bluetooth, walkie-talkies, cordless phones, and numerous other applications.

Very low frequency radio waves

Very low frequency or VLF is the ITU designation for radio frequencies (RF) in the range of 3 to 30 kilohertz (kHz), corresponding to wavelengths from 100 to 10 kilometers, respectively. The band is also known as the myriameter band or myriameter wave as the wavelengths range from one to ten myriameters. Due to its limited bandwidth, audio (voice) transmission is highly impractical in this band, and therefore only low data rate coded signals are used. The VLF band is used for a few radio navigation services, government time radio stations and for secure military communication. Since VLF waves can penetrate at least 40 meters (120 ft) into saltwater, they are used for military communication with submarines.

Medium frequency Frequencies between 300 kHz to 3 MHz

Medium frequency (MF) is the ITU designation for radio frequencies (RF) in the range of 300 kilohertz (kHz) to 3 megahertz (MHz). Part of this band is the medium wave (MW) AM broadcast band. The MF band is also known as the hectometer band as the wavelengths range from ten to one hectometer. Frequencies immediately below MF are denoted low frequency (LF), while the first band of higher frequencies is known as high frequency (HF). MF is mostly used for AM radio broadcasting, navigational radio beacons, maritime ship-to-shore communication, and transoceanic air traffic control.

High frequency frequencies between 3-30MHz

High frequency (HF) is the ITU designation for the range of radio frequency electromagnetic waves between 3 and 30 megahertz (MHz). It is also known as the decameter band or decameter wave as its wavelengths range from one to ten decameters. Frequencies immediately below HF are denoted medium frequency (MF), while the next band of higher frequencies is known as the very high frequency (VHF) band. The HF band is a major part of the shortwave band of frequencies, so communication at these frequencies is often called shortwave radio. Because radio waves in this band can be reflected back to Earth by the ionosphere layer in the atmosphere – a method known as "skip" or "skywave" propagation – these frequencies are suitable for long-distance communication across intercontinental distances and for mountainous terrains which prevent line-of-sight communications. The band is used by international shortwave broadcasting stations (2.31–25.82 MHz), aviation communication, government time stations, weather stations, amateur radio and citizens band services, among other uses.

Radio propagation behavior of radio waves as they travel, or are propagated, from one point to another, or into various parts of the atmosphere

Radio propagation is the behavior of radio waves as they travel, or are propagated, from one point to another, or into various parts of the atmosphere. As a form of electromagnetic radiation, like light waves, radio waves are affected by the phenomena of reflection, refraction, diffraction, absorption, polarization, and scattering. Understanding the effects of varying conditions on radio propagation has many practical applications, from choosing frequencies for international shortwave broadcasters, to designing reliable mobile telephone systems, to radio navigation, to operation of radar systems.

Directional antenna

A directional antenna or beam antenna is an antenna which radiates or receives greater power in specific directions allowing increased performance and reduced interference from unwanted sources. Directional antennas provide increased performance over dipole antennas—or omnidirectional antennas in general—when greater concentration of radiation in a certain direction is desired.

Radio spectrum part of the electromagnetic spectrum from 3 Hz to 3000 GHz (3 THz)

The radio spectrum is the part of the electromagnetic spectrum with frequencies from 30 Hertz to 300 GHz. Electromagnetic waves in this frequency range, called radio waves, are extremely widely used in modern technology, particularly in telecommunication. To prevent interference between different users, the generation and transmission of radio waves is strictly regulated by national laws, coordinated by an international body, the International Telecommunication Union (ITU).

Extremely high frequency radio waves

Extremely high frequency (EHF) is the International Telecommunication Union (ITU) designation for the band of radio frequencies in the electromagnetic spectrum from 30 to 300 gigahertz (GHz). It lies between the super high frequency band, and the far infrared band, the lower part of which is also referred to as the terahertz gap. Radio waves in this band have wavelengths from ten to one millimetre, so it is also called the millimetre band and radiation in this band is called millimetre waves, sometimes abbreviated MMW or mmW. Millimetre-length electromagnetic waves were first investigated in the 1890s by Indian scientist Jagadish Chandra Bose.

Communication with submarines is difficult because radio waves do not travel well through good electrical conductors like salt water.

Grimeton Radio Station working life museum in Varberg Municipality, Sweden

Grimeton Radio Station in southern Sweden, close to Varberg in Halland, is an early longwave transatlantic wireless telegraphy station built in 1922-1924, that has been preserved as a historical site. From the 1920s through the 1940s it was used to transmit telegram traffic by Morse code to North America and other countries, and during World War 2 was Sweden's only telecommunication link with the rest of the world. It is the only remaining example of an early pre-electronic radio transmitter technology called an Alexanderson alternator. It was added to the UNESCO World Heritage List in 2004, with the statement: "Grimeton Radio Station, Varberg is an outstanding monument representing the process of development of communication technology in the period following the First World War." The radio station is also an anchor site for the European Route of Industrial Heritage. The transmitter is still in operational condition, and each year on a day called Alexanderson Day is started up and transmits brief Morse code test transmissions, which can be received all over Europe.

Backward-wave oscillator

A backward wave oscillator (BWO), also called carcinotron or backward wave tube, is a vacuum tube that is used to generate microwaves up to the terahertz range. Belonging to the traveling-wave tube family, it is an oscillator with a wide electronic tuning range.

Microwave transmission technology of transmitting information or energy by the use of microwaves

Microwave transmission is the transmission of information by microwave radio waves. Although an experimental 40-mile (64 km) microwave telecommunication link across the English Channel was demonstrated in 1931, the development of radar in World War II provided the technology for practical exploitation of microwave communication. In the 1950s, large transcontinental microwave relay networks, consisting of chains of repeater stations linked by line-of-sight beams of microwaves were built in Europe and America to relay long distance telephone traffic and television programs between cities. Communication satellites which transferred data between ground stations by microwaves took over much long distance traffic in the 1960s. In recent years, there has been an explosive increase in use of the microwave spectrum by new telecommunication technologies such as wireless networks, and direct-broadcast satellites which broadcast television and radio directly into consumers' homes.

In radio systems, many different antenna types are used with specialized properties for particular applications. Antennas can be classified in various ways. The list below groups together antennas under common operating principles, following the way antennas are classified in many engineering textbooks.


  1. Freedman, S. (September 1946). "Two-way radio for everyone" (PDF). Radio News. New York: Ziff-Davis Publications. 36 (3): 25–27. Retrieved March 24, 2014. This article from the beginning of the microwave era predicted the future value of microwaves for point-to-point communication.
  2. Seybold, John S. (2005). Introduction to RF Propagation. John Wiley and Sons. pp. 55–58. ISBN   0471743682.
  3. Lee, Thomas H. (2004). Planar Microwave Engineering: A Practical Guide to Theory, Measurement, and Circuits. Cambridge University Press. p. 27. ISBN   1316175774.