Switching frequency

Last updated

In electronics, switching frequency refers to the rate at which an electronic switch performs its function. Switching frequency is an important design and operating parameter in systems such as:

Electronics physics, engineering, technology and applications that deal with the emission, flow and control of electrons in vacuum and matter

Electronics comprises the physics, engineering, technology and applications that deal with the emission, flow and control of electrons in vacuum and matter.

In electronics, an electronic switch is an electronic component or device that can switch an electrical circuit, interrupting the current or diverting it from one conductor to another.

Class-D amplifier

A class-D amplifier or switching amplifier is an electronic amplifier in which the amplifying devices operate as electronic switches, and not as linear gain devices as in other amplifiers. They operate by rapidly switching back and forth between the supply rails, being fed by a modulator using pulse width, pulse density, or related techniques to encode the audio input into a pulse train. The audio escapes through a simple low-pass filter into the loudspeaker. The high-frequency pulses are blocked. Since the pairs of output transistors are never conducting at the same time, there is no other path for current flow apart from the low-pass filter/loudspeaker. For this reason, efficiency can exceed 90%.

Audio power amplifier electronic amplifier that amplifies low-power audio signals

An audio power amplifier is an electronic amplifier that amplifies low-power electronic audio signals such as the signal from radio receiver or electric guitar pickup to a level that is high enough for driving loudspeakers or headphones. Audio power amplifiers are found in all manner of sound systems including sound reinforcement, public address and home audio systems and musical instrument amplifiers like guitar amplifiers. It is the final electronic stage in a typical audio playback chain before the signal is sent to the loudspeakers.

In electrical engineering, power engineering, and the electric power industry, power conversion is converting electric energy from one form to another such as converting between AC and DC; or changing the voltage or frequency; or some combination of these. A power converter is an electrical or electro-mechanical device for converting electrical energy. This could be as simple as a transformer to change the voltage of AC power, but also includes far more complex systems. The term can also refer to a class of electrical machinery that is used to convert one frequency of alternating current into another frequency.

This frequency is also used in different types of DC-DC converters like Battery Discharge Regulator, Universal Bus Regulator, Auxiliary Bus Regulator etc., switching frequency refers the switch on or off the circuit in the particular frequency

Related Research Articles

Switched-mode power supply electronic power supply that incorporates a switching regulator

A switched-mode power supply is an electronic power supply that incorporates a switching regulator to convert electrical power efficiently. Like other power supplies, an SMPS transfers power from a DC or AC source to DC loads, such as a personal computer, while converting voltage and current characteristics. Unlike a linear power supply, the pass transistor of a switching-mode supply continually switches between low-dissipation, full-on and full-off states, and spends very little time in the high dissipation transitions, which minimizes wasted energy. Ideally, a switched-mode power supply dissipates no power. Voltage regulation is achieved by varying the ratio of on-to-off time. In contrast, a linear power supply regulates the output voltage by continually dissipating power in the pass transistor. This higher power conversion efficiency is an important advantage of a switched-mode power supply. Switched-mode power supplies may also be substantially smaller and lighter than a linear supply due to the smaller transformer size and weight.

The Ćuk converter is a type of DC/DC converter that has an output voltage magnitude that is either greater than or less than the input voltage magnitude. It is essentially a boost converter followed by a buck converter with a capacitor to couple the energy.

A DC-to-DC converter is an electronic circuit or electromechanical device that converts a source of direct current (DC) from one voltage level to another. It is a type of electric power converter. Power levels range from very low to very high.

Voltage regulator regulator, designed to automatically maintain a constant voltage level;may: use a simple feed-forward design or include negative feedback, use an electromechanical mechanism or electronic components

A voltage regulator is a system designed to automatically maintain a constant voltage level. A voltage regulator may use a simple feed-forward design or may include negative feedback. It may use an electromechanical mechanism, or electronic components. Depending on the design, it may be used to regulate one or more AC or DC voltages.

Power electronics application of solid-state electronics to the control and conversion of electric power

Power electronics is the application of solid-state electronics to the control and conversion of electric power.

Chopper (electronics) electromechanical device

In electronics, a chopper circuit is used to refer to numerous types of electronic switching devices and circuits used in power control and signal applications. A chopper is a device that converts fixed DC input to a variable DC output voltage directly. Essentially, a chopper is an electronic switch that is used to interrupt one signal under the control of another.

Low-dropout regulator DC linear voltage regulator that can regulate the output voltage even when the supply voltage is very close to the output voltage

A low-dropout or LDO regulator is a DC linear voltage regulator that can regulate the output voltage even when the supply voltage is very close to the output voltage.

An H bridge is an electronic circuit that switches the polarity of a voltage applied to a load. These circuits are often used in robotics and other applications to allow DC motors to run forwards or backwards.

Push–pull converter

A push–pull converter is a type of DC-to-DC converter, a switching converter that uses a transformer to change the voltage of a DC power supply. The distinguishing feature of a push-pull converter is that the transformer primary is supplied with current from the input line by pairs of transistors in a symmetrical push-pull circuit. The transistors are alternately switched on and off, periodically reversing the current in the transformer. Therefore, current is drawn from the line during both halves of the switching cycle. This contrasts with buck-boost converters, in which the input current is supplied by a single transistor which is switched on and off, so current is only drawn from the line during half the switching cycle. During the other half the output power is supplied by energy stored in inductors or capacitors in the power supply. Push–pull converters have steadier input current, create less noise on the input line, and are more efficient in higher power applications.

Flyback converter

The flyback converter is used in both AC/DC and DC/DC conversion with galvanic isolation between the input and any outputs. The flyback converter is a buck-boost converter with the inductor split to form a transformer, so that the voltage ratios are multiplied with an additional advantage of isolation. When driving for example a plasma lamp or a voltage multiplier the rectifying diode of the boost converter is left out and the device is called a flyback transformer.

Single-ended primary-inductor converter

The single-ended primary-inductor converter (SEPIC) is a type of DC/DC converter that allows the electrical potential (voltage) at its output to be greater than, less than, or equal to that at its input. The output of the SEPIC is controlled by the duty cycle of the control transistor (S1).

Pulse-Frequency Modulation (PFM) is a modulation method for representing an analog signal using only two levels. It is analogous to pulse-width modulation (PWM), in which the magnitude of an analog signal is encoded in the duty cycle of a square wave. Unlike PWM, in which the width of square pulses is varied at constant frequency, PFM fixes the width of square pulses while varying the frequency. In other words, the frequency of the pulse train is varied in accordance with the instantaneous amplitude of the modulating signal at sampling intervals. The amplitude and width of the pulses is kept constant.

The Undervoltage-Lockout or UVLO is an electronic circuit used to turn off the power of an electronic device in the event of the voltage dropping below the operational value. For instance, in embedded devices, UVLOs can be used to monitor the battery charge or turn off the circuit if the battery voltage drops below a specific threshold, thus protecting the associated equipment. Some variants may also have an upper threshold. Undervoltage lockout is an integral part of many electronic devices. For instance, it is widely used in many Electrical ballast circuits to switch them off in the event of voltage falling below the operational value.

Power management integrated circuit An integrated circuit designed for power management in electronic devices

Power management integrated circuits are integrated circuits for power management. Although PMIC refers to a wide range of chips, most include several DC/DC converters or their control part. A PMIC is often included in battery-operated devices such as mobile phones and portable media players to decrease the amount of space required.

Split-pi topology

In electronics, a split-pi topology is a pattern of component interconnections used in a kind of power converter that can theoretically produce an arbitrary output voltage, either higher or lower than the input voltage. In practice the upper voltage output is limited to the voltage rating of components used. It is essentially a boost (step-up) converter followed by a buck (step-down) converter. The topology and use of MOSFETs make it inherently bi-directional which lends itself to applications requiring regenerative braking.

The following outline is provided as an overview of and topical guide to electronics: